1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-05-20 11:40:18 +02:00

Fix bugs in numerical equality predicate.

* libguile/numbers.c (scm_num_eq_p): Fix bug comparing fractions to
  infinities (reported by Göran Weinholt <goran@weinholt.se>).  Fix
  erroneous comment describing the logic behind inum/flonum comparison.
  Use similar logic for inum/complex comparison to avoid rounding
  errors.  Make minor indentation fixes and simplifications.

* test-suite/tests/numbers.test (=): Add tests.
This commit is contained in:
Mark H Weaver 2013-07-16 00:18:40 -04:00
parent 4cc2e41cf7
commit 0132928891
2 changed files with 58 additions and 28 deletions

View file

@ -6542,9 +6542,11 @@ scm_num_eq_p (SCM x, SCM y)
to a double and compare.
But on a 64-bit system an inum is bigger than a double and
casting it to a double (call that dxx) will round. dxx is at
worst 1 bigger or smaller than xx, so if dxx==yy we know yy is
an integer and fits a long. So we cast yy to a long and
casting it to a double (call that dxx) will round.
Although dxx will not in general be equal to xx, dxx will
always be an integer and within a factor of 2 of xx, so if
dxx==yy, we know that yy is an integer and fits in
scm_t_signed_bits. So we cast yy to scm_t_signed_bits and
compare with plain xx.
An alternative (for any size system actually) would be to check
@ -6559,8 +6561,14 @@ scm_num_eq_p (SCM x, SCM y)
|| xx == (scm_t_signed_bits) yy));
}
else if (SCM_COMPLEXP (y))
return scm_from_bool (((double) xx == SCM_COMPLEX_REAL (y))
&& (0.0 == SCM_COMPLEX_IMAG (y)));
{
/* see comments with inum/real above */
double ry = SCM_COMPLEX_REAL (y);
return scm_from_bool ((double) xx == ry
&& 0.0 == SCM_COMPLEX_IMAG (y)
&& (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
|| xx == (scm_t_signed_bits) ry));
}
else if (SCM_FRACTIONP (y))
return SCM_BOOL_F;
else
@ -6615,24 +6623,21 @@ scm_num_eq_p (SCM x, SCM y)
else if (SCM_BIGP (y))
{
int cmp;
if (isnan (SCM_REAL_VALUE (x)))
if (isnan (xx))
return SCM_BOOL_F;
cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), xx);
scm_remember_upto_here_1 (y);
return scm_from_bool (0 == cmp);
}
else if (SCM_REALP (y))
return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
return scm_from_bool (xx == SCM_REAL_VALUE (y));
else if (SCM_COMPLEXP (y))
return scm_from_bool ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
&& (0.0 == SCM_COMPLEX_IMAG (y)));
return scm_from_bool ((xx == SCM_COMPLEX_REAL (y))
&& (0.0 == SCM_COMPLEX_IMAG (y)));
else if (SCM_FRACTIONP (y))
{
double xx = SCM_REAL_VALUE (x);
if (isnan (xx))
if (isnan (xx) || isinf (xx))
return SCM_BOOL_F;
if (isinf (xx))
return scm_from_bool (xx < 0.0);
x = scm_inexact_to_exact (x); /* with x as frac or int */
goto again;
}
@ -6642,8 +6647,15 @@ scm_num_eq_p (SCM x, SCM y)
else if (SCM_COMPLEXP (x))
{
if (SCM_I_INUMP (y))
return scm_from_bool ((SCM_COMPLEX_REAL (x) == (double) SCM_I_INUM (y))
&& (SCM_COMPLEX_IMAG (x) == 0.0));
{
/* see comments with inum/real above */
double rx = SCM_COMPLEX_REAL (x);
scm_t_signed_bits yy = SCM_I_INUM (y);
return scm_from_bool (rx == (double) yy
&& 0.0 == SCM_COMPLEX_IMAG (x)
&& (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
|| (scm_t_signed_bits) rx == yy));
}
else if (SCM_BIGP (y))
{
int cmp;
@ -6657,20 +6669,18 @@ scm_num_eq_p (SCM x, SCM y)
}
else if (SCM_REALP (y))
return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
&& (SCM_COMPLEX_IMAG (x) == 0.0));
&& (SCM_COMPLEX_IMAG (x) == 0.0));
else if (SCM_COMPLEXP (y))
return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
&& (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
&& (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
else if (SCM_FRACTIONP (y))
{
double xx;
if (SCM_COMPLEX_IMAG (x) != 0.0)
return SCM_BOOL_F;
xx = SCM_COMPLEX_REAL (x);
if (isnan (xx))
if (isnan (xx) || isinf (xx))
return SCM_BOOL_F;
if (isinf (xx))
return scm_from_bool (xx < 0.0);
x = scm_inexact_to_exact (x); /* with x as frac or int */
goto again;
}
@ -6686,10 +6696,8 @@ scm_num_eq_p (SCM x, SCM y)
else if (SCM_REALP (y))
{
double yy = SCM_REAL_VALUE (y);
if (isnan (yy))
if (isnan (yy) || isinf (yy))
return SCM_BOOL_F;
if (isinf (yy))
return scm_from_bool (0.0 < yy);
y = scm_inexact_to_exact (y); /* with y as frac or int */
goto again;
}
@ -6699,10 +6707,8 @@ scm_num_eq_p (SCM x, SCM y)
if (SCM_COMPLEX_IMAG (y) != 0.0)
return SCM_BOOL_F;
yy = SCM_COMPLEX_REAL (y);
if (isnan (yy))
if (isnan (yy) || isinf(yy))
return SCM_BOOL_F;
if (isinf (yy))
return scm_from_bool (0.0 < yy);
y = scm_inexact_to_exact (y); /* with y as frac or int */
goto again;
}

View file

@ -2034,7 +2034,28 @@
(pass-if (not (= (ash-flo 1.0 58) (1- (ash 1 58)))))
(pass-if (= (ash 1 58) (ash-flo 1.0 58)))
(pass-if (not (= (1+ (ash 1 58)) (ash-flo 1.0 58))))
(pass-if (not (= (1- (ash 1 58)) (ash-flo 1.0 58)))))
(pass-if (not (= (1- (ash 1 58)) (ash-flo 1.0 58))))
;; prior to guile 2.0.10, inum/complex comparisons were done just by
;; converting the inum to a double, which on a 64-bit would round making
;; say inexact 2^58 appear equal to exact 2^58+1
(pass-if (= (+ +0.0i (ash-flo 1.0 58)) (ash 1 58)))
(pass-if (not (= (+ +0.0i (ash-flo 1.0 58)) (1+ (ash 1 58)))))
(pass-if (not (= (+ +0.0i (ash-flo 1.0 58)) (1- (ash 1 58)))))
(pass-if (= (ash 1 58) (+ +0.0i (ash-flo 1.0 58))))
(pass-if (not (= (1+ (ash 1 58)) (+ +0.0i (ash-flo 1.0 58)))))
(pass-if (not (= (1- (ash 1 58)) (+ +0.0i (ash-flo 1.0 58)))))
;; prior to guile 2.0.10, fraction/flonum and fraction/complex
;; comparisons mishandled infinities.
(pass-if (not (= 1/2 +inf.0)))
(pass-if (not (= 1/2 -inf.0)))
(pass-if (not (= +inf.0 1/2)))
(pass-if (not (= -inf.0 1/2)))
(pass-if (not (= 1/2 +inf.0+0.0i)))
(pass-if (not (= 1/2 -inf.0+0.0i)))
(pass-if (not (= +inf.0+0.0i 1/2)))
(pass-if (not (= -inf.0+0.0i 1/2))))
;;;
;;; <
@ -2085,6 +2106,9 @@
(pass-if "n = 0.0"
(not (< 0.0 0.0)))
(pass-if "n = -0.0"
(not (< 0.0 -0.0)))
(pass-if "n = 1"
(< 0.0 1))