mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-05-20 11:40:18 +02:00
Fix bugs in numerical equality predicate.
* libguile/numbers.c (scm_num_eq_p): Fix bug comparing fractions to infinities (reported by Göran Weinholt <goran@weinholt.se>). Fix erroneous comment describing the logic behind inum/flonum comparison. Use similar logic for inum/complex comparison to avoid rounding errors. Make minor indentation fixes and simplifications. * test-suite/tests/numbers.test (=): Add tests.
This commit is contained in:
parent
4cc2e41cf7
commit
0132928891
2 changed files with 58 additions and 28 deletions
|
@ -6542,9 +6542,11 @@ scm_num_eq_p (SCM x, SCM y)
|
|||
to a double and compare.
|
||||
|
||||
But on a 64-bit system an inum is bigger than a double and
|
||||
casting it to a double (call that dxx) will round. dxx is at
|
||||
worst 1 bigger or smaller than xx, so if dxx==yy we know yy is
|
||||
an integer and fits a long. So we cast yy to a long and
|
||||
casting it to a double (call that dxx) will round.
|
||||
Although dxx will not in general be equal to xx, dxx will
|
||||
always be an integer and within a factor of 2 of xx, so if
|
||||
dxx==yy, we know that yy is an integer and fits in
|
||||
scm_t_signed_bits. So we cast yy to scm_t_signed_bits and
|
||||
compare with plain xx.
|
||||
|
||||
An alternative (for any size system actually) would be to check
|
||||
|
@ -6559,8 +6561,14 @@ scm_num_eq_p (SCM x, SCM y)
|
|||
|| xx == (scm_t_signed_bits) yy));
|
||||
}
|
||||
else if (SCM_COMPLEXP (y))
|
||||
return scm_from_bool (((double) xx == SCM_COMPLEX_REAL (y))
|
||||
&& (0.0 == SCM_COMPLEX_IMAG (y)));
|
||||
{
|
||||
/* see comments with inum/real above */
|
||||
double ry = SCM_COMPLEX_REAL (y);
|
||||
return scm_from_bool ((double) xx == ry
|
||||
&& 0.0 == SCM_COMPLEX_IMAG (y)
|
||||
&& (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
|
||||
|| xx == (scm_t_signed_bits) ry));
|
||||
}
|
||||
else if (SCM_FRACTIONP (y))
|
||||
return SCM_BOOL_F;
|
||||
else
|
||||
|
@ -6615,24 +6623,21 @@ scm_num_eq_p (SCM x, SCM y)
|
|||
else if (SCM_BIGP (y))
|
||||
{
|
||||
int cmp;
|
||||
if (isnan (SCM_REAL_VALUE (x)))
|
||||
if (isnan (xx))
|
||||
return SCM_BOOL_F;
|
||||
cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
|
||||
cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), xx);
|
||||
scm_remember_upto_here_1 (y);
|
||||
return scm_from_bool (0 == cmp);
|
||||
}
|
||||
else if (SCM_REALP (y))
|
||||
return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
|
||||
return scm_from_bool (xx == SCM_REAL_VALUE (y));
|
||||
else if (SCM_COMPLEXP (y))
|
||||
return scm_from_bool ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
|
||||
&& (0.0 == SCM_COMPLEX_IMAG (y)));
|
||||
return scm_from_bool ((xx == SCM_COMPLEX_REAL (y))
|
||||
&& (0.0 == SCM_COMPLEX_IMAG (y)));
|
||||
else if (SCM_FRACTIONP (y))
|
||||
{
|
||||
double xx = SCM_REAL_VALUE (x);
|
||||
if (isnan (xx))
|
||||
if (isnan (xx) || isinf (xx))
|
||||
return SCM_BOOL_F;
|
||||
if (isinf (xx))
|
||||
return scm_from_bool (xx < 0.0);
|
||||
x = scm_inexact_to_exact (x); /* with x as frac or int */
|
||||
goto again;
|
||||
}
|
||||
|
@ -6642,8 +6647,15 @@ scm_num_eq_p (SCM x, SCM y)
|
|||
else if (SCM_COMPLEXP (x))
|
||||
{
|
||||
if (SCM_I_INUMP (y))
|
||||
return scm_from_bool ((SCM_COMPLEX_REAL (x) == (double) SCM_I_INUM (y))
|
||||
&& (SCM_COMPLEX_IMAG (x) == 0.0));
|
||||
{
|
||||
/* see comments with inum/real above */
|
||||
double rx = SCM_COMPLEX_REAL (x);
|
||||
scm_t_signed_bits yy = SCM_I_INUM (y);
|
||||
return scm_from_bool (rx == (double) yy
|
||||
&& 0.0 == SCM_COMPLEX_IMAG (x)
|
||||
&& (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
|
||||
|| (scm_t_signed_bits) rx == yy));
|
||||
}
|
||||
else if (SCM_BIGP (y))
|
||||
{
|
||||
int cmp;
|
||||
|
@ -6657,20 +6669,18 @@ scm_num_eq_p (SCM x, SCM y)
|
|||
}
|
||||
else if (SCM_REALP (y))
|
||||
return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
|
||||
&& (SCM_COMPLEX_IMAG (x) == 0.0));
|
||||
&& (SCM_COMPLEX_IMAG (x) == 0.0));
|
||||
else if (SCM_COMPLEXP (y))
|
||||
return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
|
||||
&& (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
|
||||
&& (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
|
||||
else if (SCM_FRACTIONP (y))
|
||||
{
|
||||
double xx;
|
||||
if (SCM_COMPLEX_IMAG (x) != 0.0)
|
||||
return SCM_BOOL_F;
|
||||
xx = SCM_COMPLEX_REAL (x);
|
||||
if (isnan (xx))
|
||||
if (isnan (xx) || isinf (xx))
|
||||
return SCM_BOOL_F;
|
||||
if (isinf (xx))
|
||||
return scm_from_bool (xx < 0.0);
|
||||
x = scm_inexact_to_exact (x); /* with x as frac or int */
|
||||
goto again;
|
||||
}
|
||||
|
@ -6686,10 +6696,8 @@ scm_num_eq_p (SCM x, SCM y)
|
|||
else if (SCM_REALP (y))
|
||||
{
|
||||
double yy = SCM_REAL_VALUE (y);
|
||||
if (isnan (yy))
|
||||
if (isnan (yy) || isinf (yy))
|
||||
return SCM_BOOL_F;
|
||||
if (isinf (yy))
|
||||
return scm_from_bool (0.0 < yy);
|
||||
y = scm_inexact_to_exact (y); /* with y as frac or int */
|
||||
goto again;
|
||||
}
|
||||
|
@ -6699,10 +6707,8 @@ scm_num_eq_p (SCM x, SCM y)
|
|||
if (SCM_COMPLEX_IMAG (y) != 0.0)
|
||||
return SCM_BOOL_F;
|
||||
yy = SCM_COMPLEX_REAL (y);
|
||||
if (isnan (yy))
|
||||
if (isnan (yy) || isinf(yy))
|
||||
return SCM_BOOL_F;
|
||||
if (isinf (yy))
|
||||
return scm_from_bool (0.0 < yy);
|
||||
y = scm_inexact_to_exact (y); /* with y as frac or int */
|
||||
goto again;
|
||||
}
|
||||
|
|
|
@ -2034,7 +2034,28 @@
|
|||
(pass-if (not (= (ash-flo 1.0 58) (1- (ash 1 58)))))
|
||||
(pass-if (= (ash 1 58) (ash-flo 1.0 58)))
|
||||
(pass-if (not (= (1+ (ash 1 58)) (ash-flo 1.0 58))))
|
||||
(pass-if (not (= (1- (ash 1 58)) (ash-flo 1.0 58)))))
|
||||
(pass-if (not (= (1- (ash 1 58)) (ash-flo 1.0 58))))
|
||||
|
||||
;; prior to guile 2.0.10, inum/complex comparisons were done just by
|
||||
;; converting the inum to a double, which on a 64-bit would round making
|
||||
;; say inexact 2^58 appear equal to exact 2^58+1
|
||||
(pass-if (= (+ +0.0i (ash-flo 1.0 58)) (ash 1 58)))
|
||||
(pass-if (not (= (+ +0.0i (ash-flo 1.0 58)) (1+ (ash 1 58)))))
|
||||
(pass-if (not (= (+ +0.0i (ash-flo 1.0 58)) (1- (ash 1 58)))))
|
||||
(pass-if (= (ash 1 58) (+ +0.0i (ash-flo 1.0 58))))
|
||||
(pass-if (not (= (1+ (ash 1 58)) (+ +0.0i (ash-flo 1.0 58)))))
|
||||
(pass-if (not (= (1- (ash 1 58)) (+ +0.0i (ash-flo 1.0 58)))))
|
||||
|
||||
;; prior to guile 2.0.10, fraction/flonum and fraction/complex
|
||||
;; comparisons mishandled infinities.
|
||||
(pass-if (not (= 1/2 +inf.0)))
|
||||
(pass-if (not (= 1/2 -inf.0)))
|
||||
(pass-if (not (= +inf.0 1/2)))
|
||||
(pass-if (not (= -inf.0 1/2)))
|
||||
(pass-if (not (= 1/2 +inf.0+0.0i)))
|
||||
(pass-if (not (= 1/2 -inf.0+0.0i)))
|
||||
(pass-if (not (= +inf.0+0.0i 1/2)))
|
||||
(pass-if (not (= -inf.0+0.0i 1/2))))
|
||||
|
||||
;;;
|
||||
;;; <
|
||||
|
@ -2085,6 +2106,9 @@
|
|||
(pass-if "n = 0.0"
|
||||
(not (< 0.0 0.0)))
|
||||
|
||||
(pass-if "n = -0.0"
|
||||
(not (< 0.0 -0.0)))
|
||||
|
||||
(pass-if "n = 1"
|
||||
(< 0.0 1))
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue