1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-05-14 01:30:19 +02:00

Rename mark-sweep "markers" to "tracers"

There could be other reasons than marking to trace the heap.
This commit is contained in:
Andy Wingo 2022-04-18 15:19:55 +02:00
parent 19f7f72b68
commit 119e273fa4
6 changed files with 843 additions and 839 deletions

View file

@ -17,10 +17,10 @@ bdw-%: bdw.h conservative-roots.h %-types.h %.c
semi-%: semi.h precise-roots.h %-types.h heap-objects.h %.c
$(COMPILE) -DGC_SEMI -o $@ $*.c
mark-sweep-%: mark-sweep.h precise-roots.h serial-marker.h assert.h debug.h %-types.h heap-objects.h %.c
mark-sweep-%: mark-sweep.h precise-roots.h serial-tracer.h assert.h debug.h %-types.h heap-objects.h %.c
$(COMPILE) -DGC_MARK_SWEEP -o $@ $*.c
parallel-mark-sweep-%: mark-sweep.h precise-roots.h parallel-marker.h assert.h debug.h %-types.h heap-objects.h %.c
parallel-mark-sweep-%: mark-sweep.h precise-roots.h parallel-tracer.h assert.h debug.h %-types.h heap-objects.h %.c
$(COMPILE) -DGC_PARALLEL_MARK_SWEEP -o $@ $*.c
check: $(addprefix test-$(TARGET),$(TARGETS))

View file

@ -11,9 +11,9 @@
#include "inline.h"
#include "precise-roots.h"
#ifdef GC_PARALLEL_MARK
#include "parallel-marker.h"
#include "parallel-tracer.h"
#else
#include "serial-marker.h"
#include "serial-tracer.h"
#endif
#define GRANULE_SIZE 8
@ -124,12 +124,12 @@ struct mark_space {
void *mem;
size_t mem_size;
long count;
struct marker marker;
struct mutator *deactivated_mutators;
};
struct heap {
struct mark_space mark_space;
struct tracer tracer;
};
struct mutator_mark_buf {
@ -148,8 +148,8 @@ struct mutator {
struct mutator *next;
};
static inline struct marker* mark_space_marker(struct mark_space *space) {
return &space->marker;
static inline struct tracer* heap_tracer(struct heap *heap) {
return &heap->tracer;
}
static inline struct mark_space* heap_mark_space(struct heap *heap) {
return &heap->mark_space;
@ -174,7 +174,7 @@ static inline void clear_memory(uintptr_t addr, size_t size) {
memset((char*)addr, 0, size);
}
static void collect(struct mark_space *space, struct mutator *mut) NEVER_INLINE;
static void collect(struct heap *heap, struct mutator *mut) NEVER_INLINE;
static inline uint8_t* mark_byte(struct mark_space *space, struct gcobj *obj) {
ASSERT(space->heap_base <= (uintptr_t) obj);
@ -183,8 +183,8 @@ static inline uint8_t* mark_byte(struct mark_space *space, struct gcobj *obj) {
return &space->mark_bytes[granule];
}
static inline int mark_object(struct mark_space *space, struct gcobj *obj) {
uint8_t *byte = mark_byte(space, obj);
static inline int trace_object(struct heap *heap, struct gcobj *obj) {
uint8_t *byte = mark_byte(heap_mark_space(heap), obj);
if (*byte)
return 0;
*byte = 1;
@ -195,7 +195,7 @@ static inline void trace_one(struct gcobj *obj, void *mark_data) {
switch (tag_live_alloc_kind(obj->tag)) {
#define SCAN_OBJECT(name, Name, NAME) \
case ALLOC_KIND_##NAME: \
visit_##name##_fields((Name*)obj, marker_visit, mark_data); \
visit_##name##_fields((Name*)obj, tracer_visit, mark_data); \
break;
FOR_EACH_HEAP_OBJECT_KIND(SCAN_OBJECT)
#undef SCAN_OBJECT
@ -317,11 +317,12 @@ static void mutator_mark_buf_destroy(struct mutator_mark_buf *buf) {
// Mark the roots of a mutator that is stopping for GC. We can't
// enqueue them directly, so we send them to the controller in a buffer.
static void mark_stopping_mutator_roots(struct mutator *mut) {
struct mark_space *space = mutator_mark_space(mut);
struct heap *heap = mutator_heap(mut);
struct mark_space *space = heap_mark_space(heap);
struct mutator_mark_buf *local_roots = &mut->mark_buf;
for (struct handle *h = mut->roots; h; h = h->next) {
struct gcobj *root = h->v;
if (root && mark_object(space, root))
if (root && trace_object(heap, root))
mutator_mark_buf_push(local_roots, root);
}
@ -336,11 +337,11 @@ static void mark_stopping_mutator_roots(struct mutator *mut) {
// Mark the roots of the mutator that causes GC.
static void mark_controlling_mutator_roots(struct mutator *mut) {
struct mark_space *space = mutator_mark_space(mut);
struct heap *heap = mutator_heap(mut);
for (struct handle *h = mut->roots; h; h = h->next) {
struct gcobj *root = h->v;
if (root && mark_object(space, root))
marker_enqueue_root(&space->marker, root);
if (root && trace_object(heap, root))
tracer_enqueue_root(&heap->tracer, root);
}
}
@ -359,16 +360,17 @@ static void mark_inactive_mutators(struct mark_space *space) {
mark_controlling_mutator_roots(mut);
}
static void mark_global_roots(struct mark_space *space) {
static void mark_global_roots(struct heap *heap) {
struct mark_space *space = heap_mark_space(heap);
for (struct handle *h = space->global_roots; h; h = h->next) {
struct gcobj *obj = h->v;
if (obj && mark_object(space, obj))
marker_enqueue_root(&space->marker, obj);
if (obj && trace_object(heap, obj))
tracer_enqueue_root(&heap->tracer, obj);
}
struct mutator_mark_buf *roots = atomic_load(&space->mutator_roots);
for (; roots; roots = roots->next)
marker_enqueue_roots(&space->marker, roots->objects, roots->size);
tracer_enqueue_roots(&heap->tracer, roots->objects, roots->size);
atomic_store(&space->mutator_roots, NULL);
}
@ -425,16 +427,17 @@ static void reset_sweeper(struct mark_space *space) {
space->sweep = space->heap_base;
}
static void collect(struct mark_space *space, struct mutator *mut) {
static void collect(struct heap *heap, struct mutator *mut) {
struct mark_space *space = heap_mark_space(heap);
DEBUG("start collect #%ld:\n", space->count);
marker_prepare(space);
tracer_prepare(heap);
request_mutators_to_stop(space);
mark_controlling_mutator_roots(mut);
wait_for_mutators_to_stop(space);
mark_inactive_mutators(space);
mark_global_roots(space);
marker_trace(space);
marker_release(space);
mark_global_roots(heap);
tracer_trace(heap);
tracer_release(heap);
clear_global_freelists(space);
reset_sweeper(space);
space->count++;
@ -651,7 +654,7 @@ static void* allocate_medium(struct mutator *mut, enum alloc_kind kind,
fprintf(stderr, "ran out of space, heap size %zu\n", space->heap_size);
abort();
} else {
collect(space, mut);
collect(mutator_heap(mut), mut);
swept_from_beginning = 1;
}
}
@ -739,7 +742,7 @@ static void fill_small_from_global(struct mutator *mut,
fprintf(stderr, "ran out of space, heap size %zu\n", space->heap_size);
abort();
} else {
collect(space, mut);
collect(mutator_heap(mut), mut);
swept_from_beginning = 1;
}
}
@ -838,7 +841,7 @@ static int initialize_gc(size_t size, struct heap **heap,
space->heap_base = ((uintptr_t) mem) + overhead;
space->heap_size = size - overhead;
space->sweep = space->heap_base + space->heap_size;
if (!marker_init(space))
if (!tracer_init(*heap))
abort();
reclaim(space, NULL, NOT_SMALL_OBJECT, (void*)space->heap_base,
size_to_granules(space->heap_size));

View file

@ -1,642 +0,0 @@
#ifndef PARALLEL_MARKER_H
#define PARALLEL_MARKER_H
#include <pthread.h>
#include <stdatomic.h>
#include <sys/mman.h>
#include <unistd.h>
#include "assert.h"
#include "debug.h"
#include "inline.h"
// The Chase-Lev work-stealing deque, as initially described in "Dynamic
// Circular Work-Stealing Deque" (Chase and Lev, SPAA'05)
// (https://www.dre.vanderbilt.edu/~schmidt/PDF/work-stealing-dequeue.pdf)
// and improved with C11 atomics in "Correct and Efficient Work-Stealing
// for Weak Memory Models" (Lê et al, PPoPP'13)
// (http://www.di.ens.fr/%7Ezappa/readings/ppopp13.pdf).
struct gcobj;
struct mark_buf {
unsigned log_size;
size_t size;
struct gcobj **data;
};
// Min size: 8 kB on 64-bit systems, 4 kB on 32-bit.
#define mark_buf_min_log_size ((unsigned) 10)
// Max size: 2 GB on 64-bit systems, 1 GB on 32-bit.
#define mark_buf_max_log_size ((unsigned) 28)
static int
mark_buf_init(struct mark_buf *buf, unsigned log_size) {
ASSERT(log_size >= mark_buf_min_log_size);
ASSERT(log_size <= mark_buf_max_log_size);
size_t size = (1 << log_size) * sizeof(struct gcobj *);
void *mem = mmap(NULL, size, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (mem == MAP_FAILED) {
perror("Failed to grow work-stealing dequeue");
DEBUG("Failed to allocate %zu bytes", size);
return 0;
}
buf->log_size = log_size;
buf->size = 1 << log_size;
buf->data = mem;
return 1;
}
static inline size_t
mark_buf_size(struct mark_buf *buf) {
return buf->size;
}
static inline size_t
mark_buf_byte_size(struct mark_buf *buf) {
return mark_buf_size(buf) * sizeof(struct gcobj *);
}
static void
mark_buf_release(struct mark_buf *buf) {
if (buf->data)
madvise(buf->data, mark_buf_byte_size(buf), MADV_DONTNEED);
}
static void
mark_buf_destroy(struct mark_buf *buf) {
if (buf->data) {
munmap(buf->data, mark_buf_byte_size(buf));
buf->data = NULL;
buf->log_size = 0;
buf->size = 0;
}
}
static inline struct gcobj *
mark_buf_get(struct mark_buf *buf, size_t i) {
return atomic_load_explicit(&buf->data[i & (buf->size - 1)],
memory_order_relaxed);
}
static inline void
mark_buf_put(struct mark_buf *buf, size_t i, struct gcobj * o) {
return atomic_store_explicit(&buf->data[i & (buf->size - 1)],
o,
memory_order_relaxed);
}
static inline int
mark_buf_grow(struct mark_buf *from, struct mark_buf *to,
size_t b, size_t t) {
if (from->log_size == mark_buf_max_log_size)
return 0;
if (!mark_buf_init (to, from->log_size + 1))
return 0;
for (size_t i=t; i<b; i++)
mark_buf_put(to, i, mark_buf_get(from, i));
return 1;
}
// Chase-Lev work-stealing deque. One thread pushes data into the deque
// at the bottom, and many threads compete to steal data from the top.
struct mark_deque {
// Ensure bottom and top are on different cache lines.
union {
atomic_size_t bottom;
char bottom_padding[64];
};
union {
atomic_size_t top;
char top_padding[64];
};
atomic_int active; // Which mark_buf is active.
struct mark_buf bufs[(mark_buf_max_log_size - mark_buf_min_log_size) + 1];
};
#define LOAD_RELAXED(loc) atomic_load_explicit(loc, memory_order_relaxed)
#define STORE_RELAXED(loc, o) atomic_store_explicit(loc, o, memory_order_relaxed)
#define LOAD_ACQUIRE(loc) atomic_load_explicit(loc, memory_order_acquire)
#define STORE_RELEASE(loc, o) atomic_store_explicit(loc, o, memory_order_release)
#define LOAD_CONSUME(loc) atomic_load_explicit(loc, memory_order_consume)
static int
mark_deque_init(struct mark_deque *q) {
memset(q, 0, sizeof (*q));
int ret = mark_buf_init(&q->bufs[0], mark_buf_min_log_size);
// Note, this fence isn't in the paper, I added it out of caution.
atomic_thread_fence(memory_order_release);
return ret;
}
static void
mark_deque_release(struct mark_deque *q) {
for (int i = LOAD_RELAXED(&q->active); i >= 0; i--)
mark_buf_release(&q->bufs[i]);
}
static void
mark_deque_destroy(struct mark_deque *q) {
for (int i = LOAD_RELAXED(&q->active); i >= 0; i--)
mark_buf_destroy(&q->bufs[i]);
}
static int
mark_deque_grow(struct mark_deque *q, int cur, size_t b, size_t t) {
if (!mark_buf_grow(&q->bufs[cur], &q->bufs[cur + 1], b, t)) {
fprintf(stderr, "failed to grow deque!!\n");
abort();
}
cur++;
STORE_RELAXED(&q->active, cur);
return cur;
}
static void
mark_deque_push(struct mark_deque *q, struct gcobj * x) {
size_t b = LOAD_RELAXED(&q->bottom);
size_t t = LOAD_ACQUIRE(&q->top);
int active = LOAD_RELAXED(&q->active);
if (b - t > mark_buf_size(&q->bufs[active]) - 1) /* Full queue. */
active = mark_deque_grow(q, active, b, t);
mark_buf_put(&q->bufs[active], b, x);
atomic_thread_fence(memory_order_release);
STORE_RELAXED(&q->bottom, b + 1);
}
static void
mark_deque_push_many(struct mark_deque *q, struct gcobj **objv, size_t count) {
size_t b = LOAD_RELAXED(&q->bottom);
size_t t = LOAD_ACQUIRE(&q->top);
int active = LOAD_RELAXED(&q->active);
while (b - t > mark_buf_size(&q->bufs[active]) - count) /* Full queue. */
active = mark_deque_grow(q, active, b, t);
for (size_t i = 0; i < count; i++)
mark_buf_put(&q->bufs[active], b + i, objv[i]);
atomic_thread_fence(memory_order_release);
STORE_RELAXED(&q->bottom, b + count);
}
static struct gcobj *
mark_deque_try_pop(struct mark_deque *q) {
size_t b = LOAD_RELAXED(&q->bottom);
b = b - 1;
int active = LOAD_RELAXED(&q->active);
STORE_RELAXED(&q->bottom, b);
atomic_thread_fence(memory_order_seq_cst);
size_t t = LOAD_RELAXED(&q->top);
struct gcobj * x;
if (t <= b) { // Non-empty queue.
x = mark_buf_get(&q->bufs[active], b);
if (t == b) { // Single last element in queue.
if (!atomic_compare_exchange_strong_explicit(&q->top, &t, t + 1,
memory_order_seq_cst,
memory_order_relaxed))
// Failed race.
x = NULL;
STORE_RELAXED(&q->bottom, b + 1);
}
} else { // Empty queue.
x = NULL;
STORE_RELAXED(&q->bottom, b + 1);
}
return x;
}
static struct gcobj *
mark_deque_steal(struct mark_deque *q) {
while (1) {
size_t t = LOAD_ACQUIRE(&q->top);
atomic_thread_fence(memory_order_seq_cst);
size_t b = LOAD_ACQUIRE(&q->bottom);
if (t >= b)
return NULL;
int active = LOAD_CONSUME(&q->active);
struct gcobj *x = x = mark_buf_get(&q->bufs[active], t);
if (!atomic_compare_exchange_strong_explicit(&q->top, &t, t + 1,
memory_order_seq_cst,
memory_order_relaxed))
// Failed race.
continue;
return x;
}
}
static int
mark_deque_can_steal(struct mark_deque *q) {
size_t t = LOAD_ACQUIRE(&q->top);
atomic_thread_fence(memory_order_seq_cst);
size_t b = LOAD_ACQUIRE(&q->bottom);
return t < b;
}
#undef LOAD_RELAXED
#undef STORE_RELAXED
#undef LOAD_ACQUIRE
#undef STORE_RELEASE
#undef LOAD_CONSUME
#define LOCAL_MARK_QUEUE_SIZE 1024
#define LOCAL_MARK_QUEUE_MASK (LOCAL_MARK_QUEUE_SIZE - 1)
#define LOCAL_MARK_QUEUE_SHARE_AMOUNT (LOCAL_MARK_QUEUE_SIZE * 3 / 4)
struct local_mark_queue {
size_t read;
size_t write;
struct gcobj * data[LOCAL_MARK_QUEUE_SIZE];
};
static inline void
local_mark_queue_init(struct local_mark_queue *q) {
q->read = q->write = 0;
}
static inline void
local_mark_queue_poison(struct local_mark_queue *q) {
q->read = 0; q->write = LOCAL_MARK_QUEUE_SIZE;
}
static inline size_t
local_mark_queue_size(struct local_mark_queue *q) {
return q->write - q->read;
}
static inline int
local_mark_queue_empty(struct local_mark_queue *q) {
return local_mark_queue_size(q) == 0;
}
static inline int
local_mark_queue_full(struct local_mark_queue *q) {
return local_mark_queue_size(q) >= LOCAL_MARK_QUEUE_SIZE;
}
static inline void
local_mark_queue_push(struct local_mark_queue *q, struct gcobj * v) {
q->data[q->write++ & LOCAL_MARK_QUEUE_MASK] = v;
}
static inline struct gcobj *
local_mark_queue_pop(struct local_mark_queue *q) {
return q->data[q->read++ & LOCAL_MARK_QUEUE_MASK];
}
enum mark_worker_state {
MARK_WORKER_STOPPED,
MARK_WORKER_IDLE,
MARK_WORKER_MARKING,
MARK_WORKER_STOPPING,
MARK_WORKER_DEAD
};
struct mark_worker {
struct mark_space *space;
size_t id;
size_t steal_id;
pthread_t thread;
enum mark_worker_state state;
pthread_mutex_t lock;
pthread_cond_t cond;
struct mark_deque deque;
};
#define MARK_WORKERS_MAX_COUNT 8
struct marker {
atomic_size_t active_markers;
size_t worker_count;
atomic_size_t running_markers;
long count;
pthread_mutex_t lock;
pthread_cond_t cond;
struct mark_worker workers[MARK_WORKERS_MAX_COUNT];
};
struct local_marker {
struct mark_worker *worker;
struct mark_deque *share_deque;
struct mark_space *space;
struct local_mark_queue local;
};
struct context;
static inline struct marker* mark_space_marker(struct mark_space *space);
static size_t number_of_current_processors(void) { return 1; }
static int
mark_worker_init(struct mark_worker *worker, struct mark_space *space,
struct marker *marker, size_t id) {
worker->space = space;
worker->id = id;
worker->steal_id = 0;
worker->thread = 0;
worker->state = MARK_WORKER_STOPPED;
pthread_mutex_init(&worker->lock, NULL);
pthread_cond_init(&worker->cond, NULL);
return mark_deque_init(&worker->deque);
}
static void mark_worker_mark(struct mark_worker *worker);
static void*
mark_worker_thread(void *data) {
struct mark_worker *worker = data;
pthread_mutex_lock(&worker->lock);
while (1) {
switch (worker->state) {
case MARK_WORKER_IDLE:
pthread_cond_wait(&worker->cond, &worker->lock);
break;
case MARK_WORKER_MARKING:
mark_worker_mark(worker);
worker->state = MARK_WORKER_IDLE;
break;
case MARK_WORKER_STOPPING:
worker->state = MARK_WORKER_DEAD;
pthread_mutex_unlock(&worker->lock);
return NULL;
default:
abort();
}
}
}
static int
mark_worker_spawn(struct mark_worker *worker) {
pthread_mutex_lock(&worker->lock);
ASSERT(worker->state == MARK_WORKER_STOPPED);
worker->state = MARK_WORKER_IDLE;
pthread_mutex_unlock(&worker->lock);
if (pthread_create(&worker->thread, NULL, mark_worker_thread, worker)) {
perror("spawning marker thread failed");
worker->state = MARK_WORKER_STOPPED;
return 0;
}
return 1;
}
static void
mark_worker_request_mark(struct mark_worker *worker) {
struct marker *marker = mark_space_marker(worker->space);
pthread_mutex_lock(&worker->lock);
ASSERT(worker->state == MARK_WORKER_IDLE);
worker->state = MARK_WORKER_MARKING;
pthread_cond_signal(&worker->cond);
pthread_mutex_unlock(&worker->lock);
}
static void
mark_worker_finished_marking(struct mark_worker *worker) {
// Signal controller that we are done with marking.
struct marker *marker = mark_space_marker(worker->space);
if (atomic_fetch_sub(&marker->running_markers, 1) == 1) {
pthread_mutex_lock(&marker->lock);
marker->count++;
pthread_cond_signal(&marker->cond);
pthread_mutex_unlock(&marker->lock);
}
}
static void
mark_worker_request_stop(struct mark_worker *worker) {
pthread_mutex_lock(&worker->lock);
ASSERT(worker->state == MARK_WORKER_IDLE);
worker->state = MARK_WORKER_STOPPING;
pthread_cond_signal(&worker->cond);
pthread_mutex_unlock(&worker->lock);
}
static int
marker_init(struct mark_space *space) {
struct marker *marker = mark_space_marker(space);
atomic_init(&marker->active_markers, 0);
atomic_init(&marker->running_markers, 0);
marker->count = 0;
pthread_mutex_init(&marker->lock, NULL);
pthread_cond_init(&marker->cond, NULL);
size_t desired_worker_count = 0;
if (getenv("GC_MARKERS"))
desired_worker_count = atoi(getenv("GC_MARKERS"));
if (desired_worker_count == 0)
desired_worker_count = number_of_current_processors();
if (desired_worker_count > MARK_WORKERS_MAX_COUNT)
desired_worker_count = MARK_WORKERS_MAX_COUNT;
for (size_t i = 0; i < desired_worker_count; i++) {
if (!mark_worker_init(&marker->workers[i], space, marker, i))
break;
if (mark_worker_spawn(&marker->workers[i]))
marker->worker_count++;
else
break;
}
return marker->worker_count > 0;
}
static void marker_prepare(struct mark_space *space) {
struct marker *marker = mark_space_marker(space);
for (size_t i = 0; i < marker->worker_count; i++)
marker->workers[i].steal_id = 0;
}
static void marker_release(struct mark_space *space) {
struct marker *marker = mark_space_marker(space);
for (size_t i = 0; i < marker->worker_count; i++)
mark_deque_release(&marker->workers[i].deque);
}
struct gcobj;
static inline void marker_visit(void **loc, void *mark_data) ALWAYS_INLINE;
static inline void trace_one(struct gcobj *obj, void *mark_data) ALWAYS_INLINE;
static inline int mark_object(struct mark_space *space,
struct gcobj *obj) ALWAYS_INLINE;
static inline void
marker_share(struct local_marker *mark) {
DEBUG("marker #%zu: sharing\n", mark->worker->id);
for (size_t i = 0; i < LOCAL_MARK_QUEUE_SHARE_AMOUNT; i++)
mark_deque_push(mark->share_deque, local_mark_queue_pop(&mark->local));
}
static inline void
marker_visit(void **loc, void *mark_data) {
struct local_marker *mark = mark_data;
struct gcobj *obj = *loc;
if (obj && mark_object(mark->space, obj)) {
if (local_mark_queue_full(&mark->local))
marker_share(mark);
local_mark_queue_push(&mark->local, obj);
}
}
static struct gcobj *
marker_steal_from_worker(struct marker *marker, size_t id) {
ASSERT(id < marker->worker_count);
return mark_deque_steal(&marker->workers[id].deque);
}
static int
marker_can_steal_from_worker(struct marker *marker, size_t id) {
ASSERT(id < marker->worker_count);
return mark_deque_can_steal(&marker->workers[id].deque);
}
static struct gcobj *
mark_worker_steal_from_any(struct mark_worker *worker, struct marker *marker) {
size_t steal_id = worker->steal_id;
for (size_t i = 0; i < marker->worker_count; i++) {
steal_id = (steal_id + 1) % marker->worker_count;
DEBUG("marker #%zu: stealing from #%zu\n", worker->id, steal_id);
struct gcobj * obj = marker_steal_from_worker(marker, steal_id);
if (obj) {
DEBUG("marker #%zu: stealing got %p\n", worker->id, obj);
worker->steal_id = steal_id;
return obj;
}
}
DEBUG("marker #%zu: failed to steal\n", worker->id);
return 0;
}
static int
mark_worker_can_steal_from_any(struct mark_worker *worker, struct marker *marker) {
size_t steal_id = worker->steal_id;
DEBUG("marker #%zu: checking if any worker has tasks\n", worker->id);
for (size_t i = 0; i < marker->worker_count; i++) {
steal_id = (steal_id + 1) % marker->worker_count;
int res = marker_can_steal_from_worker(marker, steal_id);
if (res) {
DEBUG("marker #%zu: worker #%zu has tasks!\n", worker->id, steal_id);
worker->steal_id = steal_id;
return 1;
}
}
DEBUG("marker #%zu: nothing to steal\n", worker->id);
return 0;
}
static int
mark_worker_check_termination(struct mark_worker *worker,
struct marker *marker) {
// We went around all workers and nothing. Enter termination phase.
if (atomic_fetch_sub_explicit(&marker->active_markers, 1,
memory_order_relaxed) == 1) {
DEBUG(" ->> marker #%zu: DONE (no spinning) <<-\n", worker->id);
return 1;
}
size_t spin_count = 0;
while (1) {
if (mark_worker_can_steal_from_any(worker, marker)) {
atomic_fetch_add_explicit(&marker->active_markers, 1,
memory_order_relaxed);
return 0;
}
if (atomic_load_explicit(&marker->active_markers,
memory_order_relaxed) == 0) {
DEBUG(" ->> marker #%zu: DONE <<-\n", worker->id);
return 1;
}
// spin
DEBUG("marker #%zu: spinning #%zu\n", worker->id, spin_count);
if (spin_count < 10)
__builtin_ia32_pause();
else if (spin_count < 20)
sched_yield();
else if (spin_count < 40)
usleep(0);
else
usleep(1);
spin_count++;
}
}
static struct gcobj *
mark_worker_steal(struct local_marker *mark) {
struct marker *marker = mark_space_marker(mark->space);
struct mark_worker *worker = mark->worker;
while (1) {
DEBUG("marker #%zu: trying to steal\n", worker->id);
struct gcobj *obj = mark_worker_steal_from_any(worker, marker);
if (obj)
return obj;
if (mark_worker_check_termination(worker, marker))
return NULL;
}
}
static void
mark_worker_mark(struct mark_worker *worker) {
struct local_marker mark;
mark.worker = worker;
mark.share_deque = &worker->deque;
mark.space = worker->space;
local_mark_queue_init(&mark.local);
size_t n = 0;
DEBUG("marker #%zu: running mark loop\n", worker->id);
while (1) {
struct gcobj * obj;
if (!local_mark_queue_empty(&mark.local)) {
obj = local_mark_queue_pop(&mark.local);
} else {
obj = mark_worker_steal(&mark);
if (!obj)
break;
}
trace_one(obj, &mark);
n++;
}
DEBUG("marker #%zu: done marking, %zu objects traced\n", worker->id, n);
mark_worker_finished_marking(worker);
}
static inline void
marker_enqueue_root(struct marker *marker, struct gcobj *obj) {
struct mark_deque *worker0_deque = &marker->workers[0].deque;
mark_deque_push(worker0_deque, obj);
}
static inline void
marker_enqueue_roots(struct marker *marker, struct gcobj **objv,
size_t count) {
struct mark_deque *worker0_deque = &marker->workers[0].deque;
mark_deque_push_many(worker0_deque, objv, count);
}
static inline void
marker_trace(struct mark_space *space) {
struct marker *marker = mark_space_marker(space);
pthread_mutex_lock(&marker->lock);
long mark_count = marker->count;
pthread_mutex_unlock(&marker->lock);
DEBUG("starting trace; %zu workers\n", marker->worker_count);
DEBUG("waking workers\n");
atomic_store_explicit(&marker->active_markers, marker->worker_count,
memory_order_release);
atomic_store_explicit(&marker->running_markers, marker->worker_count,
memory_order_release);
for (size_t i = 0; i < marker->worker_count; i++)
mark_worker_request_mark(&marker->workers[i]);
DEBUG("waiting on markers\n");
pthread_mutex_lock(&marker->lock);
while (marker->count <= mark_count)
pthread_cond_wait(&marker->cond, &marker->lock);
pthread_mutex_unlock(&marker->lock);
DEBUG("trace finished\n");
}
#endif // PARALLEL_MARKER_H

643
parallel-tracer.h Normal file
View file

@ -0,0 +1,643 @@
#ifndef PARALLEL_TRACER_H
#define PARALLEL_TRACER_H
#include <pthread.h>
#include <stdatomic.h>
#include <sys/mman.h>
#include <unistd.h>
#include "assert.h"
#include "debug.h"
#include "inline.h"
// The Chase-Lev work-stealing deque, as initially described in "Dynamic
// Circular Work-Stealing Deque" (Chase and Lev, SPAA'05)
// (https://www.dre.vanderbilt.edu/~schmidt/PDF/work-stealing-dequeue.pdf)
// and improved with C11 atomics in "Correct and Efficient Work-Stealing
// for Weak Memory Models" (Lê et al, PPoPP'13)
// (http://www.di.ens.fr/%7Ezappa/readings/ppopp13.pdf).
struct gcobj;
struct trace_buf {
unsigned log_size;
size_t size;
struct gcobj **data;
};
// Min size: 8 kB on 64-bit systems, 4 kB on 32-bit.
#define trace_buf_min_log_size ((unsigned) 10)
// Max size: 2 GB on 64-bit systems, 1 GB on 32-bit.
#define trace_buf_max_log_size ((unsigned) 28)
static int
trace_buf_init(struct trace_buf *buf, unsigned log_size) {
ASSERT(log_size >= trace_buf_min_log_size);
ASSERT(log_size <= trace_buf_max_log_size);
size_t size = (1 << log_size) * sizeof(struct gcobj *);
void *mem = mmap(NULL, size, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (mem == MAP_FAILED) {
perror("Failed to grow work-stealing dequeue");
DEBUG("Failed to allocate %zu bytes", size);
return 0;
}
buf->log_size = log_size;
buf->size = 1 << log_size;
buf->data = mem;
return 1;
}
static inline size_t
trace_buf_size(struct trace_buf *buf) {
return buf->size;
}
static inline size_t
trace_buf_byte_size(struct trace_buf *buf) {
return trace_buf_size(buf) * sizeof(struct gcobj *);
}
static void
trace_buf_release(struct trace_buf *buf) {
if (buf->data)
madvise(buf->data, trace_buf_byte_size(buf), MADV_DONTNEED);
}
static void
trace_buf_destroy(struct trace_buf *buf) {
if (buf->data) {
munmap(buf->data, trace_buf_byte_size(buf));
buf->data = NULL;
buf->log_size = 0;
buf->size = 0;
}
}
static inline struct gcobj *
trace_buf_get(struct trace_buf *buf, size_t i) {
return atomic_load_explicit(&buf->data[i & (buf->size - 1)],
memory_order_relaxed);
}
static inline void
trace_buf_put(struct trace_buf *buf, size_t i, struct gcobj * o) {
return atomic_store_explicit(&buf->data[i & (buf->size - 1)],
o,
memory_order_relaxed);
}
static inline int
trace_buf_grow(struct trace_buf *from, struct trace_buf *to,
size_t b, size_t t) {
if (from->log_size == trace_buf_max_log_size)
return 0;
if (!trace_buf_init (to, from->log_size + 1))
return 0;
for (size_t i=t; i<b; i++)
trace_buf_put(to, i, trace_buf_get(from, i));
return 1;
}
// Chase-Lev work-stealing deque. One thread pushes data into the deque
// at the bottom, and many threads compete to steal data from the top.
struct trace_deque {
// Ensure bottom and top are on different cache lines.
union {
atomic_size_t bottom;
char bottom_padding[64];
};
union {
atomic_size_t top;
char top_padding[64];
};
atomic_int active; // Which trace_buf is active.
struct trace_buf bufs[(trace_buf_max_log_size - trace_buf_min_log_size) + 1];
};
#define LOAD_RELAXED(loc) atomic_load_explicit(loc, memory_order_relaxed)
#define STORE_RELAXED(loc, o) atomic_store_explicit(loc, o, memory_order_relaxed)
#define LOAD_ACQUIRE(loc) atomic_load_explicit(loc, memory_order_acquire)
#define STORE_RELEASE(loc, o) atomic_store_explicit(loc, o, memory_order_release)
#define LOAD_CONSUME(loc) atomic_load_explicit(loc, memory_order_consume)
static int
trace_deque_init(struct trace_deque *q) {
memset(q, 0, sizeof (*q));
int ret = trace_buf_init(&q->bufs[0], trace_buf_min_log_size);
// Note, this fence isn't in the paper, I added it out of caution.
atomic_thread_fence(memory_order_release);
return ret;
}
static void
trace_deque_release(struct trace_deque *q) {
for (int i = LOAD_RELAXED(&q->active); i >= 0; i--)
trace_buf_release(&q->bufs[i]);
}
static void
trace_deque_destroy(struct trace_deque *q) {
for (int i = LOAD_RELAXED(&q->active); i >= 0; i--)
trace_buf_destroy(&q->bufs[i]);
}
static int
trace_deque_grow(struct trace_deque *q, int cur, size_t b, size_t t) {
if (!trace_buf_grow(&q->bufs[cur], &q->bufs[cur + 1], b, t)) {
fprintf(stderr, "failed to grow deque!!\n");
abort();
}
cur++;
STORE_RELAXED(&q->active, cur);
return cur;
}
static void
trace_deque_push(struct trace_deque *q, struct gcobj * x) {
size_t b = LOAD_RELAXED(&q->bottom);
size_t t = LOAD_ACQUIRE(&q->top);
int active = LOAD_RELAXED(&q->active);
if (b - t > trace_buf_size(&q->bufs[active]) - 1) /* Full queue. */
active = trace_deque_grow(q, active, b, t);
trace_buf_put(&q->bufs[active], b, x);
atomic_thread_fence(memory_order_release);
STORE_RELAXED(&q->bottom, b + 1);
}
static void
trace_deque_push_many(struct trace_deque *q, struct gcobj **objv, size_t count) {
size_t b = LOAD_RELAXED(&q->bottom);
size_t t = LOAD_ACQUIRE(&q->top);
int active = LOAD_RELAXED(&q->active);
while (b - t > trace_buf_size(&q->bufs[active]) - count) /* Full queue. */
active = trace_deque_grow(q, active, b, t);
for (size_t i = 0; i < count; i++)
trace_buf_put(&q->bufs[active], b + i, objv[i]);
atomic_thread_fence(memory_order_release);
STORE_RELAXED(&q->bottom, b + count);
}
static struct gcobj *
trace_deque_try_pop(struct trace_deque *q) {
size_t b = LOAD_RELAXED(&q->bottom);
b = b - 1;
int active = LOAD_RELAXED(&q->active);
STORE_RELAXED(&q->bottom, b);
atomic_thread_fence(memory_order_seq_cst);
size_t t = LOAD_RELAXED(&q->top);
struct gcobj * x;
if (t <= b) { // Non-empty queue.
x = trace_buf_get(&q->bufs[active], b);
if (t == b) { // Single last element in queue.
if (!atomic_compare_exchange_strong_explicit(&q->top, &t, t + 1,
memory_order_seq_cst,
memory_order_relaxed))
// Failed race.
x = NULL;
STORE_RELAXED(&q->bottom, b + 1);
}
} else { // Empty queue.
x = NULL;
STORE_RELAXED(&q->bottom, b + 1);
}
return x;
}
static struct gcobj *
trace_deque_steal(struct trace_deque *q) {
while (1) {
size_t t = LOAD_ACQUIRE(&q->top);
atomic_thread_fence(memory_order_seq_cst);
size_t b = LOAD_ACQUIRE(&q->bottom);
if (t >= b)
return NULL;
int active = LOAD_CONSUME(&q->active);
struct gcobj *x = x = trace_buf_get(&q->bufs[active], t);
if (!atomic_compare_exchange_strong_explicit(&q->top, &t, t + 1,
memory_order_seq_cst,
memory_order_relaxed))
// Failed race.
continue;
return x;
}
}
static int
trace_deque_can_steal(struct trace_deque *q) {
size_t t = LOAD_ACQUIRE(&q->top);
atomic_thread_fence(memory_order_seq_cst);
size_t b = LOAD_ACQUIRE(&q->bottom);
return t < b;
}
#undef LOAD_RELAXED
#undef STORE_RELAXED
#undef LOAD_ACQUIRE
#undef STORE_RELEASE
#undef LOAD_CONSUME
#define LOCAL_TRACE_QUEUE_SIZE 1024
#define LOCAL_TRACE_QUEUE_MASK (LOCAL_TRACE_QUEUE_SIZE - 1)
#define LOCAL_TRACE_QUEUE_SHARE_AMOUNT (LOCAL_TRACE_QUEUE_SIZE * 3 / 4)
struct local_trace_queue {
size_t read;
size_t write;
struct gcobj * data[LOCAL_TRACE_QUEUE_SIZE];
};
static inline void
local_trace_queue_init(struct local_trace_queue *q) {
q->read = q->write = 0;
}
static inline void
local_trace_queue_poison(struct local_trace_queue *q) {
q->read = 0; q->write = LOCAL_TRACE_QUEUE_SIZE;
}
static inline size_t
local_trace_queue_size(struct local_trace_queue *q) {
return q->write - q->read;
}
static inline int
local_trace_queue_empty(struct local_trace_queue *q) {
return local_trace_queue_size(q) == 0;
}
static inline int
local_trace_queue_full(struct local_trace_queue *q) {
return local_trace_queue_size(q) >= LOCAL_TRACE_QUEUE_SIZE;
}
static inline void
local_trace_queue_push(struct local_trace_queue *q, struct gcobj * v) {
q->data[q->write++ & LOCAL_TRACE_QUEUE_MASK] = v;
}
static inline struct gcobj *
local_trace_queue_pop(struct local_trace_queue *q) {
return q->data[q->read++ & LOCAL_TRACE_QUEUE_MASK];
}
enum trace_worker_state {
TRACE_WORKER_STOPPED,
TRACE_WORKER_IDLE,
TRACE_WORKER_TRACING,
TRACE_WORKER_STOPPING,
TRACE_WORKER_DEAD
};
struct heap;
struct trace_worker {
struct heap *heap;
size_t id;
size_t steal_id;
pthread_t thread;
enum trace_worker_state state;
pthread_mutex_t lock;
pthread_cond_t cond;
struct trace_deque deque;
};
#define TRACE_WORKERS_MAX_COUNT 8
struct tracer {
atomic_size_t active_tracers;
size_t worker_count;
atomic_size_t running_tracers;
long count;
pthread_mutex_t lock;
pthread_cond_t cond;
struct trace_worker workers[TRACE_WORKERS_MAX_COUNT];
};
struct local_tracer {
struct trace_worker *worker;
struct trace_deque *share_deque;
struct heap *heap;
struct local_trace_queue local;
};
struct context;
static inline struct tracer* heap_tracer(struct heap *heap);
static size_t number_of_current_processors(void) { return 1; }
static int
trace_worker_init(struct trace_worker *worker, struct heap *heap,
struct tracer *tracer, size_t id) {
worker->heap = heap;
worker->id = id;
worker->steal_id = 0;
worker->thread = 0;
worker->state = TRACE_WORKER_STOPPED;
pthread_mutex_init(&worker->lock, NULL);
pthread_cond_init(&worker->cond, NULL);
return trace_deque_init(&worker->deque);
}
static void trace_worker_trace(struct trace_worker *worker);
static void*
trace_worker_thread(void *data) {
struct trace_worker *worker = data;
pthread_mutex_lock(&worker->lock);
while (1) {
switch (worker->state) {
case TRACE_WORKER_IDLE:
pthread_cond_wait(&worker->cond, &worker->lock);
break;
case TRACE_WORKER_TRACING:
trace_worker_trace(worker);
worker->state = TRACE_WORKER_IDLE;
break;
case TRACE_WORKER_STOPPING:
worker->state = TRACE_WORKER_DEAD;
pthread_mutex_unlock(&worker->lock);
return NULL;
default:
abort();
}
}
}
static int
trace_worker_spawn(struct trace_worker *worker) {
pthread_mutex_lock(&worker->lock);
ASSERT(worker->state == TRACE_WORKER_STOPPED);
worker->state = TRACE_WORKER_IDLE;
pthread_mutex_unlock(&worker->lock);
if (pthread_create(&worker->thread, NULL, trace_worker_thread, worker)) {
perror("spawning tracer thread failed");
worker->state = TRACE_WORKER_STOPPED;
return 0;
}
return 1;
}
static void
trace_worker_request_trace(struct trace_worker *worker) {
struct tracer *tracer = heap_tracer(worker->heap);
pthread_mutex_lock(&worker->lock);
ASSERT(worker->state == TRACE_WORKER_IDLE);
worker->state = TRACE_WORKER_TRACING;
pthread_cond_signal(&worker->cond);
pthread_mutex_unlock(&worker->lock);
}
static void
trace_worker_finished_tracing(struct trace_worker *worker) {
// Signal controller that we are done with tracing.
struct tracer *tracer = heap_tracer(worker->heap);
if (atomic_fetch_sub(&tracer->running_tracers, 1) == 1) {
pthread_mutex_lock(&tracer->lock);
tracer->count++;
pthread_cond_signal(&tracer->cond);
pthread_mutex_unlock(&tracer->lock);
}
}
static void
trace_worker_request_stop(struct trace_worker *worker) {
pthread_mutex_lock(&worker->lock);
ASSERT(worker->state == TRACE_WORKER_IDLE);
worker->state = TRACE_WORKER_STOPPING;
pthread_cond_signal(&worker->cond);
pthread_mutex_unlock(&worker->lock);
}
static int
tracer_init(struct heap *heap) {
struct tracer *tracer = heap_tracer(heap);
atomic_init(&tracer->active_tracers, 0);
atomic_init(&tracer->running_tracers, 0);
tracer->count = 0;
pthread_mutex_init(&tracer->lock, NULL);
pthread_cond_init(&tracer->cond, NULL);
size_t desired_worker_count = 0;
if (getenv("GC_TRACERS"))
desired_worker_count = atoi(getenv("GC_TRACERS"));
if (desired_worker_count == 0)
desired_worker_count = number_of_current_processors();
if (desired_worker_count > TRACE_WORKERS_MAX_COUNT)
desired_worker_count = TRACE_WORKERS_MAX_COUNT;
for (size_t i = 0; i < desired_worker_count; i++) {
if (!trace_worker_init(&tracer->workers[i], heap, tracer, i))
break;
if (trace_worker_spawn(&tracer->workers[i]))
tracer->worker_count++;
else
break;
}
return tracer->worker_count > 0;
}
static void tracer_prepare(struct heap *heap) {
struct tracer *tracer = heap_tracer(heap);
for (size_t i = 0; i < tracer->worker_count; i++)
tracer->workers[i].steal_id = 0;
}
static void tracer_release(struct heap *heap) {
struct tracer *tracer = heap_tracer(heap);
for (size_t i = 0; i < tracer->worker_count; i++)
trace_deque_release(&tracer->workers[i].deque);
}
struct gcobj;
static inline void tracer_visit(void **loc, void *trace_data) ALWAYS_INLINE;
static inline void trace_one(struct gcobj *obj, void *trace_data) ALWAYS_INLINE;
static inline int trace_object(struct heap *heap,
struct gcobj *obj) ALWAYS_INLINE;
static inline void
tracer_share(struct local_tracer *trace) {
DEBUG("tracer #%zu: sharing\n", trace->worker->id);
for (size_t i = 0; i < LOCAL_TRACE_QUEUE_SHARE_AMOUNT; i++)
trace_deque_push(trace->share_deque, local_trace_queue_pop(&trace->local));
}
static inline void
tracer_visit(void **loc, void *trace_data) {
struct local_tracer *trace = trace_data;
struct gcobj *obj = *loc;
if (obj && trace_object(trace->heap, obj)) {
if (local_trace_queue_full(&trace->local))
tracer_share(trace);
local_trace_queue_push(&trace->local, obj);
}
}
static struct gcobj *
tracer_steal_from_worker(struct tracer *tracer, size_t id) {
ASSERT(id < tracer->worker_count);
return trace_deque_steal(&tracer->workers[id].deque);
}
static int
tracer_can_steal_from_worker(struct tracer *tracer, size_t id) {
ASSERT(id < tracer->worker_count);
return trace_deque_can_steal(&tracer->workers[id].deque);
}
static struct gcobj *
trace_worker_steal_from_any(struct trace_worker *worker, struct tracer *tracer) {
size_t steal_id = worker->steal_id;
for (size_t i = 0; i < tracer->worker_count; i++) {
steal_id = (steal_id + 1) % tracer->worker_count;
DEBUG("tracer #%zu: stealing from #%zu\n", worker->id, steal_id);
struct gcobj * obj = tracer_steal_from_worker(tracer, steal_id);
if (obj) {
DEBUG("tracer #%zu: stealing got %p\n", worker->id, obj);
worker->steal_id = steal_id;
return obj;
}
}
DEBUG("tracer #%zu: failed to steal\n", worker->id);
return 0;
}
static int
trace_worker_can_steal_from_any(struct trace_worker *worker, struct tracer *tracer) {
size_t steal_id = worker->steal_id;
DEBUG("tracer #%zu: checking if any worker has tasks\n", worker->id);
for (size_t i = 0; i < tracer->worker_count; i++) {
steal_id = (steal_id + 1) % tracer->worker_count;
int res = tracer_can_steal_from_worker(tracer, steal_id);
if (res) {
DEBUG("tracer #%zu: worker #%zu has tasks!\n", worker->id, steal_id);
worker->steal_id = steal_id;
return 1;
}
}
DEBUG("tracer #%zu: nothing to steal\n", worker->id);
return 0;
}
static int
trace_worker_check_termination(struct trace_worker *worker,
struct tracer *tracer) {
// We went around all workers and nothing. Enter termination phase.
if (atomic_fetch_sub_explicit(&tracer->active_tracers, 1,
memory_order_relaxed) == 1) {
DEBUG(" ->> tracer #%zu: DONE (no spinning) <<-\n", worker->id);
return 1;
}
size_t spin_count = 0;
while (1) {
if (trace_worker_can_steal_from_any(worker, tracer)) {
atomic_fetch_add_explicit(&tracer->active_tracers, 1,
memory_order_relaxed);
return 0;
}
if (atomic_load_explicit(&tracer->active_tracers,
memory_order_relaxed) == 0) {
DEBUG(" ->> tracer #%zu: DONE <<-\n", worker->id);
return 1;
}
// spin
DEBUG("tracer #%zu: spinning #%zu\n", worker->id, spin_count);
if (spin_count < 10)
__builtin_ia32_pause();
else if (spin_count < 20)
sched_yield();
else if (spin_count < 40)
usleep(0);
else
usleep(1);
spin_count++;
}
}
static struct gcobj *
trace_worker_steal(struct local_tracer *trace) {
struct tracer *tracer = heap_tracer(trace->heap);
struct trace_worker *worker = trace->worker;
while (1) {
DEBUG("tracer #%zu: trying to steal\n", worker->id);
struct gcobj *obj = trace_worker_steal_from_any(worker, tracer);
if (obj)
return obj;
if (trace_worker_check_termination(worker, tracer))
return NULL;
}
}
static void
trace_worker_trace(struct trace_worker *worker) {
struct local_tracer trace;
trace.worker = worker;
trace.share_deque = &worker->deque;
trace.heap = worker->heap;
local_trace_queue_init(&trace.local);
size_t n = 0;
DEBUG("tracer #%zu: running trace loop\n", worker->id);
while (1) {
struct gcobj * obj;
if (!local_trace_queue_empty(&trace.local)) {
obj = local_trace_queue_pop(&trace.local);
} else {
obj = trace_worker_steal(&trace);
if (!obj)
break;
}
trace_one(obj, &trace);
n++;
}
DEBUG("tracer #%zu: done tracing, %zu objects traced\n", worker->id, n);
trace_worker_finished_tracing(worker);
}
static inline void
tracer_enqueue_root(struct tracer *tracer, struct gcobj *obj) {
struct trace_deque *worker0_deque = &tracer->workers[0].deque;
trace_deque_push(worker0_deque, obj);
}
static inline void
tracer_enqueue_roots(struct tracer *tracer, struct gcobj **objv,
size_t count) {
struct trace_deque *worker0_deque = &tracer->workers[0].deque;
trace_deque_push_many(worker0_deque, objv, count);
}
static inline void
tracer_trace(struct heap *heap) {
struct tracer *tracer = heap_tracer(heap);
pthread_mutex_lock(&tracer->lock);
long trace_count = tracer->count;
pthread_mutex_unlock(&tracer->lock);
DEBUG("starting trace; %zu workers\n", tracer->worker_count);
DEBUG("waking workers\n");
atomic_store_explicit(&tracer->active_tracers, tracer->worker_count,
memory_order_release);
atomic_store_explicit(&tracer->running_tracers, tracer->worker_count,
memory_order_release);
for (size_t i = 0; i < tracer->worker_count; i++)
trace_worker_request_trace(&tracer->workers[i]);
DEBUG("waiting on tracers\n");
pthread_mutex_lock(&tracer->lock);
while (tracer->count <= trace_count)
pthread_cond_wait(&tracer->cond, &tracer->lock);
pthread_mutex_unlock(&tracer->lock);
DEBUG("trace finished\n");
}
#endif // PARALLEL_TRACER_H

View file

@ -1,168 +0,0 @@
#ifndef SERIAL_TRACE_H
#define SERIAL_TRACE_H
#include <sys/mman.h>
#include <unistd.h>
#include "assert.h"
#include "debug.h"
struct gcobj;
struct mark_queue {
size_t size;
size_t read;
size_t write;
struct gcobj **buf;
};
static const size_t mark_queue_max_size =
(1ULL << (sizeof(struct gcobj *) * 8 - 1)) / sizeof(struct gcobj *);
static const size_t mark_queue_release_byte_threshold = 1 * 1024 * 1024;
static struct gcobj **
mark_queue_alloc(size_t size) {
void *mem = mmap(NULL, size * sizeof(struct gcobj *), PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (mem == MAP_FAILED) {
perror("Failed to grow mark queue");
DEBUG("Failed to allocate %zu bytes", size);
return NULL;
}
return mem;
}
static int
mark_queue_init(struct mark_queue *q) {
q->size = getpagesize() / sizeof(struct gcobj *);
q->read = 0;
q->write = 0;
q->buf = mark_queue_alloc(q->size);
return !!q->buf;
}
static inline struct gcobj *
mark_queue_get(struct mark_queue *q, size_t idx) {
return q->buf[idx & (q->size - 1)];
}
static inline void
mark_queue_put(struct mark_queue *q, size_t idx, struct gcobj *x) {
q->buf[idx & (q->size - 1)] = x;
}
static int mark_queue_grow(struct mark_queue *q) NEVER_INLINE;
static int
mark_queue_grow(struct mark_queue *q) {
size_t old_size = q->size;
struct gcobj **old_buf = q->buf;
if (old_size >= mark_queue_max_size) {
DEBUG("mark queue already at max size of %zu bytes", old_size);
return 0;
}
size_t new_size = old_size * 2;
struct gcobj **new_buf = mark_queue_alloc(new_size);
if (!new_buf)
return 0;
size_t old_mask = old_size - 1;
size_t new_mask = new_size - 1;
for (size_t i = q->read; i < q->write; i++)
new_buf[i & new_mask] = old_buf[i & old_mask];
munmap(old_buf, old_size * sizeof(struct gcobj *));
q->size = new_size;
q->buf = new_buf;
return 1;
}
static inline void
mark_queue_push(struct mark_queue *q, struct gcobj *p) {
if (UNLIKELY(q->write - q->read == q->size)) {
if (!mark_queue_grow(q))
abort();
}
mark_queue_put(q, q->write++, p);
}
static inline void
mark_queue_push_many(struct mark_queue *q, struct gcobj **pv, size_t count) {
while (q->size - (q->write - q->read) < count) {
if (!mark_queue_grow(q))
abort();
}
for (size_t i = 0; i < count; i++)
mark_queue_put(q, q->write++, pv[i]);
}
static inline struct gcobj*
mark_queue_pop(struct mark_queue *q) {
if (UNLIKELY(q->read == q->write))
return NULL;
return mark_queue_get(q, q->read++);
}
static void
mark_queue_release(struct mark_queue *q) {
size_t byte_size = q->size * sizeof(struct gcobj *);
if (byte_size >= mark_queue_release_byte_threshold)
madvise(q->buf, byte_size, MADV_DONTNEED);
q->read = q->write = 0;
}
static void
mark_queue_destroy(struct mark_queue *q) {
size_t byte_size = q->size * sizeof(struct gcobj *);
munmap(q->buf, byte_size);
}
struct marker {
struct mark_queue queue;
};
struct mark_space;
static inline struct marker* mark_space_marker(struct mark_space *space);
static int
marker_init(struct mark_space *space) {
return mark_queue_init(&mark_space_marker(space)->queue);
}
static void marker_prepare(struct mark_space *space) {}
static void marker_release(struct mark_space *space) {
mark_queue_release(&mark_space_marker(space)->queue);
}
struct gcobj;
static inline void marker_visit(void **loc, void *mark_data) ALWAYS_INLINE;
static inline void trace_one(struct gcobj *obj, void *mark_data) ALWAYS_INLINE;
static inline int mark_object(struct mark_space *space,
struct gcobj *obj) ALWAYS_INLINE;
static inline void
marker_enqueue_root(struct marker *marker, struct gcobj *obj) {
mark_queue_push(&marker->queue, obj);
}
static inline void
marker_enqueue_roots(struct marker *marker, struct gcobj **objs,
size_t count) {
mark_queue_push_many(&marker->queue, objs, count);
}
static inline void
marker_visit(void **loc, void *mark_data) {
struct mark_space *space = mark_data;
struct gcobj *obj = *loc;
if (obj && mark_object(space, obj))
marker_enqueue_root(mark_space_marker(space), obj);
}
static inline void
marker_trace(struct mark_space *space) {
struct gcobj *obj;
while ((obj = mark_queue_pop(&mark_space_marker(space)->queue)))
trace_one(obj, space);
}
#endif // SERIAL_MARK_H

168
serial-tracer.h Normal file
View file

@ -0,0 +1,168 @@
#ifndef SERIAL_TRACER_H
#define SERIAL_TRACER_H
#include <sys/mman.h>
#include <unistd.h>
#include "assert.h"
#include "debug.h"
struct gcobj;
struct trace_queue {
size_t size;
size_t read;
size_t write;
struct gcobj **buf;
};
static const size_t trace_queue_max_size =
(1ULL << (sizeof(struct gcobj *) * 8 - 1)) / sizeof(struct gcobj *);
static const size_t trace_queue_release_byte_threshold = 1 * 1024 * 1024;
static struct gcobj **
trace_queue_alloc(size_t size) {
void *mem = mmap(NULL, size * sizeof(struct gcobj *), PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (mem == MAP_FAILED) {
perror("Failed to grow trace queue");
DEBUG("Failed to allocate %zu bytes", size);
return NULL;
}
return mem;
}
static int
trace_queue_init(struct trace_queue *q) {
q->size = getpagesize() / sizeof(struct gcobj *);
q->read = 0;
q->write = 0;
q->buf = trace_queue_alloc(q->size);
return !!q->buf;
}
static inline struct gcobj *
trace_queue_get(struct trace_queue *q, size_t idx) {
return q->buf[idx & (q->size - 1)];
}
static inline void
trace_queue_put(struct trace_queue *q, size_t idx, struct gcobj *x) {
q->buf[idx & (q->size - 1)] = x;
}
static int trace_queue_grow(struct trace_queue *q) NEVER_INLINE;
static int
trace_queue_grow(struct trace_queue *q) {
size_t old_size = q->size;
struct gcobj **old_buf = q->buf;
if (old_size >= trace_queue_max_size) {
DEBUG("trace queue already at max size of %zu bytes", old_size);
return 0;
}
size_t new_size = old_size * 2;
struct gcobj **new_buf = trace_queue_alloc(new_size);
if (!new_buf)
return 0;
size_t old_mask = old_size - 1;
size_t new_mask = new_size - 1;
for (size_t i = q->read; i < q->write; i++)
new_buf[i & new_mask] = old_buf[i & old_mask];
munmap(old_buf, old_size * sizeof(struct gcobj *));
q->size = new_size;
q->buf = new_buf;
return 1;
}
static inline void
trace_queue_push(struct trace_queue *q, struct gcobj *p) {
if (UNLIKELY(q->write - q->read == q->size)) {
if (!trace_queue_grow(q))
abort();
}
trace_queue_put(q, q->write++, p);
}
static inline void
trace_queue_push_many(struct trace_queue *q, struct gcobj **pv, size_t count) {
while (q->size - (q->write - q->read) < count) {
if (!trace_queue_grow(q))
abort();
}
for (size_t i = 0; i < count; i++)
trace_queue_put(q, q->write++, pv[i]);
}
static inline struct gcobj*
trace_queue_pop(struct trace_queue *q) {
if (UNLIKELY(q->read == q->write))
return NULL;
return trace_queue_get(q, q->read++);
}
static void
trace_queue_release(struct trace_queue *q) {
size_t byte_size = q->size * sizeof(struct gcobj *);
if (byte_size >= trace_queue_release_byte_threshold)
madvise(q->buf, byte_size, MADV_DONTNEED);
q->read = q->write = 0;
}
static void
trace_queue_destroy(struct trace_queue *q) {
size_t byte_size = q->size * sizeof(struct gcobj *);
munmap(q->buf, byte_size);
}
struct tracer {
struct trace_queue queue;
};
struct heap;
static inline struct tracer* heap_tracer(struct heap *heap);
static int
tracer_init(struct heap *heap) {
return trace_queue_init(&heap_tracer(heap)->queue);
}
static void tracer_prepare(struct heap *heap) {}
static void tracer_release(struct heap *heap) {
trace_queue_release(&heap_tracer(heap)->queue);
}
struct gcobj;
static inline void tracer_visit(void **loc, void *trace_data) ALWAYS_INLINE;
static inline void trace_one(struct gcobj *obj, void *trace_data) ALWAYS_INLINE;
static inline int trace_object(struct heap *heap,
struct gcobj *obj) ALWAYS_INLINE;
static inline void
tracer_enqueue_root(struct tracer *tracer, struct gcobj *obj) {
trace_queue_push(&tracer->queue, obj);
}
static inline void
tracer_enqueue_roots(struct tracer *tracer, struct gcobj **objs,
size_t count) {
trace_queue_push_many(&tracer->queue, objs, count);
}
static inline void
tracer_visit(void **loc, void *trace_data) {
struct heap *heap = trace_data;
struct gcobj *obj = *loc;
if (obj && trace_object(heap, obj))
tracer_enqueue_root(heap_tracer(heap), obj);
}
static inline void
tracer_trace(struct heap *heap) {
struct gcobj *obj;
while ((obj = trace_queue_pop(&heap_tracer(heap)->queue)))
trace_one(obj, heap);
}
#endif // SERIAL_TRACER_H