1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-05-20 11:40:18 +02:00

Document new array functions, with provisional names

* doc/ref/api-data.texi: New section 'Arrays as arrays of
  arrays'. Document array-from, array-from*, array-amend!,
  array-for-each-cell, array-for-each-cell-in-order.
This commit is contained in:
Daniel Llorens 2016-11-23 11:26:22 +01:00
parent 7ef9d0ac2b
commit 0bd7562c96

View file

@ -7199,6 +7199,7 @@ dimensional arrays.
* Array Syntax:: * Array Syntax::
* Array Procedures:: * Array Procedures::
* Shared Arrays:: * Shared Arrays::
* Arrays as arrays of arrays::
* Accessing Arrays from C:: * Accessing Arrays from C::
@end menu @end menu
@ -7757,6 +7758,170 @@ have smaller rank than @var{array}.
@end lisp @end lisp
@end deffn @end deffn
@node Arrays as arrays of arrays
@subsubsection Arrays as arrays of arrays
The functions in this section allow you to treat an array of rank
@math{n} as an array of lower rank @math{n-k} where the elements are
themselves arrays (`cells') of rank @math{k}. This replicates some of
the functionality of `enclosed arrays', a feature of old Guile that was
removed before @w{version 2.0}. However, these functions do not require
a special type and operate on any array.
When we operate on an array in this way, we speak of the first @math{k}
dimensions of the array as the @math{k}-`frame' of the array, while the
last @math{n-k} dimensions are the dimensions of the
@math{n-k}-`cell'. For example, a 2D-array (a matrix) can be seen as a
1D array of rows. In this case, the rows are the 1-cells of the array.
@deffn {Scheme Procedure} array-from array idx @dots{}
@deffnx {C Function} scm_array_from (array, idxlist)
If the length of @var{idxlist} equals the rank @math{n} of
@var{array}, return the element at @code{(idx @dots{})}, just like
@code{(array-ref array idx @dots{})}. If, however, the length @math{k}
of @var{idxlist} is shorter than @math{n}, then return the shared
@math{(n-k)}-rank cell of @var{array} given by @var{idxlist}.
For example:
@lisp
(array-from #2((a b) (c d)) 0) @result{} #(a b)
(array-from #2((a b) (c d)) 1) @result{} #(c d)
(array-from #2((a b) (c d)) 1 1) @result{} d
(array-from #2((a b) (c d))) @result{} #2((a b) (c d))
@end lisp
@code{(apply array-from array indices)} is equivalent to
@lisp
(let ((len (length indices)))
(if (= (array-rank a) len)
(apply array-ref a indices)
(apply make-shared-array a
(lambda t (append indices t))
(drop (array-dimensions a) len))))
@end lisp
The name `from' comes from the J language.
@end deffn
@deffn {Scheme Procedure} array-from* array idx @dots{}
@deffnx {C Function} scm_array_from_s (array, idxlist)
Like @code{(array-from array idx @dots{})}, but return a 0-rank shared
array if the length of @var{idxlist} matches the rank of
@var{array}. This can be useful when using @var{ARRAY} as a place to
write into.
Compare:
@lisp
(array-from #2((a b) (c d)) 1 1) @result{} d
(array-from* #2((a b) (c d)) 1) @result{} #0(d)
(define a (make-array 'a 2 2))
(array-fill! (array-from* a 1 1) 'b)
a @result{} #2((a a) (a b)).
(array-fill! (array-from a 1 1) 'b) @result{} error: not an array
@end lisp
@code{(apply array-from* array indices)} is equivalent to
@lisp
(apply make-shared-array a
(lambda t (append indices t))
(drop (array-dimensions a) (length indices)))
@end lisp
@end deffn
@deffn {Scheme Procedure} array-amend! array x idx @dots{}
@deffnx {C Function} scm_array_amend_x (array, x, idxlist)
If the length of @var{idxlist} equals the rank @math{n} of
@var{array}, set the element at @code{(idx @dots{})} of @var{array} to
@var{x}, just like @code{(array-set! array x idx @dots{})}. If,
however, the length @math{k} of @var{idxlist} is shorter than
@math{n}, then copy the @math{(n-k)}-rank array @var{x}
into the @math{(n-k)}-cell of @var{array} given by
@var{idxlist}. In this case, the last @math{(n-k)} dimensions of
@var{array} and the dimensions of @var{x} must match exactly.
This function returns the modified @var{array}.
For example:
@lisp
(array-amend! (make-array 'a 2 2) b 1 1) @result{} #2((a a) (a b))
(array-amend! (make-array 'a 2 2) #(x y) 1) @result{} #2((a a) (x y))
@end lisp
Note that @code{array-amend!} will expect elements, not arrays, when the
destination has rank 0. One can work around this using
@code{array-from*} instead.
@lisp
(array-amend! (make-array 'a 2 2) #0(b) 1 1) @result{} #2((a a) (a #0(b)))
(let ((a (make-array 'a 2 2))) (array-copy! #0(b) (array-from* a 1 1)) a) @result{} #2((a a) (a b))
@end lisp
@code{(apply array-amend! array x indices)} is equivalent to
@lisp
(let ((len (length indices)))
(if (= (array-rank array) len)
(apply array-set! array x indices)
(array-copy! x (apply array-from array indices)))
array)
@end lisp
The name `amend' comes from the J language.
@end deffn
@deffn {Scheme Procedure} array-for-each-cell frame-rank op x @dots{}
@deffnx {C Function} scm_array_for_each_cell (array, frame_rank, op, xlist)
Each @var{x} must be an array of rank ≥ @var{frame-rank}, and
the first @var{frame-rank} dimensions of each @var{x} must all be the
same. @var{array-for-each-cell} calls @var{op} with each set of
(rank(@var{x}) - @var{frame-rank})-cells from @var{x}, in unspecified order.
@var{array-for-each-cell} allows you to loop over cells of any rank
without having to carry an index list or construct slices manually. The
cells passed to @var{op} are shared arrays of @var{X} so it is possible
to write to them.
This function returns an unspecified value.
For example, to sort the rows of rank-2 array @code{a}:
@lisp
(array-for-each-cell 1 (lambda (x) (sort! x <)) a)
@end lisp
As another example, let @code{a} be a rank-2 array where each row is a 2-vector @math{(x,y)}.
Let's compute the arguments of these vectors and store them in rank-1 array @code{b}.
@lisp
(array-for-each-cell 1
(lambda (a b)
(array-set! b (atan (array-ref a 1) (array-ref a 0))))
a b)
@end lisp
@code{(apply array-for-each-cell frame-rank op x)} is functionally
equivalent to
@lisp
(let ((frame (take (array-dimensions (car x)) frank)))
(unless (every (lambda (x)
(equal? frame (take (array-dimensions x) frank)))
(cdr x))
(error))
(array-index-map!
(apply make-shared-array (make-array #t) (const '()) frame)
(lambda i (apply op (map (lambda (x) (apply array-from* x i)) x)))))
@end lisp
@end deffn
@node Accessing Arrays from C @node Accessing Arrays from C
@subsubsection Accessing Arrays from C @subsubsection Accessing Arrays from C