mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-06-10 14:00:21 +02:00
Remove scc
PCC with GC_PARALLEL=0 is exactly equivalent to SCC. Also now that PCC will dynamically avoid atomic forwarding if parallelism is disabled at run-time, there is no need to keep SCC around.
This commit is contained in:
parent
6545b34073
commit
1ff082705e
10 changed files with 78 additions and 832 deletions
4
Makefile
4
Makefile
|
@ -2,7 +2,6 @@ TESTS = quads mt-gcbench ephemerons finalizers
|
|||
COLLECTORS = \
|
||||
bdw \
|
||||
semi \
|
||||
scc \
|
||||
pcc \
|
||||
\
|
||||
mmc \
|
||||
|
@ -64,9 +63,6 @@ GC_LIBS_bdw = `pkg-config --libs bdw-gc`
|
|||
GC_STEM_semi = semi
|
||||
GC_CFLAGS_semi = -DGC_PRECISE_ROOTS=1
|
||||
|
||||
GC_STEM_scc = scc
|
||||
GC_CFLAGS_scc = -DGC_PRECISE_ROOTS=1
|
||||
|
||||
GC_STEM_pcc = pcc
|
||||
GC_CFLAGS_pcc = -DGC_PRECISE_ROOTS=1 -DGC_PARALLEL=1
|
||||
|
||||
|
|
|
@ -18,11 +18,10 @@ See the [documentation](./doc/README.md).
|
|||
- Finalization (supporting resuscitation)
|
||||
- Ephemerons (except on `bdw`, which has a polyfill)
|
||||
- Conservative roots (optionally with `mmc` or always with `bdw`)
|
||||
- Precise roots (optionally with `mmc` or always with `semi` / `pcc` /
|
||||
`scc`)
|
||||
- Precise roots (optionally with `mmc` or always with `semi` / `pcc`)
|
||||
- Precise embedder-parameterized heap tracing (except with `bdw`)
|
||||
- Conservative heap tracing (optionally with `mmc`, always with `bdw`)
|
||||
- Parallel tracing (except `semi` and `scc`)
|
||||
- Parallel tracing (except `semi`)
|
||||
- Parallel mutators (except `semi`)
|
||||
- Inline allocation / write barrier fast paths (supporting JIT)
|
||||
- One unified API with no-overhead abstraction: switch collectors when
|
||||
|
@ -36,8 +35,8 @@ See the [documentation](./doc/README.md).
|
|||
* [src/](./src/): The actual GC implementation, containing a number of
|
||||
collector implementations. The embedder chooses which collector to
|
||||
use at compile-time. See the [documentation](./doc/collectors.md)
|
||||
for more on the different collectors (`semi`, `bdw`, `scc`, `pcc`,
|
||||
and the different flavors of `mmc`).
|
||||
for more on the different collectors (`semi`, `bdw`, `pcc`, and the
|
||||
different flavors of `mmc`).
|
||||
* [benchmarks/](./benchmarks/): Benchmarks. A work in progress.
|
||||
* [test/](./test/): A dusty attic of minimal testing.
|
||||
|
||||
|
|
|
@ -1,60 +0,0 @@
|
|||
#ifndef SCC_ATTRS_H
|
||||
#define SCC_ATTRS_H
|
||||
|
||||
#include "gc-config.h"
|
||||
#include "gc-assert.h"
|
||||
#include "gc-attrs.h"
|
||||
|
||||
static const uintptr_t GC_ALIGNMENT = 8;
|
||||
static const size_t GC_LARGE_OBJECT_THRESHOLD = 8192;
|
||||
|
||||
static inline enum gc_allocator_kind gc_allocator_kind(void) {
|
||||
return GC_ALLOCATOR_INLINE_BUMP_POINTER;
|
||||
}
|
||||
static inline size_t gc_allocator_small_granule_size(void) {
|
||||
return GC_ALIGNMENT;
|
||||
}
|
||||
static inline size_t gc_allocator_large_threshold(void) {
|
||||
return GC_LARGE_OBJECT_THRESHOLD;
|
||||
}
|
||||
|
||||
static inline size_t gc_allocator_allocation_pointer_offset(void) {
|
||||
return sizeof(uintptr_t) * 0;
|
||||
}
|
||||
static inline size_t gc_allocator_allocation_limit_offset(void) {
|
||||
return sizeof(uintptr_t) * 1;
|
||||
}
|
||||
|
||||
static inline size_t gc_allocator_freelist_offset(size_t size) {
|
||||
GC_CRASH();
|
||||
}
|
||||
|
||||
static inline size_t gc_allocator_alloc_table_alignment(void) {
|
||||
return 0;
|
||||
}
|
||||
static inline uint8_t gc_allocator_alloc_table_begin_pattern(void) {
|
||||
GC_CRASH();
|
||||
}
|
||||
static inline uint8_t gc_allocator_alloc_table_end_pattern(void) {
|
||||
GC_CRASH();
|
||||
}
|
||||
|
||||
static inline int gc_allocator_needs_clear(void) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline enum gc_write_barrier_kind gc_write_barrier_kind(size_t obj_size) {
|
||||
return GC_WRITE_BARRIER_NONE;
|
||||
}
|
||||
static inline size_t gc_write_barrier_card_table_alignment(void) {
|
||||
GC_CRASH();
|
||||
}
|
||||
static inline size_t gc_write_barrier_card_size(void) {
|
||||
GC_CRASH();
|
||||
}
|
||||
|
||||
static inline enum gc_safepoint_mechanism gc_safepoint_mechanism(void) {
|
||||
return GC_SAFEPOINT_MECHANISM_COOPERATIVE;
|
||||
}
|
||||
|
||||
#endif // SCC_ATTRS_H
|
|
@ -1,38 +1,84 @@
|
|||
# Parallel copying collector
|
||||
|
||||
Whippet's `pcc` collector is a copying collector, exactly like
|
||||
[`scc`](./collector-scc.md), but supporting multiple tracing threads.
|
||||
See the discussion of `scc` for a general overview.
|
||||
Whippet's `pcc` collector is a copying collector, like the more simple
|
||||
[`semi`](./collector-semi.md), but supporting multiple mutator threads,
|
||||
multiple tracing threads, and using an external FIFO worklist instead of
|
||||
a Cheney worklist.
|
||||
|
||||
Also like `scc` and `semi`, `pcc` is not generational yet. If and when
|
||||
`pcc` grows a young generation, it would be a great collector.
|
||||
Like `semi`, `pcc` traces by evacuation: it moves all live objects on
|
||||
every collection. (Exception: objects larger than 8192 bytes are
|
||||
placed into a partitioned space which traces by marking in place instead
|
||||
of copying.) Evacuation requires precise roots, so if your embedder
|
||||
does not support precise roots, `pcc` is not for you.
|
||||
|
||||
Again like `semi`, `pcc` generally requires a heap size at least twice
|
||||
as large as the maximum live heap size, and performs best with ample
|
||||
heap sizes; between 3× and 5× is best.
|
||||
|
||||
Overall, `pcc` is a better version of `semi`. It should have broadly
|
||||
the same performance characteristics with a single mutator and with
|
||||
parallelism disabled, additionally allowing multiple mutators, and
|
||||
scaling better with multiple tracing threads.
|
||||
|
||||
Also like `semi`, `pcc` is not generational yet. If and when `pcc`
|
||||
grows a young generation, it would be a great collector.
|
||||
|
||||
## Implementation notes
|
||||
|
||||
Unlike `semi` which has a single global bump-pointer allocation region,
|
||||
`pcc` structures the heap into 64-kB blocks. In this way it supports
|
||||
multiple mutator threads: mutators do local bump-pointer allocation into
|
||||
their own block, and when their block is full, they fetch another from
|
||||
the global store.
|
||||
|
||||
The block size is 64 kB, but really it's 128 kB, because each block has
|
||||
two halves: the active region and the copy reserve. Dividing each block
|
||||
in two allows the collector to easily grow and shrink the heap while
|
||||
ensuring there is always enough reserve space.
|
||||
|
||||
Blocks are allocated in 64-MB aligned slabs, so there are 512 blocks in
|
||||
a slab. The first block in a slab is used by the collector itself, to
|
||||
keep metadata for the rest of the blocks, for example a chain pointer
|
||||
allowing blocks to be collected in lists, a saved allocation pointer for
|
||||
partially-filled blocks, whether the block is paged in or out, and so
|
||||
on.
|
||||
|
||||
`pcc` supports tracing in parallel. This mechanism works somewhat like
|
||||
allocation, in which multiple trace workers compete to evacuate objects
|
||||
into their local allocation buffers; when an allocation buffer is full,
|
||||
the trace worker grabs another, just like mutators do.
|
||||
|
||||
To maintain a queue of objects to trace, `pcc` uses the [fine-grained
|
||||
work-stealing parallel tracer](../src/parallel-tracer.h) originally
|
||||
developed for [Whippet's Immix-like collector](./collector-whippet.md).
|
||||
Each trace worker maintains a [local queue of objects that need
|
||||
tracing](../src/local-worklist.h), which currently has 1024 entries. If
|
||||
the local queue becomes full, the worker will publish 3/4 of those
|
||||
entries to the worker's [shared worklist](../src/shared-worklist.h).
|
||||
When a worker runs out of local work, it will first try to remove work
|
||||
from its own shared worklist, then will try to steal from other workers.
|
||||
Unlike the simple semi-space collector which uses a Cheney grey
|
||||
worklist, `pcc` uses an external worklist. If parallelism is disabled
|
||||
at compile-time, it uses a [simple first-in, first-out queue of objects
|
||||
to be traced](../src/simple-worklist.h) originally developed for
|
||||
[Whippet's Immix-like collector](./collector-whippet.md). Like a Cheney
|
||||
worklist, this should result in objects being copied in breadth-first
|
||||
order. The literature would suggest that depth-first is generally
|
||||
better for locality, but that preserving allocation order is generally
|
||||
best. This is something to experiment with in the future.
|
||||
|
||||
If only one tracing thread is enabled (`parallelism=1`), `pcc` uses
|
||||
If parallelism is enabled, as it is by default, `pcc` uses the
|
||||
[fine-grained work-stealing parallel tracer](../src/parallel-tracer.h)
|
||||
originally developed for [Whippet's Immix-like
|
||||
collector](./collector-whippet.md). Each trace worker maintains a
|
||||
[local queue of objects that need tracing](../src/local-worklist.h),
|
||||
which currently has 1024 entries. If the local queue becomes full, the
|
||||
worker will publish 3/4 of those entries to the worker's [shared
|
||||
worklist](../src/shared-worklist.h). When a worker runs out of local
|
||||
work, it will first try to remove work from its own shared worklist,
|
||||
then will try to steal from other workers.
|
||||
|
||||
If only one tracing thread is enabled at run-time (`parallelism=1`) (or
|
||||
if parallelism is disabled at compile-time), `pcc` will evacuate by
|
||||
non-atomic forwarding, but if multiple threads compete to evacuate
|
||||
objects, `pcc` uses [atomic compare-and-swap instead of simple
|
||||
forwarding pointer updates](./manual.md#forwarding-objects). This
|
||||
imposes around a ~30% performance penalty but having multiple tracing
|
||||
threads is generally worth it, unless the object graph is itself serial.
|
||||
|
||||
As with `scc`, the memory used for the external worklist is dynamically
|
||||
allocated from the OS and is not currently counted as contributing to
|
||||
the heap size. If you are targetting a microcontroller or something,
|
||||
probably you need to choose a different kind of collector that never
|
||||
dynamically allocates, such as `semi`.
|
||||
The memory used for the external worklist is dynamically allocated from
|
||||
the OS and is not currently counted as contributing to the heap size.
|
||||
If you are targetting a microcontroller or something, probably you need
|
||||
to choose a different kind of collector that never dynamically
|
||||
allocates, such as `semi`.
|
||||
|
|
|
@ -1,62 +0,0 @@
|
|||
# Serial copying collector
|
||||
|
||||
Whippet's `scc` collector is a copying collector, like the more simple
|
||||
[`semi`](./collector-semi.md), but supporting multiple mutator threads,
|
||||
and using an external FIFO worklist instead of a Cheney worklist.
|
||||
|
||||
Like `semi`, `scc` traces by evacuation: it moves all live objects on
|
||||
every collection. (Exception: objects larger than 8192 bytes are
|
||||
placed into a partitioned space which traces by marking in place instead
|
||||
of copying.) Evacuation requires precise roots, so if your embedder
|
||||
does not support precise roots, `scc` is not for you.
|
||||
|
||||
Again like `semi`, `scc` generally requires a heap size at least twice
|
||||
as large as the maximum live heap size, and performs best with ample
|
||||
heap sizes; between 3× and 5× is best.
|
||||
|
||||
Overall, `scc` is most useful for isolating the performance implications
|
||||
of using a block-structured heap and of using an external worklist
|
||||
rather than a Cheney worklist as `semi` does. It also supports multiple
|
||||
mutator threads, so it is generally more useful than `semi`. Also,
|
||||
compared to `pcc`, we can measure the overhead that `pcc` imposes to
|
||||
atomically forward objects.
|
||||
|
||||
But given a choice, you probably want `pcc`; though it's slower with
|
||||
only one tracing thread, once you have more than once tracing thread
|
||||
it's a win over `scc`.
|
||||
|
||||
## Implementation notes
|
||||
|
||||
Unlike `semi` which has a single global bump-pointer allocation region,
|
||||
`scc` structures the heap into 64-kB blocks. In this way it supports
|
||||
multiple mutator threads: mutators do local bump-pointer allocation into
|
||||
their own block, and when their block is full, they fetch another from
|
||||
the global store.
|
||||
|
||||
The block size is 64 kB, but really it's 128 kB, because each block has
|
||||
two halves: the active region and the copy reserve. Dividing each block
|
||||
in two allows the collector to easily grow and shrink the heap while
|
||||
ensuring there is always enough reserve space.
|
||||
|
||||
Blocks are allocated in 64-MB aligned slabs, so there are 512 blocks in
|
||||
a slab. The first block in a slab is used by the collector itself, to
|
||||
keep metadata for the rest of the blocks, for example a chain pointer
|
||||
allowing blocks to be collected in lists, a saved allocation pointer for
|
||||
partially-filled blocks, whether the block is paged in or out, and so
|
||||
on.
|
||||
|
||||
Unlike the simple semi-space collector which uses a Cheney grey
|
||||
worklist, `scc` uses a [simple first-in, first-out queue of objects to
|
||||
be traced](../src/simple-worklist.h) originally developed for [Whippet's
|
||||
Immix-like collector](./collector-whippet.md). Like a Cheney worklist,
|
||||
this should result in objects being copied in breadth-first order. The
|
||||
literature would suggest that depth-first is generally better for
|
||||
locality, but that preserving allocation order is generally best. This
|
||||
is something to experiment with in the future.
|
||||
|
||||
The memory used for the external worklist is dynamically allocated from
|
||||
the OS and is not currently counted as contributing to the heap size.
|
||||
If you are targetting a microcontroller or something, probably you need
|
||||
to choose a different kind of collector that never dynamically
|
||||
allocates, such as `semi`.
|
||||
|
|
@ -3,10 +3,8 @@
|
|||
Whippet has five collectors currently:
|
||||
- [Semi-space collector (`semi`)](./collector-semi.md): For
|
||||
single-threaded embedders who are not too tight on memory.
|
||||
- [Serial copying collector (`scc`)](./collector-scc.md): Like `semi`,
|
||||
but with support for multiple mutator threads.
|
||||
- [Parallel copying collector (`pcc`)](./collector-pcc.md): Like `scc`,
|
||||
but with support for multiple tracing threads.
|
||||
- [Parallel copying collector (`pcc`)](./collector-pcc.md): Like `semi`,
|
||||
but with support for multiple mutator and tracing threads.
|
||||
- [Mostly marking collector (`mmc`)](./collector-mmc.md):
|
||||
Immix-inspired collector. Optionally parallel, conservative (stack
|
||||
and/or heap), and/or generational.
|
||||
|
@ -26,8 +24,6 @@ out mutator/embedder bugs. Then if memory is tight, switch to
|
|||
If you are aiming for maximum simplicity and minimal code size (ten
|
||||
kilobytes or so), use `semi`.
|
||||
|
||||
Only use `scc` if you are investigating GC internals.
|
||||
|
||||
If you are writing a new project, you have a choice as to whether to pay
|
||||
the development cost of precise roots or not. If you choose to not have
|
||||
precise roots, then go for `stack-conservative-parallel-mmc` directly.
|
||||
|
|
3
embed.mk
3
embed.mk
|
@ -42,9 +42,6 @@ GC_LIBS_bdw = `pkg-config --libs bdw-gc`
|
|||
GC_STEM_semi = semi
|
||||
GC_CFLAGS_semi = -DGC_PRECISE_ROOTS=1
|
||||
|
||||
GC_STEM_scc = scc
|
||||
GC_CFLAGS_scc = -DGC_PRECISE_ROOTS=1
|
||||
|
||||
GC_STEM_pcc = pcc
|
||||
GC_CFLAGS_pcc = -DGC_PRECISE_ROOTS=1 -DGC_PARALLEL=1
|
||||
|
||||
|
|
|
@ -523,7 +523,7 @@ static inline int
|
|||
copy_space_forward(struct copy_space *space, struct gc_edge edge,
|
||||
struct gc_ref old_ref,
|
||||
struct copy_space_allocator *alloc) {
|
||||
if (space->atomic_forward)
|
||||
if (GC_PARALLEL && space->atomic_forward)
|
||||
return copy_space_forward_atomic(space, edge, old_ref, alloc);
|
||||
return copy_space_forward_nonatomic(space, edge, old_ref, alloc);
|
||||
}
|
||||
|
@ -531,7 +531,7 @@ copy_space_forward(struct copy_space *space, struct gc_edge edge,
|
|||
static inline int
|
||||
copy_space_forward_if_traced(struct copy_space *space, struct gc_edge edge,
|
||||
struct gc_ref old_ref) {
|
||||
if (space->atomic_forward)
|
||||
if (GC_PARALLEL && space->atomic_forward)
|
||||
return copy_space_forward_if_traced_atomic(space, edge, old_ref);
|
||||
return copy_space_forward_if_traced_nonatomic(space, edge, old_ref);
|
||||
}
|
||||
|
|
|
@ -15,7 +15,11 @@
|
|||
#include "gc-inline.h"
|
||||
#include "gc-trace.h"
|
||||
#include "large-object-space.h"
|
||||
#if GC_PARALLEL
|
||||
#include "parallel-tracer.h"
|
||||
#else
|
||||
#include "serial-tracer.h"
|
||||
#endif
|
||||
#include "spin.h"
|
||||
#include "pcc-attrs.h"
|
||||
|
||||
|
|
670
src/scc.c
670
src/scc.c
|
@ -1,670 +0,0 @@
|
|||
#include <pthread.h>
|
||||
#include <stdatomic.h>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <sys/mman.h>
|
||||
#include <string.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#include "gc-api.h"
|
||||
|
||||
#define GC_IMPL 1
|
||||
#include "gc-internal.h"
|
||||
|
||||
#include "copy-space.h"
|
||||
#include "debug.h"
|
||||
#include "gc-align.h"
|
||||
#include "gc-inline.h"
|
||||
#include "gc-trace.h"
|
||||
#include "large-object-space.h"
|
||||
#include "serial-tracer.h"
|
||||
#include "spin.h"
|
||||
#include "scc-attrs.h"
|
||||
|
||||
struct gc_heap {
|
||||
struct copy_space copy_space;
|
||||
struct large_object_space large_object_space;
|
||||
struct gc_extern_space *extern_space;
|
||||
size_t large_object_pages;
|
||||
pthread_mutex_t lock;
|
||||
pthread_cond_t collector_cond;
|
||||
pthread_cond_t mutator_cond;
|
||||
size_t size;
|
||||
int collecting;
|
||||
int check_pending_ephemerons;
|
||||
struct gc_pending_ephemerons *pending_ephemerons;
|
||||
struct gc_finalizer_state *finalizer_state;
|
||||
size_t mutator_count;
|
||||
size_t paused_mutator_count;
|
||||
size_t inactive_mutator_count;
|
||||
struct gc_heap_roots *roots;
|
||||
struct gc_mutator *mutators;
|
||||
long count;
|
||||
struct gc_tracer tracer;
|
||||
double pending_ephemerons_size_factor;
|
||||
double pending_ephemerons_size_slop;
|
||||
struct gc_event_listener event_listener;
|
||||
void *event_listener_data;
|
||||
};
|
||||
|
||||
#define HEAP_EVENT(heap, event, ...) \
|
||||
(heap)->event_listener.event((heap)->event_listener_data, ##__VA_ARGS__)
|
||||
#define MUTATOR_EVENT(mut, event, ...) \
|
||||
(mut)->heap->event_listener.event((mut)->event_listener_data, ##__VA_ARGS__)
|
||||
|
||||
struct gc_mutator {
|
||||
struct copy_space_allocator allocator;
|
||||
struct gc_heap *heap;
|
||||
struct gc_mutator_roots *roots;
|
||||
void *event_listener_data;
|
||||
struct gc_mutator *next;
|
||||
struct gc_mutator *prev;
|
||||
};
|
||||
|
||||
struct gc_trace_worker_data {
|
||||
struct copy_space_allocator allocator;
|
||||
};
|
||||
|
||||
static inline struct copy_space* heap_copy_space(struct gc_heap *heap) {
|
||||
return &heap->copy_space;
|
||||
}
|
||||
static inline struct large_object_space* heap_large_object_space(struct gc_heap *heap) {
|
||||
return &heap->large_object_space;
|
||||
}
|
||||
static inline struct gc_extern_space* heap_extern_space(struct gc_heap *heap) {
|
||||
return heap->extern_space;
|
||||
}
|
||||
static inline struct gc_heap* mutator_heap(struct gc_mutator *mutator) {
|
||||
return mutator->heap;
|
||||
}
|
||||
|
||||
static void
|
||||
gc_trace_worker_call_with_data(void (*f)(struct gc_tracer *tracer,
|
||||
struct gc_heap *heap,
|
||||
struct gc_trace_worker *worker,
|
||||
struct gc_trace_worker_data *data),
|
||||
struct gc_tracer *tracer,
|
||||
struct gc_heap *heap,
|
||||
struct gc_trace_worker *worker) {
|
||||
struct gc_trace_worker_data data;
|
||||
copy_space_allocator_init(&data.allocator);
|
||||
f(tracer, heap, worker, &data);
|
||||
copy_space_allocator_finish(&data.allocator, heap_copy_space(heap));
|
||||
}
|
||||
|
||||
static inline int do_trace(struct gc_heap *heap, struct gc_edge edge,
|
||||
struct gc_ref ref,
|
||||
struct gc_trace_worker_data *data) {
|
||||
if (!gc_ref_is_heap_object(ref))
|
||||
return 0;
|
||||
if (GC_LIKELY(copy_space_contains(heap_copy_space(heap), ref)))
|
||||
return copy_space_forward_nonatomic(heap_copy_space(heap), edge, ref,
|
||||
&data->allocator);
|
||||
else if (large_object_space_contains(heap_large_object_space(heap), ref))
|
||||
return large_object_space_mark_object(heap_large_object_space(heap), ref);
|
||||
else
|
||||
return gc_extern_space_visit(heap_extern_space(heap), edge, ref);
|
||||
}
|
||||
|
||||
static inline int trace_edge(struct gc_heap *heap, struct gc_edge edge,
|
||||
struct gc_trace_worker *worker) {
|
||||
struct gc_ref ref = gc_edge_ref(edge);
|
||||
struct gc_trace_worker_data *data = gc_trace_worker_data(worker);
|
||||
int is_new = do_trace(heap, edge, ref, data);
|
||||
|
||||
if (is_new && heap->check_pending_ephemerons)
|
||||
gc_resolve_pending_ephemerons(ref, heap);
|
||||
|
||||
return is_new;
|
||||
}
|
||||
|
||||
int gc_visit_ephemeron_key(struct gc_edge edge, struct gc_heap *heap) {
|
||||
struct gc_ref ref = gc_edge_ref(edge);
|
||||
if (!gc_ref_is_heap_object(ref))
|
||||
return 0;
|
||||
if (GC_LIKELY(copy_space_contains(heap_copy_space(heap), ref)))
|
||||
return copy_space_forward_if_traced_nonatomic(heap_copy_space(heap), edge,
|
||||
ref);
|
||||
if (large_object_space_contains(heap_large_object_space(heap), ref))
|
||||
return large_object_space_is_copied(heap_large_object_space(heap), ref);
|
||||
GC_CRASH();
|
||||
}
|
||||
|
||||
static int mutators_are_stopping(struct gc_heap *heap) {
|
||||
return atomic_load_explicit(&heap->collecting, memory_order_relaxed);
|
||||
}
|
||||
|
||||
static inline void heap_lock(struct gc_heap *heap) {
|
||||
pthread_mutex_lock(&heap->lock);
|
||||
}
|
||||
static inline void heap_unlock(struct gc_heap *heap) {
|
||||
pthread_mutex_unlock(&heap->lock);
|
||||
}
|
||||
|
||||
// with heap lock
|
||||
static inline int all_mutators_stopped(struct gc_heap *heap) {
|
||||
return heap->mutator_count ==
|
||||
heap->paused_mutator_count + heap->inactive_mutator_count;
|
||||
}
|
||||
|
||||
static void add_mutator(struct gc_heap *heap, struct gc_mutator *mut) {
|
||||
mut->heap = heap;
|
||||
mut->event_listener_data =
|
||||
heap->event_listener.mutator_added(heap->event_listener_data);
|
||||
copy_space_allocator_init(&mut->allocator);
|
||||
heap_lock(heap);
|
||||
// We have no roots. If there is a GC currently in progress, we have
|
||||
// nothing to add. Just wait until it's done.
|
||||
while (mutators_are_stopping(heap))
|
||||
pthread_cond_wait(&heap->mutator_cond, &heap->lock);
|
||||
mut->next = mut->prev = NULL;
|
||||
struct gc_mutator *tail = heap->mutators;
|
||||
if (tail) {
|
||||
mut->next = tail;
|
||||
tail->prev = mut;
|
||||
}
|
||||
heap->mutators = mut;
|
||||
heap->mutator_count++;
|
||||
heap_unlock(heap);
|
||||
}
|
||||
|
||||
static void remove_mutator(struct gc_heap *heap, struct gc_mutator *mut) {
|
||||
MUTATOR_EVENT(mut, mutator_removed);
|
||||
mut->heap = NULL;
|
||||
copy_space_allocator_finish(&mut->allocator, heap_copy_space(heap));
|
||||
heap_lock(heap);
|
||||
heap->mutator_count--;
|
||||
if (mut->next)
|
||||
mut->next->prev = mut->prev;
|
||||
if (mut->prev)
|
||||
mut->prev->next = mut->next;
|
||||
else
|
||||
heap->mutators = mut->next;
|
||||
// We have no roots. If there is a GC stop currently in progress,
|
||||
// maybe tell the controller it can continue.
|
||||
if (mutators_are_stopping(heap) && all_mutators_stopped(heap))
|
||||
pthread_cond_signal(&heap->collector_cond);
|
||||
heap_unlock(heap);
|
||||
}
|
||||
|
||||
static void request_mutators_to_stop(struct gc_heap *heap) {
|
||||
GC_ASSERT(!mutators_are_stopping(heap));
|
||||
atomic_store_explicit(&heap->collecting, 1, memory_order_relaxed);
|
||||
}
|
||||
|
||||
static void allow_mutators_to_continue(struct gc_heap *heap) {
|
||||
GC_ASSERT(mutators_are_stopping(heap));
|
||||
GC_ASSERT(all_mutators_stopped(heap));
|
||||
heap->paused_mutator_count--;
|
||||
atomic_store_explicit(&heap->collecting, 0, memory_order_relaxed);
|
||||
GC_ASSERT(!mutators_are_stopping(heap));
|
||||
pthread_cond_broadcast(&heap->mutator_cond);
|
||||
}
|
||||
|
||||
static void heap_reset_large_object_pages(struct gc_heap *heap, size_t npages) {
|
||||
size_t previous = heap->large_object_pages;
|
||||
heap->large_object_pages = npages;
|
||||
GC_ASSERT(npages <= previous);
|
||||
size_t bytes = (previous - npages) <<
|
||||
heap_large_object_space(heap)->page_size_log2;
|
||||
copy_space_reacquire_memory(heap_copy_space(heap), bytes);
|
||||
}
|
||||
|
||||
void gc_mutator_set_roots(struct gc_mutator *mut,
|
||||
struct gc_mutator_roots *roots) {
|
||||
mut->roots = roots;
|
||||
}
|
||||
void gc_heap_set_roots(struct gc_heap *heap, struct gc_heap_roots *roots) {
|
||||
heap->roots = roots;
|
||||
}
|
||||
void gc_heap_set_extern_space(struct gc_heap *heap,
|
||||
struct gc_extern_space *space) {
|
||||
heap->extern_space = space;
|
||||
}
|
||||
|
||||
static inline void tracer_visit(struct gc_edge edge, struct gc_heap *heap,
|
||||
void *trace_data) GC_ALWAYS_INLINE;
|
||||
static inline void
|
||||
tracer_visit(struct gc_edge edge, struct gc_heap *heap, void *trace_data) {
|
||||
struct gc_trace_worker *worker = trace_data;
|
||||
if (trace_edge(heap, edge, worker))
|
||||
gc_trace_worker_enqueue(worker, gc_edge_ref(edge));
|
||||
}
|
||||
|
||||
static inline void trace_one(struct gc_ref ref, struct gc_heap *heap,
|
||||
struct gc_trace_worker *worker) {
|
||||
#ifdef DEBUG
|
||||
if (copy_space_contains(heap_copy_space(heap), ref))
|
||||
GC_ASSERT(copy_space_object_region(ref) == heap_copy_space(heap)->active_region);
|
||||
#endif
|
||||
gc_trace_object(ref, tracer_visit, heap, worker, NULL);
|
||||
}
|
||||
|
||||
static inline void trace_root(struct gc_root root, struct gc_heap *heap,
|
||||
struct gc_trace_worker *worker) {
|
||||
switch (root.kind) {
|
||||
case GC_ROOT_KIND_HEAP:
|
||||
gc_trace_heap_roots(root.heap->roots, tracer_visit, heap, worker);
|
||||
break;
|
||||
case GC_ROOT_KIND_MUTATOR:
|
||||
gc_trace_mutator_roots(root.mutator->roots, tracer_visit, heap, worker);
|
||||
break;
|
||||
case GC_ROOT_KIND_RESOLVED_EPHEMERONS:
|
||||
gc_trace_resolved_ephemerons(root.resolved_ephemerons, tracer_visit,
|
||||
heap, worker);
|
||||
break;
|
||||
case GC_ROOT_KIND_EDGE:
|
||||
tracer_visit(root.edge, heap, worker);
|
||||
break;
|
||||
default:
|
||||
GC_CRASH();
|
||||
}
|
||||
}
|
||||
|
||||
static void wait_for_mutators_to_stop(struct gc_heap *heap) {
|
||||
heap->paused_mutator_count++;
|
||||
while (!all_mutators_stopped(heap))
|
||||
pthread_cond_wait(&heap->collector_cond, &heap->lock);
|
||||
}
|
||||
|
||||
void gc_write_barrier_extern(struct gc_ref obj, size_t obj_size,
|
||||
struct gc_edge edge, struct gc_ref new_val) {
|
||||
}
|
||||
|
||||
static void
|
||||
pause_mutator_for_collection(struct gc_heap *heap,
|
||||
struct gc_mutator *mut) GC_NEVER_INLINE;
|
||||
static void
|
||||
pause_mutator_for_collection(struct gc_heap *heap, struct gc_mutator *mut) {
|
||||
GC_ASSERT(mutators_are_stopping(heap));
|
||||
GC_ASSERT(!all_mutators_stopped(heap));
|
||||
MUTATOR_EVENT(mut, mutator_stopped);
|
||||
heap->paused_mutator_count++;
|
||||
if (all_mutators_stopped(heap))
|
||||
pthread_cond_signal(&heap->collector_cond);
|
||||
|
||||
do {
|
||||
pthread_cond_wait(&heap->mutator_cond, &heap->lock);
|
||||
} while (mutators_are_stopping(heap));
|
||||
heap->paused_mutator_count--;
|
||||
|
||||
MUTATOR_EVENT(mut, mutator_restarted);
|
||||
}
|
||||
|
||||
static void
|
||||
pause_mutator_for_collection_with_lock(struct gc_mutator *mut) GC_NEVER_INLINE;
|
||||
static void
|
||||
pause_mutator_for_collection_with_lock(struct gc_mutator *mut) {
|
||||
struct gc_heap *heap = mutator_heap(mut);
|
||||
GC_ASSERT(mutators_are_stopping(heap));
|
||||
MUTATOR_EVENT(mut, mutator_stopping);
|
||||
pause_mutator_for_collection(heap, mut);
|
||||
}
|
||||
|
||||
static void pause_mutator_for_collection_without_lock(struct gc_mutator *mut) GC_NEVER_INLINE;
|
||||
static void pause_mutator_for_collection_without_lock(struct gc_mutator *mut) {
|
||||
struct gc_heap *heap = mutator_heap(mut);
|
||||
GC_ASSERT(mutators_are_stopping(heap));
|
||||
MUTATOR_EVENT(mut, mutator_stopping);
|
||||
copy_space_allocator_finish(&mut->allocator, heap_copy_space(heap));
|
||||
heap_lock(heap);
|
||||
pause_mutator_for_collection(heap, mut);
|
||||
heap_unlock(heap);
|
||||
}
|
||||
|
||||
static inline void maybe_pause_mutator_for_collection(struct gc_mutator *mut) {
|
||||
while (mutators_are_stopping(mutator_heap(mut)))
|
||||
pause_mutator_for_collection_without_lock(mut);
|
||||
}
|
||||
|
||||
static int maybe_grow_heap(struct gc_heap *heap) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void visit_root_edge(struct gc_edge edge, struct gc_heap *heap,
|
||||
void *unused) {
|
||||
gc_tracer_add_root(&heap->tracer, gc_root_edge(edge));
|
||||
}
|
||||
|
||||
static void add_roots(struct gc_heap *heap) {
|
||||
for (struct gc_mutator *mut = heap->mutators; mut; mut = mut->next)
|
||||
gc_tracer_add_root(&heap->tracer, gc_root_mutator(mut));
|
||||
gc_tracer_add_root(&heap->tracer, gc_root_heap(heap));
|
||||
gc_visit_finalizer_roots(heap->finalizer_state, visit_root_edge, heap, NULL);
|
||||
}
|
||||
|
||||
static void resolve_ephemerons_lazily(struct gc_heap *heap) {
|
||||
heap->check_pending_ephemerons = 0;
|
||||
}
|
||||
|
||||
static void resolve_ephemerons_eagerly(struct gc_heap *heap) {
|
||||
heap->check_pending_ephemerons = 1;
|
||||
gc_scan_pending_ephemerons(heap->pending_ephemerons, heap, 0, 1);
|
||||
}
|
||||
|
||||
static void trace_resolved_ephemerons(struct gc_heap *heap) {
|
||||
for (struct gc_ephemeron *resolved = gc_pop_resolved_ephemerons(heap);
|
||||
resolved;
|
||||
resolved = gc_pop_resolved_ephemerons(heap)) {
|
||||
gc_tracer_add_root(&heap->tracer, gc_root_resolved_ephemerons(resolved));
|
||||
gc_tracer_trace(&heap->tracer);
|
||||
}
|
||||
}
|
||||
|
||||
static void resolve_finalizers(struct gc_heap *heap) {
|
||||
for (size_t priority = 0;
|
||||
priority < gc_finalizer_priority_count();
|
||||
priority++) {
|
||||
if (gc_resolve_finalizers(heap->finalizer_state, priority,
|
||||
visit_root_edge, heap, NULL)) {
|
||||
gc_tracer_trace(&heap->tracer);
|
||||
trace_resolved_ephemerons(heap);
|
||||
}
|
||||
}
|
||||
gc_notify_finalizers(heap->finalizer_state, heap);
|
||||
}
|
||||
|
||||
static void sweep_ephemerons(struct gc_heap *heap) {
|
||||
return gc_sweep_pending_ephemerons(heap->pending_ephemerons, 0, 1);
|
||||
}
|
||||
|
||||
static void collect(struct gc_mutator *mut) GC_NEVER_INLINE;
|
||||
static void collect(struct gc_mutator *mut) {
|
||||
struct gc_heap *heap = mutator_heap(mut);
|
||||
struct copy_space *copy_space = heap_copy_space(heap);
|
||||
struct large_object_space *lospace = heap_large_object_space(heap);
|
||||
struct gc_extern_space *exspace = heap_extern_space(heap);
|
||||
MUTATOR_EVENT(mut, mutator_cause_gc);
|
||||
DEBUG("start collect #%ld:\n", heap->count);
|
||||
large_object_space_start_gc(lospace, 0);
|
||||
gc_extern_space_start_gc(exspace, 0);
|
||||
resolve_ephemerons_lazily(heap);
|
||||
HEAP_EVENT(heap, requesting_stop);
|
||||
request_mutators_to_stop(heap);
|
||||
HEAP_EVENT(heap, waiting_for_stop);
|
||||
wait_for_mutators_to_stop(heap);
|
||||
HEAP_EVENT(heap, mutators_stopped);
|
||||
HEAP_EVENT(heap, prepare_gc, GC_COLLECTION_COMPACTING);
|
||||
copy_space_flip(copy_space);
|
||||
gc_tracer_prepare(&heap->tracer);
|
||||
add_roots(heap);
|
||||
HEAP_EVENT(heap, roots_traced);
|
||||
gc_tracer_trace(&heap->tracer);
|
||||
HEAP_EVENT(heap, heap_traced);
|
||||
resolve_ephemerons_eagerly(heap);
|
||||
trace_resolved_ephemerons(heap);
|
||||
HEAP_EVENT(heap, ephemerons_traced);
|
||||
resolve_finalizers(heap);
|
||||
HEAP_EVENT(heap, finalizers_traced);
|
||||
sweep_ephemerons(heap);
|
||||
gc_tracer_release(&heap->tracer);
|
||||
copy_space_finish_gc(copy_space);
|
||||
large_object_space_finish_gc(lospace, 0);
|
||||
gc_extern_space_finish_gc(exspace, 0);
|
||||
heap->count++;
|
||||
heap_reset_large_object_pages(heap, lospace->live_pages_at_last_collection);
|
||||
size_t live_size = (copy_space->allocated_bytes_at_last_gc +
|
||||
large_object_space_size_at_last_collection(lospace));
|
||||
HEAP_EVENT(heap, live_data_size, live_size);
|
||||
maybe_grow_heap(heap);
|
||||
if (!copy_space_page_out_blocks_until_memory_released(copy_space)) {
|
||||
fprintf(stderr, "ran out of space, heap size %zu (%zu slabs)\n",
|
||||
heap->size, copy_space->nslabs);
|
||||
GC_CRASH();
|
||||
}
|
||||
HEAP_EVENT(heap, restarting_mutators);
|
||||
allow_mutators_to_continue(heap);
|
||||
}
|
||||
|
||||
static void trigger_collection(struct gc_mutator *mut) {
|
||||
struct gc_heap *heap = mutator_heap(mut);
|
||||
copy_space_allocator_finish(&mut->allocator, heap_copy_space(heap));
|
||||
heap_lock(heap);
|
||||
long epoch = heap->count;
|
||||
while (mutators_are_stopping(heap))
|
||||
pause_mutator_for_collection_with_lock(mut);
|
||||
if (epoch == heap->count)
|
||||
collect(mut);
|
||||
heap_unlock(heap);
|
||||
}
|
||||
|
||||
void gc_collect(struct gc_mutator *mut, enum gc_collection_kind kind) {
|
||||
trigger_collection(mut);
|
||||
}
|
||||
|
||||
static void* allocate_large(struct gc_mutator *mut, size_t size) {
|
||||
struct gc_heap *heap = mutator_heap(mut);
|
||||
struct large_object_space *space = heap_large_object_space(heap);
|
||||
|
||||
size_t npages = large_object_space_npages(space, size);
|
||||
|
||||
copy_space_request_release_memory(heap_copy_space(heap),
|
||||
npages << space->page_size_log2);
|
||||
while (!copy_space_page_out_blocks_until_memory_released(heap_copy_space(heap)))
|
||||
trigger_collection(mut);
|
||||
atomic_fetch_add(&heap->large_object_pages, npages);
|
||||
|
||||
void *ret = large_object_space_alloc(space, npages);
|
||||
if (!ret)
|
||||
ret = large_object_space_obtain_and_alloc(space, npages);
|
||||
|
||||
if (!ret) {
|
||||
perror("weird: we have the space but mmap didn't work");
|
||||
GC_CRASH();
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void get_more_empty_blocks_for_mutator(void *mut) {
|
||||
trigger_collection(mut);
|
||||
}
|
||||
|
||||
void* gc_allocate_slow(struct gc_mutator *mut, size_t size) {
|
||||
GC_ASSERT(size > 0); // allocating 0 bytes would be silly
|
||||
|
||||
if (size > gc_allocator_large_threshold())
|
||||
return allocate_large(mut, size);
|
||||
|
||||
struct gc_ref ret = copy_space_allocate(&mut->allocator,
|
||||
heap_copy_space(mutator_heap(mut)),
|
||||
size,
|
||||
get_more_empty_blocks_for_mutator,
|
||||
mut);
|
||||
gc_clear_fresh_allocation(ret, size);
|
||||
return gc_ref_heap_object(ret);
|
||||
}
|
||||
|
||||
void* gc_allocate_pointerless(struct gc_mutator *mut, size_t size) {
|
||||
return gc_allocate(mut, size);
|
||||
}
|
||||
|
||||
struct gc_ephemeron* gc_allocate_ephemeron(struct gc_mutator *mut) {
|
||||
return gc_allocate(mut, gc_ephemeron_size());
|
||||
}
|
||||
|
||||
void gc_ephemeron_init(struct gc_mutator *mut, struct gc_ephemeron *ephemeron,
|
||||
struct gc_ref key, struct gc_ref value) {
|
||||
gc_ephemeron_init_internal(mutator_heap(mut), ephemeron, key, value);
|
||||
}
|
||||
|
||||
struct gc_pending_ephemerons *gc_heap_pending_ephemerons(struct gc_heap *heap) {
|
||||
return heap->pending_ephemerons;
|
||||
}
|
||||
|
||||
unsigned gc_heap_ephemeron_trace_epoch(struct gc_heap *heap) {
|
||||
return heap->count;
|
||||
}
|
||||
|
||||
struct gc_finalizer* gc_allocate_finalizer(struct gc_mutator *mut) {
|
||||
return gc_allocate(mut, gc_finalizer_size());
|
||||
}
|
||||
|
||||
void gc_finalizer_attach(struct gc_mutator *mut, struct gc_finalizer *finalizer,
|
||||
unsigned priority, struct gc_ref object,
|
||||
struct gc_ref closure) {
|
||||
gc_finalizer_init_internal(finalizer, object, closure);
|
||||
gc_finalizer_attach_internal(mutator_heap(mut)->finalizer_state,
|
||||
finalizer, priority);
|
||||
// No write barrier.
|
||||
}
|
||||
|
||||
struct gc_finalizer* gc_pop_finalizable(struct gc_mutator *mut) {
|
||||
return gc_finalizer_state_pop(mutator_heap(mut)->finalizer_state);
|
||||
}
|
||||
|
||||
void gc_set_finalizer_callback(struct gc_heap *heap,
|
||||
gc_finalizer_callback callback) {
|
||||
gc_finalizer_state_set_callback(heap->finalizer_state, callback);
|
||||
}
|
||||
|
||||
static int heap_prepare_pending_ephemerons(struct gc_heap *heap) {
|
||||
struct gc_pending_ephemerons *cur = heap->pending_ephemerons;
|
||||
size_t target = heap->size * heap->pending_ephemerons_size_factor;
|
||||
double slop = heap->pending_ephemerons_size_slop;
|
||||
|
||||
heap->pending_ephemerons = gc_prepare_pending_ephemerons(cur, target, slop);
|
||||
|
||||
return !!heap->pending_ephemerons;
|
||||
}
|
||||
|
||||
struct gc_options {
|
||||
struct gc_common_options common;
|
||||
};
|
||||
int gc_option_from_string(const char *str) {
|
||||
return gc_common_option_from_string(str);
|
||||
}
|
||||
struct gc_options* gc_allocate_options(void) {
|
||||
struct gc_options *ret = malloc(sizeof(struct gc_options));
|
||||
gc_init_common_options(&ret->common);
|
||||
return ret;
|
||||
}
|
||||
int gc_options_set_int(struct gc_options *options, int option, int value) {
|
||||
return gc_common_options_set_int(&options->common, option, value);
|
||||
}
|
||||
int gc_options_set_size(struct gc_options *options, int option,
|
||||
size_t value) {
|
||||
return gc_common_options_set_size(&options->common, option, value);
|
||||
}
|
||||
int gc_options_set_double(struct gc_options *options, int option,
|
||||
double value) {
|
||||
return gc_common_options_set_double(&options->common, option, value);
|
||||
}
|
||||
int gc_options_parse_and_set(struct gc_options *options, int option,
|
||||
const char *value) {
|
||||
return gc_common_options_parse_and_set(&options->common, option, value);
|
||||
}
|
||||
|
||||
static int heap_init(struct gc_heap *heap, const struct gc_options *options) {
|
||||
// *heap is already initialized to 0.
|
||||
|
||||
pthread_mutex_init(&heap->lock, NULL);
|
||||
pthread_cond_init(&heap->mutator_cond, NULL);
|
||||
pthread_cond_init(&heap->collector_cond, NULL);
|
||||
heap->size = options->common.heap_size;
|
||||
|
||||
if (options->common.parallelism != 1)
|
||||
fprintf(stderr, "warning: parallelism unimplemented in semispace copying collector\n");
|
||||
|
||||
if (!gc_tracer_init(&heap->tracer, heap, 1))
|
||||
GC_CRASH();
|
||||
|
||||
heap->pending_ephemerons_size_factor = 0.005;
|
||||
heap->pending_ephemerons_size_slop = 0.5;
|
||||
|
||||
if (!heap_prepare_pending_ephemerons(heap))
|
||||
GC_CRASH();
|
||||
|
||||
heap->finalizer_state = gc_make_finalizer_state();
|
||||
if (!heap->finalizer_state)
|
||||
GC_CRASH();
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
int gc_init(const struct gc_options *options, struct gc_stack_addr *stack_base,
|
||||
struct gc_heap **heap, struct gc_mutator **mut,
|
||||
struct gc_event_listener event_listener,
|
||||
void *event_listener_data) {
|
||||
GC_ASSERT_EQ(gc_allocator_small_granule_size(), GC_ALIGNMENT);
|
||||
GC_ASSERT_EQ(gc_allocator_large_threshold(), GC_LARGE_OBJECT_THRESHOLD);
|
||||
GC_ASSERT_EQ(0, offsetof(struct gc_mutator, allocator));
|
||||
GC_ASSERT_EQ(gc_allocator_allocation_pointer_offset(),
|
||||
offsetof(struct copy_space_allocator, hp));
|
||||
GC_ASSERT_EQ(gc_allocator_allocation_limit_offset(),
|
||||
offsetof(struct copy_space_allocator, limit));
|
||||
|
||||
if (options->common.heap_size_policy != GC_HEAP_SIZE_FIXED) {
|
||||
fprintf(stderr, "fixed heap size is currently required\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
*heap = calloc(1, sizeof(struct gc_heap));
|
||||
if (!*heap) GC_CRASH();
|
||||
|
||||
if (!heap_init(*heap, options))
|
||||
GC_CRASH();
|
||||
|
||||
(*heap)->event_listener = event_listener;
|
||||
(*heap)->event_listener_data = event_listener_data;
|
||||
HEAP_EVENT(*heap, init, (*heap)->size);
|
||||
|
||||
struct copy_space *space = heap_copy_space(*heap);
|
||||
int atomic_forward = 0;
|
||||
if (!copy_space_init(space, (*heap)->size, atomic_forward)) {
|
||||
free(*heap);
|
||||
*heap = NULL;
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (!large_object_space_init(heap_large_object_space(*heap), *heap))
|
||||
GC_CRASH();
|
||||
|
||||
*mut = calloc(1, sizeof(struct gc_mutator));
|
||||
if (!*mut) GC_CRASH();
|
||||
add_mutator(*heap, *mut);
|
||||
return 1;
|
||||
}
|
||||
|
||||
struct gc_mutator* gc_init_for_thread(struct gc_stack_addr *stack_base,
|
||||
struct gc_heap *heap) {
|
||||
struct gc_mutator *ret = calloc(1, sizeof(struct gc_mutator));
|
||||
if (!ret)
|
||||
GC_CRASH();
|
||||
add_mutator(heap, ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
void gc_finish_for_thread(struct gc_mutator *mut) {
|
||||
remove_mutator(mutator_heap(mut), mut);
|
||||
free(mut);
|
||||
}
|
||||
|
||||
static void deactivate_mutator(struct gc_heap *heap, struct gc_mutator *mut) {
|
||||
GC_ASSERT(mut->next == NULL);
|
||||
copy_space_allocator_finish(&mut->allocator, heap_copy_space(heap));
|
||||
heap_lock(heap);
|
||||
heap->inactive_mutator_count++;
|
||||
if (all_mutators_stopped(heap))
|
||||
pthread_cond_signal(&heap->collector_cond);
|
||||
heap_unlock(heap);
|
||||
}
|
||||
|
||||
static void reactivate_mutator(struct gc_heap *heap, struct gc_mutator *mut) {
|
||||
heap_lock(heap);
|
||||
while (mutators_are_stopping(heap))
|
||||
pthread_cond_wait(&heap->mutator_cond, &heap->lock);
|
||||
heap->inactive_mutator_count--;
|
||||
heap_unlock(heap);
|
||||
}
|
||||
|
||||
void* gc_call_without_gc(struct gc_mutator *mut,
|
||||
void* (*f)(void*),
|
||||
void *data) {
|
||||
struct gc_heap *heap = mutator_heap(mut);
|
||||
deactivate_mutator(heap, mut);
|
||||
void *ret = f(data);
|
||||
reactivate_mutator(heap, mut);
|
||||
return ret;
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue