1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-29 19:30:36 +02:00

Import GC benchmarks from Larceny, by Hansen, Clinger, et al.

These GPLv2+-licensed GC benchmarks are available from
http://www.ccs.neu.edu/home/will/GC/sourcecode.html .
This commit is contained in:
Ludovic Courtès 2008-11-10 20:30:33 +01:00 committed by Andy Wingo
parent a13dc0b473
commit 1b706edff6
21 changed files with 89532 additions and 0 deletions

340
gc-benchmarks/larceny/GPL Normal file
View file

@ -0,0 +1,340 @@
GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,
b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.
5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.
7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.
10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.
NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:
Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.
<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

View file

@ -0,0 +1,92 @@
Source Code for Selected GC Benchmarks
These benchmarks are derived from the benchmarks that Lars Hansen used for
his thesis on Older-first garbage collection in practice . That thesis
contains storage profiles and detailed discussion for most of these
benchmarks.
Portability
Apart from a run-benchmark procedure, most of these benchmarks are intended
to run in any R5RS-conforming implementation of Scheme. (The softscheme
benchmark is an exception.) Please report any portability problems that you
encounter.
To find the main entry point(s) of a benchmark, search for calls to
run-benchmark, which calculates and reports the run time and any other
relevant statistics. The run-benchmark procedure is
implementation-dependent; see run-benchmark.chez for an example of how to
write it.
GC Benchmarks
To obtain a gzip'ed tar file containing source code for all of the
benchmarks described below, click here .
dummy
Description: A null benchmark for testing the implementation-specific
run-benchmark procedure.
dynamic
Description: Fritz Henglein's algorithm for dynamic type inference.
Three inputs are available for this benchmark. In increasing order of
size, they are:
1. dynamic.sch, the code for the benchmark itself
2. dynamic-input-small.sch, which is macro-expanded code for the
Twobit compiler
3. dynamic-input-large.sch, which is macro-expanded code for the
Twobit compiler and SPARC assembler.
earley
Description: Earley's context-free parsing algorithm, as implemented by
Marc Feeley, given a simple ambiguous grammar, generating all the parse
trees for a short input.
gcbench
Description: A synthetic benchmark originally written in Java by John
Ellis, Pete Kovac, and Hans Boehm.
graphs
Description: Enumeration of directed graphs, possibly written by Jim
Miller. Makes heavy use of higher-order procedures.
lattice
Description: Enumeration of lattices of monotone maps between lattices,
obtained from Andrew Wright, possibly written by Wright or Jim Miller.
nboyer
Description: Bob Boyer's theorem proving benchmark, with a scaling
parameter suggested by Boyer, some bug fixes noted by Henry Baker and
ourselves, and rewritten to use a more reasonable representation for
the database (with constant-time lookups) instead of property lists
(which gave linear-time lookups for the most widely distributed form of
the boyer benchmark in Scheme).
nucleic2
Description: Marc Feeley et al's Pseudoknot benchmark, revised to use
R5RS macros instead of implementation-dependent macro systems.
perm
Description: Zaks's algorithm for generating a list of permutations.
This is a diabolical garbage collection benchmark with four parameters
M, N, K, and L. The MpermNKL benchmark allocates a queue of size K and
then performs M iterations of the following operation: Fill the queue
with individually computed copies of all permutations of a list of size
N, and then remove the oldest L copies from the queue. At the end of
each iteration, the oldest L/K of the live storage becomes garbage, and
object lifetimes are distributed uniformly between two volumes that
depend upon N, K, and L.
sboyer
Description: This is the nboyer benchmark with a small but effective
tweak: shared consing as implemented by Henry Baker.
softscheme
Description: Andrew's Wright's soft type inference for Scheme. This
software is covered by the GNU GENERAL PUBLIC LICENSE. This benchmark
is nonportable because it uses a low-level syntax definition to define
a non-hygienic defmacro construct. Requires an input file; the inputs
used with the dynamic and twobit benchmarks should be suitable.
twobit
Description: A portable version of the Twobit Scheme compiler and
Larceny's SPARC assembler, written by Will Clinger and Lars Hansen. Two
input files are provided:
1. twobit-input-short.sch, the nucleic2 benchmark stripped of
implementation-specific alternatives to its R4RS macros
2. twobit.sch, the twobit benchmark itself
twobit-smaller.sch
Description: The twobit benchmark without the SPARC assembler.
----------------------------------------------------------------------------
Last updated 4 April 2001.

View file

@ -0,0 +1,21 @@
; Dumb benchmark to test the reporting of words marked during gc.
; Example: (foo 1000000)
(define (ballast bytes)
(do ((bytes bytes (- bytes 8))
(x '() (cons bytes x)))
((zero? bytes) x)))
(define (words-benchmark bytes0 bytes1)
(let ((x (ballast bytes0)))
(do ((bytes1 bytes1 (- bytes1 8)))
((not (positive? bytes1))
(car (last-pair x)))
(cons (car x) bytes1))))
(define (foo n)
(collect)
(display-memstats (memstats))
(run-benchmark "foo" (lambda () (words-benchmark 1000000 n)) 1)
(display-memstats (memstats)))

View file

@ -0,0 +1,19 @@
; Dummy benchmark (for testing)
;
; $Id: dummy.sch,v 1.2 1999/07/12 18:03:37 lth Exp $
(define (dummy-benchmark . args)
(run-benchmark "dummy"
1
(lambda ()
(collect)
(display "This is the dummy benchmark!")
(newline)
(display "My arguments are: ")
(display args)
(newline)
args)
(lambda (result)
(equal? result args))))
; eof

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,658 @@
;;; EARLEY -- Earley's parser, written by Marc Feeley.
; $Id: earley.sch,v 1.2 1999/07/12 18:05:19 lth Exp $
; 990708 / lth -- changed 'main' to 'earley-benchmark'.
;
; (make-parser grammar lexer) is used to create a parser from the grammar
; description `grammar' and the lexer function `lexer'.
;
; A grammar is a list of definitions. Each definition defines a non-terminal
; by a set of rules. Thus a definition has the form: (nt rule1 rule2...).
; A given non-terminal can only be defined once. The first non-terminal
; defined is the grammar's goal. Each rule is a possibly empty list of
; non-terminals. Thus a rule has the form: (nt1 nt2...). A non-terminal
; can be any scheme value. Note that all grammar symbols are treated as
; non-terminals. This is fine though because the lexer will be outputing
; non-terminals.
;
; The lexer defines what a token is and the mapping between tokens and
; the grammar's non-terminals. It is a function of one argument, the input,
; that returns the list of tokens corresponding to the input. Each token is
; represented by a list. The first element is some `user-defined' information
; associated with the token and the rest represents the token's class(es) (as a
; list of non-terminals that this token corresponds to).
;
; The result of `make-parser' is a function that parses the single input it
; is given into the grammar's goal. The result is a `parse' which can be
; manipulated with the procedures: `parse->parsed?', `parse->trees'
; and `parse->nb-trees' (see below).
;
; Let's assume that we want a parser for the grammar
;
; S -> x = E
; E -> E + E | V
; V -> V y |
;
; and that the input to the parser is a string of characters. Also, assume we
; would like to map the characters `x', `y', `+' and `=' into the corresponding
; non-terminals in the grammar. Such a parser could be created with
;
; (make-parser
; '(
; (s (x = e))
; (e (e + e) (v))
; (v (v y) ())
; )
; (lambda (str)
; (map (lambda (char)
; (list char ; user-info = the character itself
; (case char
; ((#\x) 'x)
; ((#\y) 'y)
; ((#\+) '+)
; ((#\=) '=)
; (else (fatal-error "lexer error")))))
; (string->list str)))
; )
;
; An alternative definition (that does not check for lexical errors) is
;
; (make-parser
; '(
; (s (#\x #\= e))
; (e (e #\+ e) (v))
; (v (v #\y) ())
; )
; (lambda (str) (map (lambda (char) (list char char)) (string->list str)))
; )
;
; To help with the rest of the discussion, here are a few definitions:
;
; An input pointer (for an input of `n' tokens) is a value between 0 and `n'.
; It indicates a point between two input tokens (0 = beginning, `n' = end).
; For example, if `n' = 4, there are 5 input pointers:
;
; input token1 token2 token3 token4
; input pointers 0 1 2 3 4
;
; A configuration indicates the extent to which a given rule is parsed (this
; is the common `dot notation'). For simplicity, a configuration is
; represented as an integer, with successive configurations in the same
; rule associated with successive integers. It is assumed that the grammar
; has been extended with rules to aid scanning. These rules are of the
; form `nt ->', and there is one such rule for every non-terminal. Note
; that these rules are special because they only apply when the corresponding
; non-terminal is returned by the lexer.
;
; A configuration set is a configuration grouped with the set of input pointers
; representing where the head non-terminal of the configuration was predicted.
;
; Here are the rules and configurations for the grammar given above:
;
; S -> . \
; 0 |
; x -> . |
; 1 |
; = -> . |
; 2 |
; E -> . |
; 3 > special rules (for scanning)
; + -> . |
; 4 |
; V -> . |
; 5 |
; y -> . |
; 6 /
; S -> . x . = . E .
; 7 8 9 10
; E -> . E . + . E .
; 11 12 13 14
; E -> . V .
; 15 16
; V -> . V . y .
; 17 18 19
; V -> .
; 20
;
; Starters of the non-terminal `nt' are configurations that are leftmost
; in a non-special rule for `nt'. Enders of the non-terminal `nt' are
; configurations that are rightmost in any rule for `nt'. Predictors of the
; non-terminal `nt' are configurations that are directly to the left of `nt'
; in any rule.
;
; For the grammar given above,
;
; Starters of V = (17 20)
; Enders of V = (5 19 20)
; Predictors of V = (15 17)
(define (make-parser grammar lexer)
(define (non-terminals grammar) ; return vector of non-terminals in grammar
(define (add-nt nt nts)
(if (member nt nts) nts (cons nt nts))) ; use equal? for equality tests
(let def-loop ((defs grammar) (nts '()))
(if (pair? defs)
(let* ((def (car defs))
(head (car def)))
(let rule-loop ((rules (cdr def))
(nts (add-nt head nts)))
(if (pair? rules)
(let ((rule (car rules)))
(let loop ((l rule) (nts nts))
(if (pair? l)
(let ((nt (car l)))
(loop (cdr l) (add-nt nt nts)))
(rule-loop (cdr rules) nts))))
(def-loop (cdr defs) nts))))
(list->vector (reverse nts))))) ; goal non-terminal must be at index 0
(define (ind nt nts) ; return index of non-terminal `nt' in `nts'
(let loop ((i (- (vector-length nts) 1)))
(if (>= i 0)
(if (equal? (vector-ref nts i) nt) i (loop (- i 1)))
#f)))
(define (nb-configurations grammar) ; return nb of configurations in grammar
(let def-loop ((defs grammar) (nb-confs 0))
(if (pair? defs)
(let ((def (car defs)))
(let rule-loop ((rules (cdr def)) (nb-confs nb-confs))
(if (pair? rules)
(let ((rule (car rules)))
(let loop ((l rule) (nb-confs nb-confs))
(if (pair? l)
(loop (cdr l) (+ nb-confs 1))
(rule-loop (cdr rules) (+ nb-confs 1)))))
(def-loop (cdr defs) nb-confs))))
nb-confs)))
; First, associate a numeric identifier to every non-terminal in the
; grammar (with the goal non-terminal associated with 0).
;
; So, for the grammar given above we get:
;
; s -> 0 x -> 1 = -> 4 e ->3 + -> 4 v -> 5 y -> 6
(let* ((nts (non-terminals grammar)) ; id map = list of non-terms
(nb-nts (vector-length nts)) ; the number of non-terms
(nb-confs (+ (nb-configurations grammar) nb-nts)) ; the nb of confs
(starters (make-vector nb-nts '())) ; starters for every non-term
(enders (make-vector nb-nts '())) ; enders for every non-term
(predictors (make-vector nb-nts '())) ; predictors for every non-term
(steps (make-vector nb-confs #f)) ; what to do in a given conf
(names (make-vector nb-confs #f))) ; name of rules
(define (setup-tables grammar nts starters enders predictors steps names)
(define (add-conf conf nt nts class)
(let ((i (ind nt nts)))
(vector-set! class i (cons conf (vector-ref class i)))))
(let ((nb-nts (vector-length nts)))
(let nt-loop ((i (- nb-nts 1)))
(if (>= i 0)
(begin
(vector-set! steps i (- i nb-nts))
(vector-set! names i (list (vector-ref nts i) 0))
(vector-set! enders i (list i))
(nt-loop (- i 1)))))
(let def-loop ((defs grammar) (conf (vector-length nts)))
(if (pair? defs)
(let* ((def (car defs))
(head (car def)))
(let rule-loop ((rules (cdr def)) (conf conf) (rule-num 1))
(if (pair? rules)
(let ((rule (car rules)))
(vector-set! names conf (list head rule-num))
(add-conf conf head nts starters)
(let loop ((l rule) (conf conf))
(if (pair? l)
(let ((nt (car l)))
(vector-set! steps conf (ind nt nts))
(add-conf conf nt nts predictors)
(loop (cdr l) (+ conf 1)))
(begin
(vector-set! steps conf (- (ind head nts) nb-nts))
(add-conf conf head nts enders)
(rule-loop (cdr rules) (+ conf 1) (+ rule-num 1))))))
(def-loop (cdr defs) conf))))))))
; Now, for each non-terminal, compute the starters, enders and predictors and
; the names and steps tables.
(setup-tables grammar nts starters enders predictors steps names)
; Build the parser description
(let ((parser-descr (vector lexer
nts
starters
enders
predictors
steps
names)))
(lambda (input)
(define (ind nt nts) ; return index of non-terminal `nt' in `nts'
(let loop ((i (- (vector-length nts) 1)))
(if (>= i 0)
(if (equal? (vector-ref nts i) nt) i (loop (- i 1)))
#f)))
(define (comp-tok tok nts) ; transform token to parsing format
(let loop ((l1 (cdr tok)) (l2 '()))
(if (pair? l1)
(let ((i (ind (car l1) nts)))
(if i
(loop (cdr l1) (cons i l2))
(loop (cdr l1) l2)))
(cons (car tok) (reverse l2)))))
(define (input->tokens input lexer nts)
(list->vector (map (lambda (tok) (comp-tok tok nts)) (lexer input))))
(define (make-states nb-toks nb-confs)
(let ((states (make-vector (+ nb-toks 1) #f)))
(let loop ((i nb-toks))
(if (>= i 0)
(let ((v (make-vector (+ nb-confs 1) #f)))
(vector-set! v 0 -1)
(vector-set! states i v)
(loop (- i 1)))
states))))
(define (conf-set-get state conf)
(vector-ref state (+ conf 1)))
(define (conf-set-get* state state-num conf)
(let ((conf-set (conf-set-get state conf)))
(if conf-set
conf-set
(let ((conf-set (make-vector (+ state-num 6) #f)))
(vector-set! conf-set 1 -3) ; old elems tail (points to head)
(vector-set! conf-set 2 -1) ; old elems head
(vector-set! conf-set 3 -1) ; new elems tail (points to head)
(vector-set! conf-set 4 -1) ; new elems head
(vector-set! state (+ conf 1) conf-set)
conf-set))))
(define (conf-set-merge-new! conf-set)
(vector-set! conf-set
(+ (vector-ref conf-set 1) 5)
(vector-ref conf-set 4))
(vector-set! conf-set 1 (vector-ref conf-set 3))
(vector-set! conf-set 3 -1)
(vector-set! conf-set 4 -1))
(define (conf-set-head conf-set)
(vector-ref conf-set 2))
(define (conf-set-next conf-set i)
(vector-ref conf-set (+ i 5)))
(define (conf-set-member? state conf i)
(let ((conf-set (vector-ref state (+ conf 1))))
(if conf-set
(conf-set-next conf-set i)
#f)))
(define (conf-set-adjoin state conf-set conf i)
(let ((tail (vector-ref conf-set 3))) ; put new element at tail
(vector-set! conf-set (+ i 5) -1)
(vector-set! conf-set (+ tail 5) i)
(vector-set! conf-set 3 i)
(if (< tail 0)
(begin
(vector-set! conf-set 0 (vector-ref state 0))
(vector-set! state 0 conf)))))
(define (conf-set-adjoin* states state-num l i)
(let ((state (vector-ref states state-num)))
(let loop ((l1 l))
(if (pair? l1)
(let* ((conf (car l1))
(conf-set (conf-set-get* state state-num conf)))
(if (not (conf-set-next conf-set i))
(begin
(conf-set-adjoin state conf-set conf i)
(loop (cdr l1)))
(loop (cdr l1))))))))
(define (conf-set-adjoin** states states* state-num conf i)
(let ((state (vector-ref states state-num)))
(if (conf-set-member? state conf i)
(let* ((state* (vector-ref states* state-num))
(conf-set* (conf-set-get* state* state-num conf)))
(if (not (conf-set-next conf-set* i))
(conf-set-adjoin state* conf-set* conf i))
#t)
#f)))
(define (conf-set-union state conf-set conf other-set)
(let loop ((i (conf-set-head other-set)))
(if (>= i 0)
(if (not (conf-set-next conf-set i))
(begin
(conf-set-adjoin state conf-set conf i)
(loop (conf-set-next other-set i)))
(loop (conf-set-next other-set i))))))
(define (forw states state-num starters enders predictors steps nts)
(define (predict state state-num conf-set conf nt starters enders)
; add configurations which start the non-terminal `nt' to the
; right of the dot
(let loop1 ((l (vector-ref starters nt)))
(if (pair? l)
(let* ((starter (car l))
(starter-set (conf-set-get* state state-num starter)))
(if (not (conf-set-next starter-set state-num))
(begin
(conf-set-adjoin state starter-set starter state-num)
(loop1 (cdr l)))
(loop1 (cdr l))))))
; check for possible completion of the non-terminal `nt' to the
; right of the dot
(let loop2 ((l (vector-ref enders nt)))
(if (pair? l)
(let ((ender (car l)))
(if (conf-set-member? state ender state-num)
(let* ((next (+ conf 1))
(next-set (conf-set-get* state state-num next)))
(conf-set-union state next-set next conf-set)
(loop2 (cdr l)))
(loop2 (cdr l)))))))
(define (reduce states state state-num conf-set head preds)
; a non-terminal is now completed so check for reductions that
; are now possible at the configurations `preds'
(let loop1 ((l preds))
(if (pair? l)
(let ((pred (car l)))
(let loop2 ((i head))
(if (>= i 0)
(let ((pred-set (conf-set-get (vector-ref states i) pred)))
(if pred-set
(let* ((next (+ pred 1))
(next-set (conf-set-get* state state-num next)))
(conf-set-union state next-set next pred-set)))
(loop2 (conf-set-next conf-set i)))
(loop1 (cdr l))))))))
(let ((state (vector-ref states state-num))
(nb-nts (vector-length nts)))
(let loop ()
(let ((conf (vector-ref state 0)))
(if (>= conf 0)
(let* ((step (vector-ref steps conf))
(conf-set (vector-ref state (+ conf 1)))
(head (vector-ref conf-set 4)))
(vector-set! state 0 (vector-ref conf-set 0))
(conf-set-merge-new! conf-set)
(if (>= step 0)
(predict state state-num conf-set conf step starters enders)
(let ((preds (vector-ref predictors (+ step nb-nts))))
(reduce states state state-num conf-set head preds)))
(loop)))))))
(define (forward starters enders predictors steps nts toks)
(let* ((nb-toks (vector-length toks))
(nb-confs (vector-length steps))
(states (make-states nb-toks nb-confs))
(goal-starters (vector-ref starters 0)))
(conf-set-adjoin* states 0 goal-starters 0) ; predict goal
(forw states 0 starters enders predictors steps nts)
(let loop ((i 0))
(if (< i nb-toks)
(let ((tok-nts (cdr (vector-ref toks i))))
(conf-set-adjoin* states (+ i 1) tok-nts i) ; scan token
(forw states (+ i 1) starters enders predictors steps nts)
(loop (+ i 1)))))
states))
(define (produce conf i j enders steps toks states states* nb-nts)
(let ((prev (- conf 1)))
(if (and (>= conf nb-nts) (>= (vector-ref steps prev) 0))
(let loop1 ((l (vector-ref enders (vector-ref steps prev))))
(if (pair? l)
(let* ((ender (car l))
(ender-set (conf-set-get (vector-ref states j)
ender)))
(if ender-set
(let loop2 ((k (conf-set-head ender-set)))
(if (>= k 0)
(begin
(and (>= k i)
(conf-set-adjoin** states states* k prev i)
(conf-set-adjoin** states states* j ender k))
(loop2 (conf-set-next ender-set k)))
(loop1 (cdr l))))
(loop1 (cdr l)))))))))
(define (back states states* state-num enders steps nb-nts toks)
(let ((state* (vector-ref states* state-num)))
(let loop1 ()
(let ((conf (vector-ref state* 0)))
(if (>= conf 0)
(let* ((conf-set (vector-ref state* (+ conf 1)))
(head (vector-ref conf-set 4)))
(vector-set! state* 0 (vector-ref conf-set 0))
(conf-set-merge-new! conf-set)
(let loop2 ((i head))
(if (>= i 0)
(begin
(produce conf i state-num enders steps
toks states states* nb-nts)
(loop2 (conf-set-next conf-set i)))
(loop1)))))))))
(define (backward states enders steps nts toks)
(let* ((nb-toks (vector-length toks))
(nb-confs (vector-length steps))
(nb-nts (vector-length nts))
(states* (make-states nb-toks nb-confs))
(goal-enders (vector-ref enders 0)))
(let loop1 ((l goal-enders))
(if (pair? l)
(let ((conf (car l)))
(conf-set-adjoin** states states* nb-toks conf 0)
(loop1 (cdr l)))))
(let loop2 ((i nb-toks))
(if (>= i 0)
(begin
(back states states* i enders steps nb-nts toks)
(loop2 (- i 1)))))
states*))
(define (parsed? nt i j nts enders states)
(let ((nt* (ind nt nts)))
(if nt*
(let ((nb-nts (vector-length nts)))
(let loop ((l (vector-ref enders nt*)))
(if (pair? l)
(let ((conf (car l)))
(if (conf-set-member? (vector-ref states j) conf i)
#t
(loop (cdr l))))
#f)))
#f)))
(define (deriv-trees conf i j enders steps names toks states nb-nts)
(let ((name (vector-ref names conf)))
(if name ; `conf' is at the start of a rule (either special or not)
(if (< conf nb-nts)
(list (list name (car (vector-ref toks i))))
(list (list name)))
(let ((prev (- conf 1)))
(let loop1 ((l1 (vector-ref enders (vector-ref steps prev)))
(l2 '()))
(if (pair? l1)
(let* ((ender (car l1))
(ender-set (conf-set-get (vector-ref states j)
ender)))
(if ender-set
(let loop2 ((k (conf-set-head ender-set)) (l2 l2))
(if (>= k 0)
(if (and (>= k i)
(conf-set-member? (vector-ref states k)
prev i))
(let ((prev-trees
(deriv-trees prev i k enders steps names
toks states nb-nts))
(ender-trees
(deriv-trees ender k j enders steps names
toks states nb-nts)))
(let loop3 ((l3 ender-trees) (l2 l2))
(if (pair? l3)
(let ((ender-tree (list (car l3))))
(let loop4 ((l4 prev-trees) (l2 l2))
(if (pair? l4)
(loop4 (cdr l4)
(cons (append (car l4)
ender-tree)
l2))
(loop3 (cdr l3) l2))))
(loop2 (conf-set-next ender-set k) l2))))
(loop2 (conf-set-next ender-set k) l2))
(loop1 (cdr l1) l2)))
(loop1 (cdr l1) l2)))
l2))))))
(define (deriv-trees* nt i j nts enders steps names toks states)
(let ((nt* (ind nt nts)))
(if nt*
(let ((nb-nts (vector-length nts)))
(let loop ((l (vector-ref enders nt*)) (trees '()))
(if (pair? l)
(let ((conf (car l)))
(if (conf-set-member? (vector-ref states j) conf i)
(loop (cdr l)
(append (deriv-trees conf i j enders steps names
toks states nb-nts)
trees))
(loop (cdr l) trees)))
trees)))
#f)))
(define (nb-deriv-trees conf i j enders steps toks states nb-nts)
(let ((prev (- conf 1)))
(if (or (< conf nb-nts) (< (vector-ref steps prev) 0))
1
(let loop1 ((l (vector-ref enders (vector-ref steps prev)))
(n 0))
(if (pair? l)
(let* ((ender (car l))
(ender-set (conf-set-get (vector-ref states j)
ender)))
(if ender-set
(let loop2 ((k (conf-set-head ender-set)) (n n))
(if (>= k 0)
(if (and (>= k i)
(conf-set-member? (vector-ref states k)
prev i))
(let ((nb-prev-trees
(nb-deriv-trees prev i k enders steps
toks states nb-nts))
(nb-ender-trees
(nb-deriv-trees ender k j enders steps
toks states nb-nts)))
(loop2 (conf-set-next ender-set k)
(+ n (* nb-prev-trees nb-ender-trees))))
(loop2 (conf-set-next ender-set k) n))
(loop1 (cdr l) n)))
(loop1 (cdr l) n)))
n)))))
(define (nb-deriv-trees* nt i j nts enders steps toks states)
(let ((nt* (ind nt nts)))
(if nt*
(let ((nb-nts (vector-length nts)))
(let loop ((l (vector-ref enders nt*)) (nb-trees 0))
(if (pair? l)
(let ((conf (car l)))
(if (conf-set-member? (vector-ref states j) conf i)
(loop (cdr l)
(+ (nb-deriv-trees conf i j enders steps
toks states nb-nts)
nb-trees))
(loop (cdr l) nb-trees)))
nb-trees)))
#f)))
(let* ((lexer (vector-ref parser-descr 0))
(nts (vector-ref parser-descr 1))
(starters (vector-ref parser-descr 2))
(enders (vector-ref parser-descr 3))
(predictors (vector-ref parser-descr 4))
(steps (vector-ref parser-descr 5))
(names (vector-ref parser-descr 6))
(toks (input->tokens input lexer nts)))
(vector nts
starters
enders
predictors
steps
names
toks
(backward (forward starters enders predictors steps nts toks)
enders steps nts toks)
parsed?
deriv-trees*
nb-deriv-trees*))))))
(define (parse->parsed? parse nt i j)
(let* ((nts (vector-ref parse 0))
(enders (vector-ref parse 2))
(states (vector-ref parse 7))
(parsed? (vector-ref parse 8)))
(parsed? nt i j nts enders states)))
(define (parse->trees parse nt i j)
(let* ((nts (vector-ref parse 0))
(enders (vector-ref parse 2))
(steps (vector-ref parse 4))
(names (vector-ref parse 5))
(toks (vector-ref parse 6))
(states (vector-ref parse 7))
(deriv-trees* (vector-ref parse 9)))
(deriv-trees* nt i j nts enders steps names toks states)))
(define (parse->nb-trees parse nt i j)
(let* ((nts (vector-ref parse 0))
(enders (vector-ref parse 2))
(steps (vector-ref parse 4))
(toks (vector-ref parse 6))
(states (vector-ref parse 7))
(nb-deriv-trees* (vector-ref parse 10)))
(nb-deriv-trees* nt i j nts enders steps toks states)))
(define (test k)
(let ((p (make-parser '( (s (a) (s s)) )
(lambda (l) (map (lambda (x) (list x x)) l)))))
(let ((x (p (vector->list (make-vector k 'a)))))
(length (parse->trees x 's 0 k)))))
(define (earley-benchmark . args)
(let ((k (if (null? args) 9 (car args))))
(run-benchmark
"earley"
1
(lambda () (test k))
(lambda (result)
(display result)
(newline)
#t))))

View file

@ -0,0 +1,233 @@
; This is adapted from a benchmark written by John Ellis and Pete Kovac
; of Post Communications.
; It was modified by Hans Boehm of Silicon Graphics.
; It was translated into Scheme by William D Clinger of Northeastern Univ;
; the Scheme version uses (RUN-BENCHMARK <string> <thunk>)
; It was later hacked by Lars T Hansen of Northeastern University;
; this version has a fixed tree height but accepts a number of
; iterations to run.
;
; Modified 2000-02-15 / lth: changed gc-benchmark to only stretch once,
; and to have a different interface (now accepts iteration numbers,
; not tree height)
; Last modified 2000-07-14 / lth -- fixed a buggy comment about storage
; use in Larceny.
;
; This is no substitute for real applications. No actual application
; is likely to behave in exactly this way. However, this benchmark was
; designed to be more representative of real applications than other
; Java GC benchmarks of which we are aware.
; It attempts to model those properties of allocation requests that
; are important to current GC techniques.
; It is designed to be used either to obtain a single overall performance
; number, or to give a more detailed estimate of how collector
; performance varies with object lifetimes. It prints the time
; required to allocate and collect balanced binary trees of various
; sizes. Smaller trees result in shorter object lifetimes. Each cycle
; allocates roughly the same amount of memory.
; Two data structures are kept around during the entire process, so
; that the measured performance is representative of applications
; that maintain some live in-memory data. One of these is a tree
; containing many pointers. The other is a large array containing
; double precision floating point numbers. Both should be of comparable
; size.
;
; The results are only really meaningful together with a specification
; of how much memory was used. It is possible to trade memory for
; better time performance. This benchmark should be run in a 32 MB
; heap, though we don't currently know how to enforce that uniformly.
; In the Java version, this routine prints the heap size and the amount
; of free memory. There is no portable way to do this in Scheme; each
; implementation needs its own version.
(define (PrintDiagnostics)
(display " Total memory available= ???????? bytes")
(display " Free memory= ???????? bytes")
(newline))
(define (yes answer) #t)
; Should we implement a Java class as procedures or hygienic macros?
; Take your pick.
(define-syntax let-class
(syntax-rules
()
; Put this rule first to implement a class using hygienic macros.
((let-class (((method . args) . method-body) ...) . body)
(letrec-syntax ((method (syntax-rules ()
((method . args) (begin . method-body))))
...)
. body))
; Put this rule first to implement a class using procedures.
((let-class (((method . args) . method-body) ...) . body)
(let () (define (method . args) . method-body) ... . body))
))
(define stretch #t) ; Controls whether stretching phase is run
(define (gcbench kStretchTreeDepth)
; Use for inner calls to reduce noise.
(define (run-benchmark name iters thunk test)
(do ((i 0 (+ i 1)))
((= i iters))
(thunk)))
; Nodes used by a tree of a given size
(define (TreeSize i)
(- (expt 2 (+ i 1)) 1))
; Number of iterations to use for a given tree depth
(define (NumIters i)
(quotient (* 2 (TreeSize kStretchTreeDepth))
(TreeSize i)))
; Parameters are determined by kStretchTreeDepth.
; In Boehm's version the parameters were fixed as follows:
; public static final int kStretchTreeDepth = 18; // about 16Mb
; public static final int kLongLivedTreeDepth = 16; // about 4Mb
; public static final int kArraySize = 500000; // about 4Mb
; public static final int kMinTreeDepth = 4;
; public static final int kMaxTreeDepth = 16;
; wdc: In Larceny the storage numbers above would be 12 Mby, 3 Mby, 6 Mby.
; lth: No they would not. A flonum requires 16 bytes, so the size
; of array + flonums would be 500,000*4 + 500,000*16=10 Mby.
(let* ((kLongLivedTreeDepth (- kStretchTreeDepth 2))
(kArraySize (* 4 (TreeSize kLongLivedTreeDepth)))
(kMinTreeDepth 4)
(kMaxTreeDepth kLongLivedTreeDepth))
; Elements 3 and 4 of the allocated vectors are useless.
(let-class (((make-node l r)
(let ((v (make-empty-node)))
(vector-set! v 0 l)
(vector-set! v 1 r)
v))
((make-empty-node) (make-vector 4 0))
((node.left node) (vector-ref node 0))
((node.right node) (vector-ref node 1))
((node.left-set! node x) (vector-set! node 0 x))
((node.right-set! node x) (vector-set! node 1 x)))
; Build tree top down, assigning to older objects.
(define (Populate iDepth thisNode)
(if (<= iDepth 0)
#f
(let ((iDepth (- iDepth 1)))
(node.left-set! thisNode (make-empty-node))
(node.right-set! thisNode (make-empty-node))
(Populate iDepth (node.left thisNode))
(Populate iDepth (node.right thisNode)))))
; Build tree bottom-up
(define (MakeTree iDepth)
(if (<= iDepth 0)
(make-empty-node)
(make-node (MakeTree (- iDepth 1))
(MakeTree (- iDepth 1)))))
(define (TimeConstruction depth)
(let ((iNumIters (NumIters depth)))
(display (string-append "Creating "
(number->string iNumIters)
" trees of depth "
(number->string depth)))
(newline)
(run-benchmark "GCBench: Top down construction"
1
(lambda ()
(do ((i 0 (+ i 1)))
((>= i iNumIters))
(Populate depth (make-empty-node))))
yes)
(run-benchmark "GCBench: Bottom up construction"
1
(lambda ()
(do ((i 0 (+ i 1)))
((>= i iNumIters))
(MakeTree depth)))
yes)))
(define (main)
(display "Garbage Collector Test")
(newline)
(if stretch
(begin
(display (string-append
" Stretching memory with a binary tree of depth "
(number->string kStretchTreeDepth)))
(newline)))
(PrintDiagnostics)
(run-benchmark "GCBench: Main"
1
(lambda ()
; Stretch the memory space quickly
(if stretch
(MakeTree kStretchTreeDepth))
; Create a long lived object
(display
(string-append
" Creating a long-lived binary tree of depth "
(number->string kLongLivedTreeDepth)))
(newline)
(let ((longLivedTree (make-empty-node)))
(Populate kLongLivedTreeDepth longLivedTree)
; Create long-lived array, filling half of it
(display (string-append
" Creating a long-lived array of "
(number->string kArraySize)
" inexact reals"))
(newline)
(let ((array (make-vector kArraySize 0.0)))
(do ((i 0 (+ i 1)))
((>= i (quotient kArraySize 2)))
(vector-set! array i
(/ 1.0 (exact->inexact i))))
(PrintDiagnostics)
(do ((d kMinTreeDepth (+ d 2)))
((> d kMaxTreeDepth))
(TimeConstruction d))
(if (or (eq? longLivedTree '())
(let ((n (min 1000
(- (quotient (vector-length array)
2)
1))))
(not (= (vector-ref array n)
(/ 1.0 (exact->inexact n))))))
(begin (display "Failed") (newline)))
; fake reference to LongLivedTree
; and array
; to keep them from being optimized away
)))
yes)
(PrintDiagnostics))
(main))))
(define (gc-benchmark . rest)
(let ((k 18)
(n (if (null? rest) 1 (car rest))))
(display "The garbage collector should touch about ")
(display (expt 2 (- k 13)))
(display " megabytes of heap storage.")
(newline)
(display "The use of more or less memory will skew the results.")
(newline)
(set! stretch #t)
(run-benchmark (string-append "GCBench" (number->string k))
n
(lambda ()
(gcbench k)
(set! stretch #f))
yes)
(set! stretch #t)))

View file

@ -0,0 +1,644 @@
; Modified 2 March 1997 by Will Clinger to add graphs-benchmark
; and to expand the four macros below.
; Modified 11 June 1997 by Will Clinger to eliminate assertions
; and to replace a use of "recur" with a named let.
;
; Performance note: (graphs-benchmark 7) allocates
; 34509143 pairs
; 389625 vectors with 2551590 elements
; 56653504 closures (not counting top level and known procedures)
(define (graphs-benchmark . rest)
(let ((N (if (null? rest) 7 (car rest))))
(run-benchmark (string-append "graphs" (number->string N))
(lambda ()
(fold-over-rdg N
2
cons
'())))))
; End of new code.
;;; ==== std.ss ====
; (define-syntax assert
; (syntax-rules ()
; ((assert test info-rest ...)
; #F)))
;
; (define-syntax deny
; (syntax-rules ()
; ((deny test info-rest ...)
; #F)))
;
; (define-syntax when
; (syntax-rules ()
; ((when test e-first e-rest ...)
; (if test
; (begin e-first
; e-rest ...)))))
;
; (define-syntax unless
; (syntax-rules ()
; ((unless test e-first e-rest ...)
; (if (not test)
; (begin e-first
; e-rest ...)))))
(define assert
(lambda (test . info)
#f))
;;; ==== util.ss ====
; Fold over list elements, associating to the left.
(define fold
(lambda (lst folder state)
'(assert (list? lst)
lst)
'(assert (procedure? folder)
folder)
(do ((lst lst
(cdr lst))
(state state
(folder (car lst)
state)))
((null? lst)
state))))
; Given the size of a vector and a procedure which
; sends indicies to desired vector elements, create
; and return the vector.
(define proc->vector
(lambda (size f)
'(assert (and (integer? size)
(exact? size)
(>= size 0))
size)
'(assert (procedure? f)
f)
(if (zero? size)
(vector)
(let ((x (make-vector size (f 0))))
(let loop ((i 1))
(if (< i size) (begin ; [wdc - was when]
(vector-set! x i (f i))
(loop (+ i 1)))))
x))))
(define vector-fold
(lambda (vec folder state)
'(assert (vector? vec)
vec)
'(assert (procedure? folder)
folder)
(let ((len
(vector-length vec)))
(do ((i 0
(+ i 1))
(state state
(folder (vector-ref vec i)
state)))
((= i len)
state)))))
(define vector-map
(lambda (vec proc)
(proc->vector (vector-length vec)
(lambda (i)
(proc (vector-ref vec i))))))
; Given limit, return the list 0, 1, ..., limit-1.
(define giota
(lambda (limit)
'(assert (and (integer? limit)
(exact? limit)
(>= limit 0))
limit)
(let -*-
((limit
limit)
(res
'()))
(if (zero? limit)
res
(let ((limit
(- limit 1)))
(-*- limit
(cons limit res)))))))
; Fold over the integers [0, limit).
(define gnatural-fold
(lambda (limit folder state)
'(assert (and (integer? limit)
(exact? limit)
(>= limit 0))
limit)
'(assert (procedure? folder)
folder)
(do ((i 0
(+ i 1))
(state state
(folder i state)))
((= i limit)
state))))
; Iterate over the integers [0, limit).
(define gnatural-for-each
(lambda (limit proc!)
'(assert (and (integer? limit)
(exact? limit)
(>= limit 0))
limit)
'(assert (procedure? proc!)
proc!)
(do ((i 0
(+ i 1)))
((= i limit))
(proc! i))))
(define natural-for-all?
(lambda (limit ok?)
'(assert (and (integer? limit)
(exact? limit)
(>= limit 0))
limit)
'(assert (procedure? ok?)
ok?)
(let -*-
((i 0))
(or (= i limit)
(and (ok? i)
(-*- (+ i 1)))))))
(define natural-there-exists?
(lambda (limit ok?)
'(assert (and (integer? limit)
(exact? limit)
(>= limit 0))
limit)
'(assert (procedure? ok?)
ok?)
(let -*-
((i 0))
(and (not (= i limit))
(or (ok? i)
(-*- (+ i 1)))))))
(define there-exists?
(lambda (lst ok?)
'(assert (list? lst)
lst)
'(assert (procedure? ok?)
ok?)
(let -*-
((lst lst))
(and (not (null? lst))
(or (ok? (car lst))
(-*- (cdr lst)))))))
;;; ==== ptfold.ss ====
; Fold over the tree of permutations of a universe.
; Each branch (from the root) is a permutation of universe.
; Each node at depth d corresponds to all permutations which pick the
; elements spelled out on the branch from the root to that node as
; the first d elements.
; Their are two components to the state:
; The b-state is only a function of the branch from the root.
; The t-state is a function of all nodes seen so far.
; At each node, b-folder is called via
; (b-folder elem b-state t-state deeper accross)
; where elem is the next element of the universe picked.
; If b-folder can determine the result of the total tree fold at this stage,
; it should simply return the result.
; If b-folder can determine the result of folding over the sub-tree
; rooted at the resulting node, it should call accross via
; (accross new-t-state)
; where new-t-state is that result.
; Otherwise, b-folder should call deeper via
; (deeper new-b-state new-t-state)
; where new-b-state is the b-state for the new node and new-t-state is
; the new folded t-state.
; At the leaves of the tree, t-folder is called via
; (t-folder b-state t-state accross)
; If t-folder can determine the result of the total tree fold at this stage,
; it should simply return that result.
; If not, it should call accross via
; (accross new-t-state)
; Note, fold-over-perm-tree always calls b-folder in depth-first order.
; I.e., when b-folder is called at depth d, the branch leading to that
; node is the most recent calls to b-folder at all the depths less than d.
; This is a gross efficiency hack so that b-folder can use mutation to
; keep the current branch.
(define fold-over-perm-tree
(lambda (universe b-folder b-state t-folder t-state)
'(assert (list? universe)
universe)
'(assert (procedure? b-folder)
b-folder)
'(assert (procedure? t-folder)
t-folder)
(let -*-
((universe
universe)
(b-state
b-state)
(t-state
t-state)
(accross
(lambda (final-t-state)
final-t-state)))
(if (null? universe)
(t-folder b-state t-state accross)
(let -**-
((in
universe)
(out
'())
(t-state
t-state))
(let* ((first
(car in))
(rest
(cdr in))
(accross
(if (null? rest)
accross
(lambda (new-t-state)
(-**- rest
(cons first out)
new-t-state)))))
(b-folder first
b-state
t-state
(lambda (new-b-state new-t-state)
(-*- (fold out cons rest)
new-b-state
new-t-state
accross))
accross)))))))
;;; ==== minimal.ss ====
; A directed graph is stored as a connection matrix (vector-of-vectors)
; where the first index is the `from' vertex and the second is the `to'
; vertex. Each entry is a bool indicating if the edge exists.
; The diagonal of the matrix is never examined.
; Make-minimal? returns a procedure which tests if a labelling
; of the verticies is such that the matrix is minimal.
; If it is, then the procedure returns the result of folding over
; the elements of the automoriphism group. If not, it returns #F.
; The folding is done by calling folder via
; (folder perm state accross)
; If the folder wants to continue, it should call accross via
; (accross new-state)
; If it just wants the entire minimal? procedure to return something,
; it should return that.
; The ordering used is lexicographic (with #T > #F) and entries
; are examined in the following order:
; 1->0, 0->1
;
; 2->0, 0->2
; 2->1, 1->2
;
; 3->0, 0->3
; 3->1, 1->3
; 3->2, 2->3
; ...
(define make-minimal?
(lambda (max-size)
'(assert (and (integer? max-size)
(exact? max-size)
(>= max-size 0))
max-size)
(let ((iotas
(proc->vector (+ max-size 1)
giota))
(perm
(make-vector max-size 0)))
(lambda (size graph folder state)
'(assert (and (integer? size)
(exact? size)
(<= 0 size max-size))
size
max-size)
'(assert (vector? graph)
graph)
'(assert (procedure? folder)
folder)
(fold-over-perm-tree (vector-ref iotas size)
(lambda (perm-x x state deeper accross)
(case (cmp-next-vertex graph perm x perm-x)
((less)
#F)
((equal)
(vector-set! perm x perm-x)
(deeper (+ x 1)
state))
((more)
(accross state))
(else
(assert #F))))
0
(lambda (leaf-depth state accross)
'(assert (eqv? leaf-depth size)
leaf-depth
size)
(folder perm state accross))
state)))))
; Given a graph, a partial permutation vector, the next input and the next
; output, return 'less, 'equal or 'more depending on the lexicographic
; comparison between the permuted and un-permuted graph.
(define cmp-next-vertex
(lambda (graph perm x perm-x)
(let ((from-x
(vector-ref graph x))
(from-perm-x
(vector-ref graph perm-x)))
(let -*-
((y
0))
(if (= x y)
'equal
(let ((x->y?
(vector-ref from-x y))
(perm-y
(vector-ref perm y)))
(cond ((eq? x->y?
(vector-ref from-perm-x perm-y))
(let ((y->x?
(vector-ref (vector-ref graph y)
x)))
(cond ((eq? y->x?
(vector-ref (vector-ref graph perm-y)
perm-x))
(-*- (+ y 1)))
(y->x?
'less)
(else
'more))))
(x->y?
'less)
(else
'more))))))))
;;; ==== rdg.ss ====
; Fold over rooted directed graphs with bounded out-degree.
; Size is the number of verticies (including the root). Max-out is the
; maximum out-degree for any vertex. Folder is called via
; (folder edges state)
; where edges is a list of length size. The ith element of the list is
; a list of the verticies j for which there is an edge from i to j.
; The last vertex is the root.
(define fold-over-rdg
(lambda (size max-out folder state)
'(assert (and (exact? size)
(integer? size)
(> size 0))
size)
'(assert (and (exact? max-out)
(integer? max-out)
(>= max-out 0))
max-out)
'(assert (procedure? folder)
folder)
(let* ((root
(- size 1))
(edge?
(proc->vector size
(lambda (from)
(make-vector size #F))))
(edges
(make-vector size '()))
(out-degrees
(make-vector size 0))
(minimal-folder
(make-minimal? root))
(non-root-minimal?
(let ((cont
(lambda (perm state accross)
'(assert (eq? state #T)
state)
(accross #T))))
(lambda (size)
(minimal-folder size
edge?
cont
#T))))
(root-minimal?
(let ((cont
(lambda (perm state accross)
'(assert (eq? state #T)
state)
(case (cmp-next-vertex edge? perm root root)
((less)
#F)
((equal more)
(accross #T))
(else
(assert #F))))))
(lambda ()
(minimal-folder root
edge?
cont
#T)))))
(let -*-
((vertex
0)
(state
state))
(cond ((not (non-root-minimal? vertex))
state)
((= vertex root)
'(assert
(begin
(gnatural-for-each root
(lambda (v)
'(assert (= (vector-ref out-degrees v)
(length (vector-ref edges v)))
v
(vector-ref out-degrees v)
(vector-ref edges v))))
#T))
(let ((reach?
(make-reach? root edges))
(from-root
(vector-ref edge? root)))
(let -*-
((v
0)
(outs
0)
(efr
'())
(efrr
'())
(state
state))
(cond ((not (or (= v root)
(= outs max-out)))
(vector-set! from-root v #T)
(let ((state
(-*- (+ v 1)
(+ outs 1)
(cons v efr)
(cons (vector-ref reach? v)
efrr)
state)))
(vector-set! from-root v #F)
(-*- (+ v 1)
outs
efr
efrr
state)))
((and (natural-for-all? root
(lambda (v)
(there-exists? efrr
(lambda (r)
(vector-ref r v)))))
(root-minimal?))
(vector-set! edges root efr)
(folder
(proc->vector size
(lambda (i)
(vector-ref edges i)))
state))
(else
state)))))
(else
(let ((from-vertex
(vector-ref edge? vertex)))
(let -**-
((sv
0)
(outs
0)
(state
state))
(if (= sv vertex)
(begin
(vector-set! out-degrees vertex outs)
(-*- (+ vertex 1)
state))
(let* ((state
; no sv->vertex, no vertex->sv
(-**- (+ sv 1)
outs
state))
(from-sv
(vector-ref edge? sv))
(sv-out
(vector-ref out-degrees sv))
(state
(if (= sv-out max-out)
state
(begin
(vector-set! edges
sv
(cons vertex
(vector-ref edges sv)))
(vector-set! from-sv vertex #T)
(vector-set! out-degrees sv (+ sv-out 1))
(let* ((state
; sv->vertex, no vertex->sv
(-**- (+ sv 1)
outs
state))
(state
(if (= outs max-out)
state
(begin
(vector-set! from-vertex sv #T)
(vector-set! edges
vertex
(cons sv
(vector-ref edges vertex)))
(let ((state
; sv->vertex, vertex->sv
(-**- (+ sv 1)
(+ outs 1)
state)))
(vector-set! edges
vertex
(cdr (vector-ref edges vertex)))
(vector-set! from-vertex sv #F)
state)))))
(vector-set! out-degrees sv sv-out)
(vector-set! from-sv vertex #F)
(vector-set! edges
sv
(cdr (vector-ref edges sv)))
state)))))
(if (= outs max-out)
state
(begin
(vector-set! edges
vertex
(cons sv
(vector-ref edges vertex)))
(vector-set! from-vertex sv #T)
(let ((state
; no sv->vertex, vertex->sv
(-**- (+ sv 1)
(+ outs 1)
state)))
(vector-set! from-vertex sv #F)
(vector-set! edges
vertex
(cdr (vector-ref edges vertex)))
state)))))))))))))
; Given a vector which maps vertex to out-going-edge list,
; return a vector which gives reachability.
(define make-reach?
(lambda (size vertex->out)
(let ((res
(proc->vector size
(lambda (v)
(let ((from-v
(make-vector size #F)))
(vector-set! from-v v #T)
(for-each
(lambda (x)
(vector-set! from-v x #T))
(vector-ref vertex->out v))
from-v)))))
(gnatural-for-each size
(lambda (m)
(let ((from-m
(vector-ref res m)))
(gnatural-for-each size
(lambda (f)
(let ((from-f
(vector-ref res f)))
(if (vector-ref from-f m); [wdc - was when]
(begin
(gnatural-for-each size
(lambda (t)
(if (vector-ref from-m t)
(begin ; [wdc - was when]
(vector-set! from-f t #T)))))))))))))
res)))
;;; ==== test input ====
; Produces all directed graphs with N verticies, distinguished root,
; and out-degree bounded by 2, upto isomorphism (there are 44).
;(define go
; (let ((N 7))
; (fold-over-rdg N
; 2
; cons
; '())))

View file

@ -0,0 +1,219 @@
; This benchmark was obtained from Andrew Wright.
; 970215 / wdc Added lattice-benchmark.
; Given a comparison routine that returns one of
; less
; more
; equal
; uncomparable
; return a new comparison routine that applies to sequences.
(define lexico
(lambda (base)
(define lex-fixed
(lambda (fixed lhs rhs)
(define check
(lambda (lhs rhs)
(if (null? lhs)
fixed
(let ((probe
(base (car lhs)
(car rhs))))
(if (or (eq? probe 'equal)
(eq? probe fixed))
(check (cdr lhs)
(cdr rhs))
'uncomparable)))))
(check lhs rhs)))
(define lex-first
(lambda (lhs rhs)
(if (null? lhs)
'equal
(let ((probe
(base (car lhs)
(car rhs))))
(case probe
((less more)
(lex-fixed probe
(cdr lhs)
(cdr rhs)))
((equal)
(lex-first (cdr lhs)
(cdr rhs)))
((uncomparable)
'uncomparable))))))
lex-first))
(define (make-lattice elem-list cmp-func)
(cons elem-list cmp-func))
(define lattice->elements car)
(define lattice->cmp cdr)
; Select elements of a list which pass some test.
(define zulu-select
(lambda (test lst)
(define select-a
(lambda (ac lst)
(if (null? lst)
(reverse! ac)
(select-a
(let ((head (car lst)))
(if (test head)
(cons head ac)
ac))
(cdr lst)))))
(select-a '() lst)))
(define reverse!
(letrec ((rotate
(lambda (fo fum)
(let ((next (cdr fo)))
(set-cdr! fo fum)
(if (null? next)
fo
(rotate next fo))))))
(lambda (lst)
(if (null? lst)
'()
(rotate lst '())))))
; Select elements of a list which pass some test and map a function
; over the result. Note, only efficiency prevents this from being the
; composition of select and map.
(define select-map
(lambda (test func lst)
(define select-a
(lambda (ac lst)
(if (null? lst)
(reverse! ac)
(select-a
(let ((head (car lst)))
(if (test head)
(cons (func head)
ac)
ac))
(cdr lst)))))
(select-a '() lst)))
; This version of map-and tail-recurses on the last test.
(define map-and
(lambda (proc lst)
(if (null? lst)
#T
(letrec ((drudge
(lambda (lst)
(let ((rest (cdr lst)))
(if (null? rest)
(proc (car lst))
(and (proc (car lst))
(drudge rest)))))))
(drudge lst)))))
(define (maps-1 source target pas new)
(let ((scmp (lattice->cmp source))
(tcmp (lattice->cmp target)))
(let ((less
(select-map
(lambda (p)
(eq? 'less
(scmp (car p) new)))
cdr
pas))
(more
(select-map
(lambda (p)
(eq? 'more
(scmp (car p) new)))
cdr
pas)))
(zulu-select
(lambda (t)
(and
(map-and
(lambda (t2)
(memq (tcmp t2 t) '(less equal)))
less)
(map-and
(lambda (t2)
(memq (tcmp t2 t) '(more equal)))
more)))
(lattice->elements target)))))
(define (maps-rest source target pas rest to-1 to-collect)
(if (null? rest)
(to-1 pas)
(let ((next (car rest))
(rest (cdr rest)))
(to-collect
(map
(lambda (x)
(maps-rest source target
(cons
(cons next x)
pas)
rest
to-1
to-collect))
(maps-1 source target pas next))))))
(define (maps source target)
(make-lattice
(maps-rest source
target
'()
(lattice->elements source)
(lambda (x) (list (map cdr x)))
(lambda (x) (apply append x)))
(lexico (lattice->cmp target))))
(define print-frequency 10000)
(define (count-maps source target)
(let ((count 0))
(maps-rest source
target
'()
(lattice->elements source)
(lambda (x)
(set! count (+ count 1))
(if (= 0 (remainder count print-frequency))
(begin #f))
1)
(lambda (x) (apply + x)))))
(define (lattice-benchmark)
(run-benchmark "Lattice"
(lambda ()
(let* ((l2
(make-lattice '(low high)
(lambda (lhs rhs)
(case lhs
((low)
(case rhs
((low)
'equal)
((high)
'less)
(else
(error 'make-lattice "base" rhs))))
((high)
(case rhs
((low)
'more)
((high)
'equal)
(else
(error 'make-lattice "base" rhs))))
(else
(error 'make-lattice "base" lhs))))))
(l3 (maps l2 l2))
(l4 (maps l3 l3)))
(count-maps l2 l2)
(count-maps l3 l3)
(count-maps l2 l3)
(count-maps l3 l2)
(count-maps l4 l4)))))

View file

@ -0,0 +1,770 @@
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; File: nboyer.sch
; Description: The Boyer benchmark
; Author: Bob Boyer
; Created: 5-Apr-85
; Modified: 10-Apr-85 14:52:20 (Bob Shaw)
; 22-Jul-87 (Will Clinger)
; 2-Jul-88 (Will Clinger -- distinguished #f and the empty list)
; 13-Feb-97 (Will Clinger -- fixed bugs in unifier and rules,
; rewrote to eliminate property lists, and added
; a scaling parameter suggested by Bob Boyer)
; 19-Mar-99 (Will Clinger -- cleaned up comments)
; 4-Apr-01 (Will Clinger -- changed four 1- symbols to sub1)
; Language: Scheme
; Status: Public Domain
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; NBOYER -- Logic programming benchmark, originally written by Bob Boyer.
;;; Fairly CONS intensive.
; Note: The version of this benchmark that appears in Dick Gabriel's book
; contained several bugs that are corrected here. These bugs are discussed
; by Henry Baker, "The Boyer Benchmark Meets Linear Logic", ACM SIGPLAN Lisp
; Pointers 6(4), October-December 1993, pages 3-10. The fixed bugs are:
;
; The benchmark now returns a boolean result.
; FALSEP and TRUEP use TERM-MEMBER? rather than MEMV (which is called MEMBER
; in Common Lisp)
; ONE-WAY-UNIFY1 now treats numbers correctly
; ONE-WAY-UNIFY1-LST now treats empty lists correctly
; Rule 19 has been corrected (this rule was not touched by the original
; benchmark, but is used by this version)
; Rules 84 and 101 have been corrected (but these rules are never touched
; by the benchmark)
;
; According to Baker, these bug fixes make the benchmark 10-25% slower.
; Please do not compare the timings from this benchmark against those of
; the original benchmark.
;
; This version of the benchmark also prints the number of rewrites as a sanity
; check, because it is too easy for a buggy version to return the correct
; boolean result. The correct number of rewrites is
;
; n rewrites peak live storage (approximate, in bytes)
; 0 95024 520,000
; 1 591777 2,085,000
; 2 1813975 5,175,000
; 3 5375678
; 4 16445406
; 5 51507739
; Nboyer is a 2-phase benchmark.
; The first phase attaches lemmas to symbols. This phase is not timed,
; but it accounts for very little of the runtime anyway.
; The second phase creates the test problem, and tests to see
; whether it is implied by the lemmas.
(define (nboyer-benchmark . args)
(let ((n (if (null? args) 0 (car args))))
(setup-boyer)
(run-benchmark (string-append "nboyer"
(number->string n))
1
(lambda () (test-boyer n))
(lambda (rewrites)
(and (number? rewrites)
(case n
((0) (= rewrites 95024))
((1) (= rewrites 591777))
((2) (= rewrites 1813975))
((3) (= rewrites 5375678))
((4) (= rewrites 16445406))
((5) (= rewrites 51507739))
; If it works for n <= 5, assume it works.
(else #t)))))))
(define (setup-boyer) #t) ; assigned below
(define (test-boyer) #t) ; assigned below
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; The first phase.
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; In the original benchmark, it stored a list of lemmas on the
; property lists of symbols.
; In the new benchmark, it maintains an association list of
; symbols and symbol-records, and stores the list of lemmas
; within the symbol-records.
(let ()
(define (setup)
(add-lemma-lst
(quote ((equal (compile form)
(reverse (codegen (optimize form)
(nil))))
(equal (eqp x y)
(equal (fix x)
(fix y)))
(equal (greaterp x y)
(lessp y x))
(equal (lesseqp x y)
(not (lessp y x)))
(equal (greatereqp x y)
(not (lessp x y)))
(equal (boolean x)
(or (equal x (t))
(equal x (f))))
(equal (iff x y)
(and (implies x y)
(implies y x)))
(equal (even1 x)
(if (zerop x)
(t)
(odd (sub1 x))))
(equal (countps- l pred)
(countps-loop l pred (zero)))
(equal (fact- i)
(fact-loop i 1))
(equal (reverse- x)
(reverse-loop x (nil)))
(equal (divides x y)
(zerop (remainder y x)))
(equal (assume-true var alist)
(cons (cons var (t))
alist))
(equal (assume-false var alist)
(cons (cons var (f))
alist))
(equal (tautology-checker x)
(tautologyp (normalize x)
(nil)))
(equal (falsify x)
(falsify1 (normalize x)
(nil)))
(equal (prime x)
(and (not (zerop x))
(not (equal x (add1 (zero))))
(prime1 x (sub1 x))))
(equal (and p q)
(if p (if q (t)
(f))
(f)))
(equal (or p q)
(if p (t)
(if q (t)
(f))))
(equal (not p)
(if p (f)
(t)))
(equal (implies p q)
(if p (if q (t)
(f))
(t)))
(equal (fix x)
(if (numberp x)
x
(zero)))
(equal (if (if a b c)
d e)
(if a (if b d e)
(if c d e)))
(equal (zerop x)
(or (equal x (zero))
(not (numberp x))))
(equal (plus (plus x y)
z)
(plus x (plus y z)))
(equal (equal (plus a b)
(zero))
(and (zerop a)
(zerop b)))
(equal (difference x x)
(zero))
(equal (equal (plus a b)
(plus a c))
(equal (fix b)
(fix c)))
(equal (equal (zero)
(difference x y))
(not (lessp y x)))
(equal (equal x (difference x y))
(and (numberp x)
(or (equal x (zero))
(zerop y))))
(equal (meaning (plus-tree (append x y))
a)
(plus (meaning (plus-tree x)
a)
(meaning (plus-tree y)
a)))
(equal (meaning (plus-tree (plus-fringe x))
a)
(fix (meaning x a)))
(equal (append (append x y)
z)
(append x (append y z)))
(equal (reverse (append a b))
(append (reverse b)
(reverse a)))
(equal (times x (plus y z))
(plus (times x y)
(times x z)))
(equal (times (times x y)
z)
(times x (times y z)))
(equal (equal (times x y)
(zero))
(or (zerop x)
(zerop y)))
(equal (exec (append x y)
pds envrn)
(exec y (exec x pds envrn)
envrn))
(equal (mc-flatten x y)
(append (flatten x)
y))
(equal (member x (append a b))
(or (member x a)
(member x b)))
(equal (member x (reverse y))
(member x y))
(equal (length (reverse x))
(length x))
(equal (member a (intersect b c))
(and (member a b)
(member a c)))
(equal (nth (zero)
i)
(zero))
(equal (exp i (plus j k))
(times (exp i j)
(exp i k)))
(equal (exp i (times j k))
(exp (exp i j)
k))
(equal (reverse-loop x y)
(append (reverse x)
y))
(equal (reverse-loop x (nil))
(reverse x))
(equal (count-list z (sort-lp x y))
(plus (count-list z x)
(count-list z y)))
(equal (equal (append a b)
(append a c))
(equal b c))
(equal (plus (remainder x y)
(times y (quotient x y)))
(fix x))
(equal (power-eval (big-plus1 l i base)
base)
(plus (power-eval l base)
i))
(equal (power-eval (big-plus x y i base)
base)
(plus i (plus (power-eval x base)
(power-eval y base))))
(equal (remainder y 1)
(zero))
(equal (lessp (remainder x y)
y)
(not (zerop y)))
(equal (remainder x x)
(zero))
(equal (lessp (quotient i j)
i)
(and (not (zerop i))
(or (zerop j)
(not (equal j 1)))))
(equal (lessp (remainder x y)
x)
(and (not (zerop y))
(not (zerop x))
(not (lessp x y))))
(equal (power-eval (power-rep i base)
base)
(fix i))
(equal (power-eval (big-plus (power-rep i base)
(power-rep j base)
(zero)
base)
base)
(plus i j))
(equal (gcd x y)
(gcd y x))
(equal (nth (append a b)
i)
(append (nth a i)
(nth b (difference i (length a)))))
(equal (difference (plus x y)
x)
(fix y))
(equal (difference (plus y x)
x)
(fix y))
(equal (difference (plus x y)
(plus x z))
(difference y z))
(equal (times x (difference c w))
(difference (times c x)
(times w x)))
(equal (remainder (times x z)
z)
(zero))
(equal (difference (plus b (plus a c))
a)
(plus b c))
(equal (difference (add1 (plus y z))
z)
(add1 y))
(equal (lessp (plus x y)
(plus x z))
(lessp y z))
(equal (lessp (times x z)
(times y z))
(and (not (zerop z))
(lessp x y)))
(equal (lessp y (plus x y))
(not (zerop x)))
(equal (gcd (times x z)
(times y z))
(times z (gcd x y)))
(equal (value (normalize x)
a)
(value x a))
(equal (equal (flatten x)
(cons y (nil)))
(and (nlistp x)
(equal x y)))
(equal (listp (gopher x))
(listp x))
(equal (samefringe x y)
(equal (flatten x)
(flatten y)))
(equal (equal (greatest-factor x y)
(zero))
(and (or (zerop y)
(equal y 1))
(equal x (zero))))
(equal (equal (greatest-factor x y)
1)
(equal x 1))
(equal (numberp (greatest-factor x y))
(not (and (or (zerop y)
(equal y 1))
(not (numberp x)))))
(equal (times-list (append x y))
(times (times-list x)
(times-list y)))
(equal (prime-list (append x y))
(and (prime-list x)
(prime-list y)))
(equal (equal z (times w z))
(and (numberp z)
(or (equal z (zero))
(equal w 1))))
(equal (greatereqp x y)
(not (lessp x y)))
(equal (equal x (times x y))
(or (equal x (zero))
(and (numberp x)
(equal y 1))))
(equal (remainder (times y x)
y)
(zero))
(equal (equal (times a b)
1)
(and (not (equal a (zero)))
(not (equal b (zero)))
(numberp a)
(numberp b)
(equal (sub1 a)
(zero))
(equal (sub1 b)
(zero))))
(equal (lessp (length (delete x l))
(length l))
(member x l))
(equal (sort2 (delete x l))
(delete x (sort2 l)))
(equal (dsort x)
(sort2 x))
(equal (length (cons x1
(cons x2
(cons x3 (cons x4
(cons x5
(cons x6 x7)))))))
(plus 6 (length x7)))
(equal (difference (add1 (add1 x))
2)
(fix x))
(equal (quotient (plus x (plus x y))
2)
(plus x (quotient y 2)))
(equal (sigma (zero)
i)
(quotient (times i (add1 i))
2))
(equal (plus x (add1 y))
(if (numberp y)
(add1 (plus x y))
(add1 x)))
(equal (equal (difference x y)
(difference z y))
(if (lessp x y)
(not (lessp y z))
(if (lessp z y)
(not (lessp y x))
(equal (fix x)
(fix z)))))
(equal (meaning (plus-tree (delete x y))
a)
(if (member x y)
(difference (meaning (plus-tree y)
a)
(meaning x a))
(meaning (plus-tree y)
a)))
(equal (times x (add1 y))
(if (numberp y)
(plus x (times x y))
(fix x)))
(equal (nth (nil)
i)
(if (zerop i)
(nil)
(zero)))
(equal (last (append a b))
(if (listp b)
(last b)
(if (listp a)
(cons (car (last a))
b)
b)))
(equal (equal (lessp x y)
z)
(if (lessp x y)
(equal (t) z)
(equal (f) z)))
(equal (assignment x (append a b))
(if (assignedp x a)
(assignment x a)
(assignment x b)))
(equal (car (gopher x))
(if (listp x)
(car (flatten x))
(zero)))
(equal (flatten (cdr (gopher x)))
(if (listp x)
(cdr (flatten x))
(cons (zero)
(nil))))
(equal (quotient (times y x)
y)
(if (zerop y)
(zero)
(fix x)))
(equal (get j (set i val mem))
(if (eqp j i)
val
(get j mem)))))))
(define (add-lemma-lst lst)
(cond ((null? lst)
#t)
(else (add-lemma (car lst))
(add-lemma-lst (cdr lst)))))
(define (add-lemma term)
(cond ((and (pair? term)
(eq? (car term)
(quote equal))
(pair? (cadr term)))
(put (car (cadr term))
(quote lemmas)
(cons
(translate-term term)
(get (car (cadr term)) (quote lemmas)))))
(else (error "ADD-LEMMA did not like term: " term))))
; Translates a term by replacing its constructor symbols by symbol-records.
(define (translate-term term)
(cond ((not (pair? term))
term)
(else (cons (symbol->symbol-record (car term))
(translate-args (cdr term))))))
(define (translate-args lst)
(cond ((null? lst)
'())
(else (cons (translate-term (car lst))
(translate-args (cdr lst))))))
; For debugging only, so the use of MAP does not change
; the first-order character of the benchmark.
(define (untranslate-term term)
(cond ((not (pair? term))
term)
(else (cons (get-name (car term))
(map untranslate-term (cdr term))))))
; A symbol-record is represented as a vector with two fields:
; the symbol (for debugging) and
; the list of lemmas associated with the symbol.
(define (put sym property value)
(put-lemmas! (symbol->symbol-record sym) value))
(define (get sym property)
(get-lemmas (symbol->symbol-record sym)))
(define (symbol->symbol-record sym)
(let ((x (assq sym *symbol-records-alist*)))
(if x
(cdr x)
(let ((r (make-symbol-record sym)))
(set! *symbol-records-alist*
(cons (cons sym r)
*symbol-records-alist*))
r))))
; Association list of symbols and symbol-records.
(define *symbol-records-alist* '())
; A symbol-record is represented as a vector with two fields:
; the symbol (for debugging) and
; the list of lemmas associated with the symbol.
(define (make-symbol-record sym)
(vector sym '()))
(define (put-lemmas! symbol-record lemmas)
(vector-set! symbol-record 1 lemmas))
(define (get-lemmas symbol-record)
(vector-ref symbol-record 1))
(define (get-name symbol-record)
(vector-ref symbol-record 0))
(define (symbol-record-equal? r1 r2)
(eq? r1 r2))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; The second phase.
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define (test n)
(let ((term
(apply-subst
(translate-alist
(quote ((x f (plus (plus a b)
(plus c (zero))))
(y f (times (times a b)
(plus c d)))
(z f (reverse (append (append a b)
(nil))))
(u equal (plus a b)
(difference x y))
(w lessp (remainder a b)
(member a (length b))))))
(translate-term
(do ((term
(quote (implies (and (implies x y)
(and (implies y z)
(and (implies z u)
(implies u w))))
(implies x w)))
(list 'or term '(f)))
(n n (- n 1)))
((zero? n) term))))))
(tautp term)))
(define (translate-alist alist)
(cond ((null? alist)
'())
(else (cons (cons (caar alist)
(translate-term (cdar alist)))
(translate-alist (cdr alist))))))
(define (apply-subst alist term)
(cond ((not (pair? term))
(let ((temp-temp (assq term alist)))
(if temp-temp
(cdr temp-temp)
term)))
(else (cons (car term)
(apply-subst-lst alist (cdr term))))))
(define (apply-subst-lst alist lst)
(cond ((null? lst)
'())
(else (cons (apply-subst alist (car lst))
(apply-subst-lst alist (cdr lst))))))
(define (tautp x)
(tautologyp (rewrite x)
'() '()))
(define (tautologyp x true-lst false-lst)
(cond ((truep x true-lst)
#t)
((falsep x false-lst)
#f)
((not (pair? x))
#f)
((eq? (car x) if-constructor)
(cond ((truep (cadr x)
true-lst)
(tautologyp (caddr x)
true-lst false-lst))
((falsep (cadr x)
false-lst)
(tautologyp (cadddr x)
true-lst false-lst))
(else (and (tautologyp (caddr x)
(cons (cadr x)
true-lst)
false-lst)
(tautologyp (cadddr x)
true-lst
(cons (cadr x)
false-lst))))))
(else #f)))
(define if-constructor '*) ; becomes (symbol->symbol-record 'if)
(define rewrite-count 0) ; sanity check
(define (rewrite term)
(set! rewrite-count (+ rewrite-count 1))
(cond ((not (pair? term))
term)
(else (rewrite-with-lemmas (cons (car term)
(rewrite-args (cdr term)))
(get-lemmas (car term))))))
(define (rewrite-args lst)
(cond ((null? lst)
'())
(else (cons (rewrite (car lst))
(rewrite-args (cdr lst))))))
(define (rewrite-with-lemmas term lst)
(cond ((null? lst)
term)
((one-way-unify term (cadr (car lst)))
(rewrite (apply-subst unify-subst (caddr (car lst)))))
(else (rewrite-with-lemmas term (cdr lst)))))
(define unify-subst '*)
(define (one-way-unify term1 term2)
(begin (set! unify-subst '())
(one-way-unify1 term1 term2)))
(define (one-way-unify1 term1 term2)
(cond ((not (pair? term2))
(let ((temp-temp (assq term2 unify-subst)))
(cond (temp-temp
(term-equal? term1 (cdr temp-temp)))
((number? term2) ; This bug fix makes
(equal? term1 term2)) ; nboyer 10-25% slower!
(else
(set! unify-subst (cons (cons term2 term1)
unify-subst))
#t))))
((not (pair? term1))
#f)
((eq? (car term1)
(car term2))
(one-way-unify1-lst (cdr term1)
(cdr term2)))
(else #f)))
(define (one-way-unify1-lst lst1 lst2)
(cond ((null? lst1)
(null? lst2))
((null? lst2)
#f)
((one-way-unify1 (car lst1)
(car lst2))
(one-way-unify1-lst (cdr lst1)
(cdr lst2)))
(else #f)))
(define (falsep x lst)
(or (term-equal? x false-term)
(term-member? x lst)))
(define (truep x lst)
(or (term-equal? x true-term)
(term-member? x lst)))
(define false-term '*) ; becomes (translate-term '(f))
(define true-term '*) ; becomes (translate-term '(t))
; The next two procedures were in the original benchmark
; but were never used.
(define (trans-of-implies n)
(translate-term
(list (quote implies)
(trans-of-implies1 n)
(list (quote implies)
0 n))))
(define (trans-of-implies1 n)
(cond ((equal? n 1)
(list (quote implies)
0 1))
(else (list (quote and)
(list (quote implies)
(- n 1)
n)
(trans-of-implies1 (- n 1))))))
; Translated terms can be circular structures, which can't be
; compared using Scheme's equal? and member procedures, so we
; use these instead.
(define (term-equal? x y)
(cond ((pair? x)
(and (pair? y)
(symbol-record-equal? (car x) (car y))
(term-args-equal? (cdr x) (cdr y))))
(else (equal? x y))))
(define (term-args-equal? lst1 lst2)
(cond ((null? lst1)
(null? lst2))
((null? lst2)
#f)
((term-equal? (car lst1) (car lst2))
(term-args-equal? (cdr lst1) (cdr lst2)))
(else #f)))
(define (term-member? x lst)
(cond ((null? lst)
#f)
((term-equal? x (car lst))
#t)
(else (term-member? x (cdr lst)))))
(set! setup-boyer
(lambda ()
(set! *symbol-records-alist* '())
(set! if-constructor (symbol->symbol-record 'if))
(set! false-term (translate-term '(f)))
(set! true-term (translate-term '(t)))
(setup)))
(set! test-boyer
(lambda (n)
(set! rewrite-count 0)
(let ((answer (test n)))
(write rewrite-count)
(display " rewrites")
(newline)
(if answer
rewrite-count
#f)))))

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,324 @@
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; File: perm9.sch
; Description: memory system benchmark using Zaks's permutation generator
; Author: Lars Hansen, Will Clinger, and Gene Luks
; Created: 18-Mar-94
; Language: Scheme
; Status: Public Domain
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; 940720 / lth Added some more benchmarks for the thesis paper.
; 970215 / wdc Increased problem size from 8 to 9; improved tenperm9-benchmark.
; 970531 / wdc Cleaned up for public release.
; 000820 / wdc Added the MpermNKL benchmark; revised for new run-benchmark.
; This benchmark is in four parts. Each tests a different aspect of
; the memory system.
;
; perm storage allocation
; 10perm storage allocation and garbage collection
; sumperms traversal of a large, linked, self-sharing structure
; mergesort! side effects and write barrier
;
; The perm9 benchmark generates a list of all 362880 permutations of
; the first 9 integers, allocating 1349288 pairs (typically 10,794,304
; bytes), all of which goes into the generated list. (That is, the
; perm9 benchmark generates absolutely no garbage.) This represents
; a savings of about 63% over the storage that would be required by
; an unshared list of permutations. The generated permutations are
; in order of a grey code that bears no obvious relationship to a
; lexicographic order.
;
; The 10perm9 benchmark repeats the perm9 benchmark 10 times, so it
; allocates and reclaims 13492880 pairs (typically 107,943,040 bytes).
; The live storage peaks at twice the storage that is allocated by the
; perm9 benchmark. At the end of each iteration, the oldest half of
; the live storage becomes garbage. Object lifetimes are distributed
; uniformly between 10.3 and 20.6 megabytes.
;
; The 10perm9 benchmark is the 10perm9:2:1 special case of the
; MpermNKL benchmark, which allocates a queue of size K and then
; performs M iterations of the following operation: Fill the queue
; with individually computed copies of all permutations of a list of
; size N, and then remove the oldest L copies from the queue. At the
; end of each iteration, the oldest L/K of the live storage becomes
; garbage, and object lifetimes are distributed uniformly between two
; volumes that depend upon N, K, and L.
;
; The sumperms benchmark computes the sum of the permuted integers
; over all permutations.
;
; The mergesort! benchmark destructively sorts the generated permutations
; into lexicographic order, allocating no storage whatsoever.
;
; The benchmarks are run by calling the following procedures:
;
; (perm-benchmark n)
; (tenperm-benchmark n)
; (sumperms-benchmark n)
; (mergesort-benchmark n)
;
; The argument n may be omitted, in which case it defaults to 9.
;
; These benchmarks assume that
;
; (RUN-BENCHMARK <string> <thunk> <count>)
; (RUN-BENCHMARK <string> <count> <thunk> <predicate>)
;
; reports the time required to call <thunk> the number of times
; specified by <count>, and uses <predicate> to test whether the
; result returned by <thunk> is correct.
; Date: Thu, 17 Mar 94 19:43:32 -0800
; From: luks@sisters.cs.uoregon.edu
; To: will
; Subject: Pancake flips
;
; Procedure P_n generates a grey code of all perms of n elements
; on top of stack ending with reversal of starting sequence
;
; F_n is flip of top n elements.
;
;
; procedure P_n
;
; if n>1 then
; begin
; repeat P_{n-1},F_n n-1 times;
; P_{n-1}
; end
;
(define (permutations x)
(let ((x x)
(perms (list x)))
(define (P n)
(if (> n 1)
(do ((j (- n 1) (- j 1)))
((zero? j)
(P (- n 1)))
(P (- n 1))
(F n))))
(define (F n)
(set! x (revloop x n (list-tail x n)))
(set! perms (cons x perms)))
(define (revloop x n y)
(if (zero? n)
y
(revloop (cdr x)
(- n 1)
(cons (car x) y))))
(define (list-tail x n)
(if (zero? n)
x
(list-tail (cdr x) (- n 1))))
(P (length x))
perms))
; Given a list of lists of numbers, returns the sum of the sums
; of those lists.
;
; for (; x != NULL; x = x->rest)
; for (y = x->first; y != NULL; y = y->rest)
; sum = sum + y->first;
(define (sumlists x)
(do ((x x (cdr x))
(sum 0 (do ((y (car x) (cdr y))
(sum sum (+ sum (car y))))
((null? y) sum))))
((null? x) sum)))
; Destructive merge of two sorted lists.
; From Hansen's MS thesis.
(define (merge!! a b less?)
(define (loop r a b)
(if (less? (car b) (car a))
(begin (set-cdr! r b)
(if (null? (cdr b))
(set-cdr! b a)
(loop b a (cdr b)) ))
;; (car a) <= (car b)
(begin (set-cdr! r a)
(if (null? (cdr a))
(set-cdr! a b)
(loop a (cdr a) b)) )) )
(cond ((null? a) b)
((null? b) a)
((less? (car b) (car a))
(if (null? (cdr b))
(set-cdr! b a)
(loop b a (cdr b)))
b)
(else ; (car a) <= (car b)
(if (null? (cdr a))
(set-cdr! a b)
(loop a (cdr a) b))
a)))
;; Stable sort procedure which copies the input list and then sorts
;; the new list imperatively. On the systems we have benchmarked,
;; this generic list sort has been at least as fast and usually much
;; faster than the library's sort routine.
;; Due to Richard O'Keefe; algorithm attributed to D.H.D. Warren.
(define (sort!! seq less?)
(define (step n)
(cond ((> n 2)
(let* ((j (quotient n 2))
(a (step j))
(k (- n j))
(b (step k)))
(merge!! a b less?)))
((= n 2)
(let ((x (car seq))
(y (cadr seq))
(p seq))
(set! seq (cddr seq))
(if (less? y x)
(begin
(set-car! p y)
(set-car! (cdr p) x)))
(set-cdr! (cdr p) '())
p))
((= n 1)
(let ((p seq))
(set! seq (cdr seq))
(set-cdr! p '())
p))
(else
'())))
(step (length seq)))
(define lexicographically-less?
(lambda (x y)
(define (lexicographically-less? x y)
(cond ((null? x) (not (null? y)))
((null? y) #f)
((< (car x) (car y)) #t)
((= (car x) (car y))
(lexicographically-less? (cdr x) (cdr y)))
(else #f)))
(lexicographically-less? x y)))
; This procedure isn't used by the benchmarks,
; but is provided as a public service.
(define (internally-imperative-mergesort list less?)
(define (list-copy l)
(define (loop l prev)
(if (null? l)
#t
(let ((q (cons (car l) '())))
(set-cdr! prev q)
(loop (cdr l) q))))
(if (null? l)
l
(let ((first (cons (car l) '())))
(loop (cdr l) first)
first)))
(sort!! (list-copy list) less?))
(define *perms* '())
(define (one..n n)
(do ((n n (- n 1))
(p '() (cons n p)))
((zero? n) p)))
(define (perm-benchmark . rest)
(let ((n (if (null? rest) 9 (car rest))))
(set! *perms* '())
(run-benchmark (string-append "Perm" (number->string n))
1
(lambda ()
(set! *perms* (permutations (one..n n)))
#t)
(lambda (x) #t))))
(define (tenperm-benchmark . rest)
(let ((n (if (null? rest) 9 (car rest))))
(set! *perms* '())
(MpermNKL-benchmark 10 n 2 1)))
(define (MpermNKL-benchmark m n k ell)
(if (and (<= 0 m)
(positive? n)
(positive? k)
(<= 0 ell k))
(let ((id (string-append (number->string m)
"perm"
(number->string n)
":"
(number->string k)
":"
(number->string ell)))
(queue (make-vector k '())))
; Fills queue positions [i, j).
(define (fill-queue i j)
(if (< i j)
(begin (vector-set! queue i (permutations (one..n n)))
(fill-queue (+ i 1) j))))
; Removes ell elements from queue.
(define (flush-queue)
(let loop ((i 0))
(if (< i k)
(begin (vector-set! queue
i
(let ((j (+ i ell)))
(if (< j k)
(vector-ref queue j)
'())))
(loop (+ i 1))))))
(fill-queue 0 (- k ell))
(run-benchmark id
m
(lambda ()
(fill-queue (- k ell) k)
(flush-queue)
queue)
(lambda (q)
(let ((q0 (vector-ref q 0))
(qi (vector-ref q (max 0 (- k ell 1)))))
(or (and (null? q0) (null? qi))
(and (pair? q0)
(pair? qi)
(equal? (car q0) (car qi))))))))
(begin (display "Incorrect arguments to MpermNKL-benchmark")
(newline))))
(define (sumperms-benchmark . rest)
(let ((n (if (null? rest) 9 (car rest))))
(if (or (null? *perms*)
(not (= n (length (car *perms*)))))
(set! *perms* (permutations (one..n n))))
(run-benchmark (string-append "Sumperms" (number->string n))
1
(lambda ()
(sumlists *perms*))
(lambda (x) #t))))
(define (mergesort-benchmark . rest)
(let ((n (if (null? rest) 9 (car rest))))
(if (or (null? *perms*)
(not (= n (length (car *perms*)))))
(set! *perms* (permutations (one..n n))))
(run-benchmark (string-append "Mergesort!" (number->string n))
1
(lambda ()
(sort!! *perms* lexicographically-less?)
#t)
(lambda (x) #t))))

View file

@ -0,0 +1,50 @@
;;; Gambit-style run-benchmark.
;;;
;;; Invoke this procedure to run a benchmark.
;;; The first argument is a string identifying the benchmark.
;;; The second argument is the number of times to run the benchmark.
;;; The third argument is a thunk that runs the benchmark.
;;; The fourth argument is a unary predicate that warns if the result
;;; returned by the benchmark is incorrect.
;;;
;;; Example:
;;; (run-benchmark "make-vector"
;;; 1
;;; (lambda () (make-vector 1000000))
;;; (lambda (v) (and (vector? v) (= (vector-length v) #e1e6))))
;;; For backward compatibility, this procedure also works with the
;;; arguments that we once used to run benchmarks in Larceny.
(define (run-benchmark name arg2 . rest)
(let* ((old-style (procedure? arg2))
(thunk (if old-style arg2 (car rest)))
(n (if old-style
(if (null? rest) 1 (car rest))
arg2))
(ok? (if (or old-style (null? (cdr rest)))
(lambda (result) #t)
(cadr rest)))
(result '*))
(define (loop n)
(cond ((zero? n) #t)
((= n 1)
(set! result (thunk)))
(else
(thunk)
(loop (- n 1)))))
(if old-style
(begin (newline)
(display "Warning: Using old-style run-benchmark")
(newline)))
(newline)
(display "--------------------------------------------------------")
(newline)
(display name)
(newline)
; time is a macro supplied by Chez Scheme
(time (loop n))
(if (not (ok? result))
(begin (display "Error: Benchmark program returned wrong result: ")
(write result)
(newline)))))

View file

@ -0,0 +1,784 @@
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; File: sboyer.sch
; Description: The Boyer benchmark
; Author: Bob Boyer
; Created: 5-Apr-85
; Modified: 10-Apr-85 14:52:20 (Bob Shaw)
; 22-Jul-87 (Will Clinger)
; 2-Jul-88 (Will Clinger -- distinguished #f and the empty list)
; 13-Feb-97 (Will Clinger -- fixed bugs in unifier and rules,
; rewrote to eliminate property lists, and added
; a scaling parameter suggested by Bob Boyer)
; 19-Mar-99 (Will Clinger -- cleaned up comments)
; 4-Apr-01 (Will Clinger -- changed four 1- symbols to sub1)
; Language: Scheme
; Status: Public Domain
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; SBOYER -- Logic programming benchmark, originally written by Bob Boyer.
;;; Much less CONS-intensive than NBOYER because it uses Henry Baker's
;;; "sharing cons".
; Note: The version of this benchmark that appears in Dick Gabriel's book
; contained several bugs that are corrected here. These bugs are discussed
; by Henry Baker, "The Boyer Benchmark Meets Linear Logic", ACM SIGPLAN Lisp
; Pointers 6(4), October-December 1993, pages 3-10. The fixed bugs are:
;
; The benchmark now returns a boolean result.
; FALSEP and TRUEP use TERM-MEMBER? rather than MEMV (which is called MEMBER
; in Common Lisp)
; ONE-WAY-UNIFY1 now treats numbers correctly
; ONE-WAY-UNIFY1-LST now treats empty lists correctly
; Rule 19 has been corrected (this rule was not touched by the original
; benchmark, but is used by this version)
; Rules 84 and 101 have been corrected (but these rules are never touched
; by the benchmark)
;
; According to Baker, these bug fixes make the benchmark 10-25% slower.
; Please do not compare the timings from this benchmark against those of
; the original benchmark.
;
; This version of the benchmark also prints the number of rewrites as a sanity
; check, because it is too easy for a buggy version to return the correct
; boolean result. The correct number of rewrites is
;
; n rewrites peak live storage (approximate, in bytes)
; 0 95024
; 1 591777
; 2 1813975
; 3 5375678
; 4 16445406
; 5 51507739
; Sboyer is a 2-phase benchmark.
; The first phase attaches lemmas to symbols. This phase is not timed,
; but it accounts for very little of the runtime anyway.
; The second phase creates the test problem, and tests to see
; whether it is implied by the lemmas.
(define (sboyer-benchmark . args)
(let ((n (if (null? args) 0 (car args))))
(setup-boyer)
(run-benchmark (string-append "sboyer"
(number->string n))
1
(lambda () (test-boyer n))
(lambda (rewrites)
(and (number? rewrites)
(case n
((0) (= rewrites 95024))
((1) (= rewrites 591777))
((2) (= rewrites 1813975))
((3) (= rewrites 5375678))
((4) (= rewrites 16445406))
((5) (= rewrites 51507739))
; If it works for n <= 5, assume it works.
(else #t)))))))
(define (setup-boyer) #t) ; assigned below
(define (test-boyer) #t) ; assigned below
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; The first phase.
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; In the original benchmark, it stored a list of lemmas on the
; property lists of symbols.
; In the new benchmark, it maintains an association list of
; symbols and symbol-records, and stores the list of lemmas
; within the symbol-records.
(let ()
(define (setup)
(add-lemma-lst
(quote ((equal (compile form)
(reverse (codegen (optimize form)
(nil))))
(equal (eqp x y)
(equal (fix x)
(fix y)))
(equal (greaterp x y)
(lessp y x))
(equal (lesseqp x y)
(not (lessp y x)))
(equal (greatereqp x y)
(not (lessp x y)))
(equal (boolean x)
(or (equal x (t))
(equal x (f))))
(equal (iff x y)
(and (implies x y)
(implies y x)))
(equal (even1 x)
(if (zerop x)
(t)
(odd (sub1 x))))
(equal (countps- l pred)
(countps-loop l pred (zero)))
(equal (fact- i)
(fact-loop i 1))
(equal (reverse- x)
(reverse-loop x (nil)))
(equal (divides x y)
(zerop (remainder y x)))
(equal (assume-true var alist)
(cons (cons var (t))
alist))
(equal (assume-false var alist)
(cons (cons var (f))
alist))
(equal (tautology-checker x)
(tautologyp (normalize x)
(nil)))
(equal (falsify x)
(falsify1 (normalize x)
(nil)))
(equal (prime x)
(and (not (zerop x))
(not (equal x (add1 (zero))))
(prime1 x (sub1 x))))
(equal (and p q)
(if p (if q (t)
(f))
(f)))
(equal (or p q)
(if p (t)
(if q (t)
(f))))
(equal (not p)
(if p (f)
(t)))
(equal (implies p q)
(if p (if q (t)
(f))
(t)))
(equal (fix x)
(if (numberp x)
x
(zero)))
(equal (if (if a b c)
d e)
(if a (if b d e)
(if c d e)))
(equal (zerop x)
(or (equal x (zero))
(not (numberp x))))
(equal (plus (plus x y)
z)
(plus x (plus y z)))
(equal (equal (plus a b)
(zero))
(and (zerop a)
(zerop b)))
(equal (difference x x)
(zero))
(equal (equal (plus a b)
(plus a c))
(equal (fix b)
(fix c)))
(equal (equal (zero)
(difference x y))
(not (lessp y x)))
(equal (equal x (difference x y))
(and (numberp x)
(or (equal x (zero))
(zerop y))))
(equal (meaning (plus-tree (append x y))
a)
(plus (meaning (plus-tree x)
a)
(meaning (plus-tree y)
a)))
(equal (meaning (plus-tree (plus-fringe x))
a)
(fix (meaning x a)))
(equal (append (append x y)
z)
(append x (append y z)))
(equal (reverse (append a b))
(append (reverse b)
(reverse a)))
(equal (times x (plus y z))
(plus (times x y)
(times x z)))
(equal (times (times x y)
z)
(times x (times y z)))
(equal (equal (times x y)
(zero))
(or (zerop x)
(zerop y)))
(equal (exec (append x y)
pds envrn)
(exec y (exec x pds envrn)
envrn))
(equal (mc-flatten x y)
(append (flatten x)
y))
(equal (member x (append a b))
(or (member x a)
(member x b)))
(equal (member x (reverse y))
(member x y))
(equal (length (reverse x))
(length x))
(equal (member a (intersect b c))
(and (member a b)
(member a c)))
(equal (nth (zero)
i)
(zero))
(equal (exp i (plus j k))
(times (exp i j)
(exp i k)))
(equal (exp i (times j k))
(exp (exp i j)
k))
(equal (reverse-loop x y)
(append (reverse x)
y))
(equal (reverse-loop x (nil))
(reverse x))
(equal (count-list z (sort-lp x y))
(plus (count-list z x)
(count-list z y)))
(equal (equal (append a b)
(append a c))
(equal b c))
(equal (plus (remainder x y)
(times y (quotient x y)))
(fix x))
(equal (power-eval (big-plus1 l i base)
base)
(plus (power-eval l base)
i))
(equal (power-eval (big-plus x y i base)
base)
(plus i (plus (power-eval x base)
(power-eval y base))))
(equal (remainder y 1)
(zero))
(equal (lessp (remainder x y)
y)
(not (zerop y)))
(equal (remainder x x)
(zero))
(equal (lessp (quotient i j)
i)
(and (not (zerop i))
(or (zerop j)
(not (equal j 1)))))
(equal (lessp (remainder x y)
x)
(and (not (zerop y))
(not (zerop x))
(not (lessp x y))))
(equal (power-eval (power-rep i base)
base)
(fix i))
(equal (power-eval (big-plus (power-rep i base)
(power-rep j base)
(zero)
base)
base)
(plus i j))
(equal (gcd x y)
(gcd y x))
(equal (nth (append a b)
i)
(append (nth a i)
(nth b (difference i (length a)))))
(equal (difference (plus x y)
x)
(fix y))
(equal (difference (plus y x)
x)
(fix y))
(equal (difference (plus x y)
(plus x z))
(difference y z))
(equal (times x (difference c w))
(difference (times c x)
(times w x)))
(equal (remainder (times x z)
z)
(zero))
(equal (difference (plus b (plus a c))
a)
(plus b c))
(equal (difference (add1 (plus y z))
z)
(add1 y))
(equal (lessp (plus x y)
(plus x z))
(lessp y z))
(equal (lessp (times x z)
(times y z))
(and (not (zerop z))
(lessp x y)))
(equal (lessp y (plus x y))
(not (zerop x)))
(equal (gcd (times x z)
(times y z))
(times z (gcd x y)))
(equal (value (normalize x)
a)
(value x a))
(equal (equal (flatten x)
(cons y (nil)))
(and (nlistp x)
(equal x y)))
(equal (listp (gopher x))
(listp x))
(equal (samefringe x y)
(equal (flatten x)
(flatten y)))
(equal (equal (greatest-factor x y)
(zero))
(and (or (zerop y)
(equal y 1))
(equal x (zero))))
(equal (equal (greatest-factor x y)
1)
(equal x 1))
(equal (numberp (greatest-factor x y))
(not (and (or (zerop y)
(equal y 1))
(not (numberp x)))))
(equal (times-list (append x y))
(times (times-list x)
(times-list y)))
(equal (prime-list (append x y))
(and (prime-list x)
(prime-list y)))
(equal (equal z (times w z))
(and (numberp z)
(or (equal z (zero))
(equal w 1))))
(equal (greatereqp x y)
(not (lessp x y)))
(equal (equal x (times x y))
(or (equal x (zero))
(and (numberp x)
(equal y 1))))
(equal (remainder (times y x)
y)
(zero))
(equal (equal (times a b)
1)
(and (not (equal a (zero)))
(not (equal b (zero)))
(numberp a)
(numberp b)
(equal (sub1 a)
(zero))
(equal (sub1 b)
(zero))))
(equal (lessp (length (delete x l))
(length l))
(member x l))
(equal (sort2 (delete x l))
(delete x (sort2 l)))
(equal (dsort x)
(sort2 x))
(equal (length (cons x1
(cons x2
(cons x3 (cons x4
(cons x5
(cons x6 x7)))))))
(plus 6 (length x7)))
(equal (difference (add1 (add1 x))
2)
(fix x))
(equal (quotient (plus x (plus x y))
2)
(plus x (quotient y 2)))
(equal (sigma (zero)
i)
(quotient (times i (add1 i))
2))
(equal (plus x (add1 y))
(if (numberp y)
(add1 (plus x y))
(add1 x)))
(equal (equal (difference x y)
(difference z y))
(if (lessp x y)
(not (lessp y z))
(if (lessp z y)
(not (lessp y x))
(equal (fix x)
(fix z)))))
(equal (meaning (plus-tree (delete x y))
a)
(if (member x y)
(difference (meaning (plus-tree y)
a)
(meaning x a))
(meaning (plus-tree y)
a)))
(equal (times x (add1 y))
(if (numberp y)
(plus x (times x y))
(fix x)))
(equal (nth (nil)
i)
(if (zerop i)
(nil)
(zero)))
(equal (last (append a b))
(if (listp b)
(last b)
(if (listp a)
(cons (car (last a))
b)
b)))
(equal (equal (lessp x y)
z)
(if (lessp x y)
(equal (t) z)
(equal (f) z)))
(equal (assignment x (append a b))
(if (assignedp x a)
(assignment x a)
(assignment x b)))
(equal (car (gopher x))
(if (listp x)
(car (flatten x))
(zero)))
(equal (flatten (cdr (gopher x)))
(if (listp x)
(cdr (flatten x))
(cons (zero)
(nil))))
(equal (quotient (times y x)
y)
(if (zerop y)
(zero)
(fix x)))
(equal (get j (set i val mem))
(if (eqp j i)
val
(get j mem)))))))
(define (add-lemma-lst lst)
(cond ((null? lst)
#t)
(else (add-lemma (car lst))
(add-lemma-lst (cdr lst)))))
(define (add-lemma term)
(cond ((and (pair? term)
(eq? (car term)
(quote equal))
(pair? (cadr term)))
(put (car (cadr term))
(quote lemmas)
(cons
(translate-term term)
(get (car (cadr term)) (quote lemmas)))))
(else (error "ADD-LEMMA did not like term: " term))))
; Translates a term by replacing its constructor symbols by symbol-records.
(define (translate-term term)
(cond ((not (pair? term))
term)
(else (cons (symbol->symbol-record (car term))
(translate-args (cdr term))))))
(define (translate-args lst)
(cond ((null? lst)
'())
(else (cons (translate-term (car lst))
(translate-args (cdr lst))))))
; For debugging only, so the use of MAP does not change
; the first-order character of the benchmark.
(define (untranslate-term term)
(cond ((not (pair? term))
term)
(else (cons (get-name (car term))
(map untranslate-term (cdr term))))))
; A symbol-record is represented as a vector with two fields:
; the symbol (for debugging) and
; the list of lemmas associated with the symbol.
(define (put sym property value)
(put-lemmas! (symbol->symbol-record sym) value))
(define (get sym property)
(get-lemmas (symbol->symbol-record sym)))
(define (symbol->symbol-record sym)
(let ((x (assq sym *symbol-records-alist*)))
(if x
(cdr x)
(let ((r (make-symbol-record sym)))
(set! *symbol-records-alist*
(cons (cons sym r)
*symbol-records-alist*))
r))))
; Association list of symbols and symbol-records.
(define *symbol-records-alist* '())
; A symbol-record is represented as a vector with two fields:
; the symbol (for debugging) and
; the list of lemmas associated with the symbol.
(define (make-symbol-record sym)
(vector sym '()))
(define (put-lemmas! symbol-record lemmas)
(vector-set! symbol-record 1 lemmas))
(define (get-lemmas symbol-record)
(vector-ref symbol-record 1))
(define (get-name symbol-record)
(vector-ref symbol-record 0))
(define (symbol-record-equal? r1 r2)
(eq? r1 r2))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; The second phase.
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define (test n)
(let ((term
(apply-subst
(translate-alist
(quote ((x f (plus (plus a b)
(plus c (zero))))
(y f (times (times a b)
(plus c d)))
(z f (reverse (append (append a b)
(nil))))
(u equal (plus a b)
(difference x y))
(w lessp (remainder a b)
(member a (length b))))))
(translate-term
(do ((term
(quote (implies (and (implies x y)
(and (implies y z)
(and (implies z u)
(implies u w))))
(implies x w)))
(list 'or term '(f)))
(n n (- n 1)))
((zero? n) term))))))
(tautp term)))
(define (translate-alist alist)
(cond ((null? alist)
'())
(else (cons (cons (caar alist)
(translate-term (cdar alist)))
(translate-alist (cdr alist))))))
(define (apply-subst alist term)
(cond ((not (pair? term))
(let ((temp-temp (assq term alist)))
(if temp-temp
(cdr temp-temp)
term)))
(else (cons (car term)
(apply-subst-lst alist (cdr term))))))
(define (apply-subst-lst alist lst)
(cond ((null? lst)
'())
(else (cons (apply-subst alist (car lst))
(apply-subst-lst alist (cdr lst))))))
(define (tautp x)
(tautologyp (rewrite x)
'() '()))
(define (tautologyp x true-lst false-lst)
(cond ((truep x true-lst)
#t)
((falsep x false-lst)
#f)
((not (pair? x))
#f)
((eq? (car x) if-constructor)
(cond ((truep (cadr x)
true-lst)
(tautologyp (caddr x)
true-lst false-lst))
((falsep (cadr x)
false-lst)
(tautologyp (cadddr x)
true-lst false-lst))
(else (and (tautologyp (caddr x)
(cons (cadr x)
true-lst)
false-lst)
(tautologyp (cadddr x)
true-lst
(cons (cadr x)
false-lst))))))
(else #f)))
(define if-constructor '*) ; becomes (symbol->symbol-record 'if)
(define rewrite-count 0) ; sanity check
; The next procedure is Henry Baker's sharing CONS, which avoids
; allocation if the result is already in hand.
; The REWRITE and REWRITE-ARGS procedures have been modified to
; use SCONS instead of CONS.
(define (scons x y original)
(if (and (eq? x (car original))
(eq? y (cdr original)))
original
(cons x y)))
(define (rewrite term)
(set! rewrite-count (+ rewrite-count 1))
(cond ((not (pair? term))
term)
(else (rewrite-with-lemmas (scons (car term)
(rewrite-args (cdr term))
term)
(get-lemmas (car term))))))
(define (rewrite-args lst)
(cond ((null? lst)
'())
(else (scons (rewrite (car lst))
(rewrite-args (cdr lst))
lst))))
(define (rewrite-with-lemmas term lst)
(cond ((null? lst)
term)
((one-way-unify term (cadr (car lst)))
(rewrite (apply-subst unify-subst (caddr (car lst)))))
(else (rewrite-with-lemmas term (cdr lst)))))
(define unify-subst '*)
(define (one-way-unify term1 term2)
(begin (set! unify-subst '())
(one-way-unify1 term1 term2)))
(define (one-way-unify1 term1 term2)
(cond ((not (pair? term2))
(let ((temp-temp (assq term2 unify-subst)))
(cond (temp-temp
(term-equal? term1 (cdr temp-temp)))
((number? term2) ; This bug fix makes
(equal? term1 term2)) ; nboyer 10-25% slower!
(else
(set! unify-subst (cons (cons term2 term1)
unify-subst))
#t))))
((not (pair? term1))
#f)
((eq? (car term1)
(car term2))
(one-way-unify1-lst (cdr term1)
(cdr term2)))
(else #f)))
(define (one-way-unify1-lst lst1 lst2)
(cond ((null? lst1)
(null? lst2))
((null? lst2)
#f)
((one-way-unify1 (car lst1)
(car lst2))
(one-way-unify1-lst (cdr lst1)
(cdr lst2)))
(else #f)))
(define (falsep x lst)
(or (term-equal? x false-term)
(term-member? x lst)))
(define (truep x lst)
(or (term-equal? x true-term)
(term-member? x lst)))
(define false-term '*) ; becomes (translate-term '(f))
(define true-term '*) ; becomes (translate-term '(t))
; The next two procedures were in the original benchmark
; but were never used.
(define (trans-of-implies n)
(translate-term
(list (quote implies)
(trans-of-implies1 n)
(list (quote implies)
0 n))))
(define (trans-of-implies1 n)
(cond ((equal? n 1)
(list (quote implies)
0 1))
(else (list (quote and)
(list (quote implies)
(- n 1)
n)
(trans-of-implies1 (- n 1))))))
; Translated terms can be circular structures, which can't be
; compared using Scheme's equal? and member procedures, so we
; use these instead.
(define (term-equal? x y)
(cond ((pair? x)
(and (pair? y)
(symbol-record-equal? (car x) (car y))
(term-args-equal? (cdr x) (cdr y))))
(else (equal? x y))))
(define (term-args-equal? lst1 lst2)
(cond ((null? lst1)
(null? lst2))
((null? lst2)
#f)
((term-equal? (car lst1) (car lst2))
(term-args-equal? (cdr lst1) (cdr lst2)))
(else #f)))
(define (term-member? x lst)
(cond ((null? lst)
#f)
((term-equal? x (car lst))
#t)
(else (term-member? x (cdr lst)))))
(set! setup-boyer
(lambda ()
(set! *symbol-records-alist* '())
(set! if-constructor (symbol->symbol-record 'if))
(set! false-term (translate-term '(f)))
(set! true-term (translate-term '(t)))
(setup)))
(set! test-boyer
(lambda (n)
(set! rewrite-count 0)
(let ((answer (test n)))
(write rewrite-count)
(display " rewrites")
(newline)
(if answer
rewrite-count
#f)))))

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff