1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-05-20 11:40:18 +02:00

implement compilation of label-allocated lambda expressions

* module/language/tree-il/compile-glil.scm (flatten-lambda, flatten):
  Implement compilation of label-allocated lambda expressions. Quite
  tricky, we'll see if this works when the new analyzer lands.
This commit is contained in:
Andy Wingo 2009-08-07 17:44:02 +02:00
parent 9059993fe0
commit 230cfcfb3e

View file

@ -37,7 +37,7 @@
;; allocation:
;; sym -> {lambda -> address}
;; lambda -> (nlocs . closure-vars)
;; lambda -> (nlocs labels . free-locs)
;;
;; address := (local? boxed? . index)
;; free-locs ::= ((sym0 . address0) (sym1 . address1) ...)
@ -163,6 +163,7 @@
ids
vars))
;; FIXME: always emit? otherwise it's hard to pair bind with unbind
(define (emit-bindings src ids vars allocation proc emit-code)
(if (pair? vars)
(emit-code src (make-glil-bind
@ -188,7 +189,8 @@
(else (values (reverse (cons ids oids))
(reverse (cons vars ovars))
(1+ n) 1))))
(let ((nlocs (car (hashq-ref allocation x))))
(let ((nlocs (car (hashq-ref allocation x)))
(labels (cadr (hashq-ref allocation x))))
(make-glil-program
nargs nrest nlocs (lambda-meta x)
(with-output-to-code
@ -209,35 +211,44 @@
(emit-code #f (make-glil-lexical #t #t 'box n)))))
vars)
;; and here, here, dear reader: we compile.
(flatten (lambda-body x) allocation x self-label emit-code)))))))
(flatten (lambda-body x) allocation x self-label
labels emit-code)))))))
(define (flatten x allocation self self-label emit-code)
(define (flatten x allocation self self-label fix-labels emit-code)
(define (emit-label label)
(emit-code #f (make-glil-label label)))
(define (emit-branch src inst label)
(emit-code src (make-glil-branch inst label)))
;; LMVRA == "let-values MV return address"
(let comp ((x x) (context 'tail) (LMVRA #f))
(define (comp-tail tree) (comp tree context LMVRA))
(define (comp-push tree) (comp tree 'push #f))
(define (comp-drop tree) (comp tree 'drop #f))
(define (comp-vals tree LMVRA) (comp tree 'vals LMVRA))
;; RA: "return address"; #f unless we're in a non-tail fix with labels
;; MVRA: "multiple-values return address"; #f unless we're in a let-values
(let comp ((x x) (context 'tail) (RA #f) (MVRA #f))
(define (comp-tail tree) (comp tree context RA MVRA))
(define (comp-push tree) (comp tree 'push #f #f))
(define (comp-drop tree) (comp tree 'drop #f #f))
(define (comp-vals tree MVRA) (comp tree 'vals #f MVRA))
(define (comp-fix tree RA) (comp tree context RA MVRA))
;; A couple of helpers. Note that if we are in tail context, we
;; won't have an RA.
(define (maybe-emit-return)
(if RA
(emit-branch #f 'br RA)
(if (eq? context 'tail)
(emit-code #f (make-glil-call 'return 1)))))
(record-case x
((<void>)
(case context
((push vals) (emit-code #f (make-glil-void)))
((tail)
(emit-code #f (make-glil-void))
(emit-code #f (make-glil-call 'return 1)))))
((push vals tail)
(emit-code #f (make-glil-void))))
(maybe-emit-return))
((<const> src exp)
(case context
((push vals) (emit-code src (make-glil-const exp)))
((tail)
(emit-code src (make-glil-const exp))
(emit-code #f (make-glil-call 'return 1)))))
((push vals tail)
(emit-code src (make-glil-const exp))))
(maybe-emit-return))
;; FIXME: should represent sequence as exps tail
((<sequence> src exps)
@ -263,7 +274,7 @@
;; drop: (lambda () (apply values '(1 2)) 3)
;; push: (lambda () (list (apply values '(10 12)) 1))
(case context
((drop) (for-each comp-drop args))
((drop) (for-each comp-drop args) (maybe-emit-return))
((tail)
(for-each comp-push args)
(emit-code src (make-glil-call 'return/values* (length args))))))
@ -277,12 +288,14 @@
((push)
(comp-push proc)
(for-each comp-push args)
(emit-code src (make-glil-call 'apply (1+ (length args)))))
(emit-code src (make-glil-call 'apply (1+ (length args))))
(maybe-emit-return))
((vals)
(comp-vals
(make-application src (make-primitive-ref #f 'apply)
(cons proc args))
LMVRA))
MVRA)
(maybe-emit-return))
((drop)
;; Well, shit. The proc might return any number of
;; values (including 0), since it's in a drop context,
@ -290,8 +303,9 @@
;; mv-call out to our trampoline instead.
(comp-drop
(make-application src (make-primitive-ref #f 'apply)
(cons proc args)))))))))
(cons proc args)))
(maybe-emit-return)))))))
((and (primitive-ref? proc) (eq? (primitive-ref-name proc) 'values)
(not (eq? context 'push)))
;; tail: (lambda () (values '(1 2)))
@ -299,11 +313,11 @@
;; push: (lambda () (list (values '(10 12)) 1))
;; vals: (let-values (((a b ...) (values 1 2 ...))) ...)
(case context
((drop) (for-each comp-drop args))
((drop) (for-each comp-drop args) (maybe-emit-return))
((vals)
(for-each comp-push args)
(emit-code #f (make-glil-const (length args)))
(emit-branch src 'br LMVRA))
(emit-branch src 'br MVRA))
((tail)
(for-each comp-push args)
(emit-code src (make-glil-call 'return/values (length args))))))
@ -324,7 +338,8 @@
(comp-vals
(make-application src (make-primitive-ref #f 'call-with-values)
args)
LMVRA))
MVRA)
(maybe-emit-return))
(else
(let ((MV (make-label)) (POST (make-label))
(producer (car args)) (consumer (cadr args)))
@ -341,7 +356,8 @@
(else (emit-code src (make-glil-call 'call/nargs 0))
(emit-label POST)
(if (eq? context 'drop)
(emit-code #f (make-glil-call 'drop 1)))))))))
(emit-code #f (make-glil-call 'drop 1)))
(maybe-emit-return)))))))
((and (primitive-ref? proc)
(eq? (primitive-ref-name proc) '@call-with-current-continuation)
@ -355,16 +371,19 @@
(make-application
src (make-primitive-ref #f 'call-with-current-continuation)
args)
LMVRA))
MVRA)
(maybe-emit-return))
((push)
(comp-push (car args))
(emit-code src (make-glil-call 'call/cc 1)))
(emit-code src (make-glil-call 'call/cc 1))
(maybe-emit-return))
((drop)
;; Crap. Just like `apply' in drop context.
(comp-drop
(make-application
src (make-primitive-ref #f 'call-with-current-continuation)
args)))))
args))
(maybe-emit-return))))
((and (primitive-ref? proc)
(or (hash-ref *primcall-ops*
@ -376,13 +395,12 @@
(case (instruction-pushes op)
((0)
(case context
((tail) (emit-code #f (make-glil-void))
(emit-code #f (make-glil-call 'return 1)))
((push vals) (emit-code #f (make-glil-void)))))
((tail push vals) (emit-code #f (make-glil-void))))
(maybe-emit-return))
((1)
(case context
((tail) (emit-code #f (make-glil-call 'return 1)))
((drop) (emit-code #f (make-glil-call 'drop 1)))))
((drop) (emit-code #f (make-glil-call 'drop 1))))
(maybe-emit-return))
(else
(error "bad primitive op: too many pushes"
op (instruction-pushes op))))))
@ -401,28 +419,50 @@
(for-each (lambda (sym)
(pmatch (hashq-ref (hashq-ref allocation sym) self)
((#t ,boxed? . ,index)
;; set unboxed, as the proc prelude will box if needed
(emit-code #f (make-glil-lexical #t #f 'set index)))
(,x (error "what" x))))
(reverse (lambda-vars self)))
(emit-branch src 'br self-label))
;; lambda, the ultimate goto
((and (lexical-ref? proc)
(assq (lexical-ref-gensym proc) fix-labels))
;; evaluate new values, assuming that analyze-lexicals did its
;; job, and that the arity was right
(for-each comp-push args)
;; rename
(for-each (lambda (sym)
(pmatch (hashq-ref (hashq-ref allocation sym) self)
((#t #f . ,index)
(emit-code #f (make-glil-lexical #t #f 'set index)))
((#t #t . ,index)
(emit-code #f (make-glil-lexical #t #t 'box index)))
(,x (error "what" x))))
(reverse (assq-ref fix-labels (lexical-ref-gensym proc))))
;; goto!
(emit-branch src 'br (lexical-ref-gensym proc)))
(else
(comp-push proc)
(for-each comp-push args)
(let ((len (length args)))
(case context
((tail) (emit-code src (make-glil-call 'goto/args len)))
((push) (emit-code src (make-glil-call 'call len)))
((vals) (emit-code src (make-glil-mv-call len LMVRA)))
((drop)
(let ((MV (make-label)) (POST (make-label)))
(emit-code src (make-glil-mv-call len MV))
(emit-code #f (make-glil-call 'drop 1))
(emit-branch #f 'br POST)
(emit-label MV)
(emit-code #f (make-glil-mv-bind '() #f))
(emit-code #f (make-glil-unbind))
(emit-label POST))))))))
((push) (emit-code src (make-glil-call 'call len))
(maybe-emit-return))
((vals) (emit-code src (make-glil-mv-call len MVRA))
(maybe-emit-return))
((drop) (let ((MV (make-label)) (POST (make-label)))
(emit-code src (make-glil-mv-call len MV))
(emit-code #f (make-glil-call 'drop 1))
(emit-branch #f 'br (or RA POST))
(emit-label MV)
(emit-code #f (make-glil-mv-bind '() #f))
(emit-code #f (make-glil-unbind))
(if RA
(emit-branch #f 'br RA)
(emit-label POST)))))))))
((<conditional> src test then else)
;; TEST
@ -436,30 +476,28 @@
(emit-branch src 'br-if-not L1)
(comp-tail then)
(if (not (eq? context 'tail))
(emit-branch #f 'br L2))
(emit-branch #f 'br (or RA L2)))
(emit-label L1)
(comp-tail else)
(if (not (eq? context 'tail))
(emit-label L2))))
(if RA
(emit-branch #f 'br RA)
(emit-label L2)))))
((<primitive-ref> src name)
(cond
((eq? (module-variable (fluid-ref *comp-module*) name)
(module-variable the-root-module name))
(case context
((push vals)
(emit-code src (make-glil-toplevel 'ref name)))
((tail)
(emit-code src (make-glil-toplevel 'ref name))
(emit-code #f (make-glil-call 'return 1)))))
((tail push vals)
(emit-code src (make-glil-toplevel 'ref name))))
(maybe-emit-return))
(else
(pk 'ew-the-badness x (current-module) (fluid-ref *comp-module*))
(case context
((push vals)
(emit-code src (make-glil-module 'ref '(guile) name #f)))
((tail)
(emit-code src (make-glil-module 'ref '(guile) name #f))
(emit-code #f (make-glil-call 'return 1)))))))
((tail push vals)
(emit-code src (make-glil-module 'ref '(guile) name #f))))
(maybe-emit-return))))
((<lexical-ref> src name gensym)
(case context
@ -469,8 +507,7 @@
(emit-code src (make-glil-lexical local? boxed? 'ref index)))
(,loc
(error "badness" x loc)))))
(case context
((tail) (emit-code #f (make-glil-call 'return 1)))))
(maybe-emit-return))
((<lexical-set> src name gensym exp)
(comp-push exp)
@ -480,53 +517,45 @@
(,loc
(error "badness" x loc)))
(case context
((push vals)
(emit-code #f (make-glil-void)))
((tail)
(emit-code #f (make-glil-void))
(emit-code #f (make-glil-call 'return 1)))))
((tail push vals)
(emit-code #f (make-glil-void))))
(maybe-emit-return))
((<module-ref> src mod name public?)
(emit-code src (make-glil-module 'ref mod name public?))
(case context
((drop) (emit-code #f (make-glil-call 'drop 1)))
((tail) (emit-code #f (make-glil-call 'return 1)))))
((drop) (emit-code #f (make-glil-call 'drop 1))))
(maybe-emit-return))
((<module-set> src mod name public? exp)
(comp-push exp)
(emit-code src (make-glil-module 'set mod name public?))
(case context
((push vals)
(emit-code #f (make-glil-void)))
((tail)
(emit-code #f (make-glil-void))
(emit-code #f (make-glil-call 'return 1)))))
((tail push vals)
(emit-code #f (make-glil-void))))
(maybe-emit-return))
((<toplevel-ref> src name)
(emit-code src (make-glil-toplevel 'ref name))
(case context
((drop) (emit-code #f (make-glil-call 'drop 1)))
((tail) (emit-code #f (make-glil-call 'return 1)))))
((drop) (emit-code #f (make-glil-call 'drop 1))))
(maybe-emit-return))
((<toplevel-set> src name exp)
(comp-push exp)
(emit-code src (make-glil-toplevel 'set name))
(case context
((push vals)
(emit-code #f (make-glil-void)))
((tail)
(emit-code #f (make-glil-void))
(emit-code #f (make-glil-call 'return 1)))))
((tail push vals)
(emit-code #f (make-glil-void))))
(maybe-emit-return))
((<toplevel-define> src name exp)
(comp-push exp)
(emit-code src (make-glil-toplevel 'define name))
(case context
((push vals)
(emit-code #f (make-glil-void)))
((tail)
(emit-code #f (make-glil-void))
(emit-code #f (make-glil-call 'return 1)))))
((tail push vals)
(emit-code #f (make-glil-void))))
(maybe-emit-return))
((<lambda>)
(let ((free-locs (cddr (hashq-ref allocation x))))
@ -543,9 +572,8 @@
(else (error "what" x loc))))
free-locs)
(emit-code #f (make-glil-call 'vector (length free-locs)))
(emit-code #f (make-glil-call 'make-closure 2))))
(if (eq? context 'tail)
(emit-code #f (make-glil-call 'return 1)))))))
(emit-code #f (make-glil-call 'make-closure 2)))))))
(maybe-emit-return))
((<let> src names vars vals body)
(for-each comp-push vals)
@ -580,47 +608,85 @@
(emit-code #f (make-glil-unbind)))
((<fix> src names vars vals body)
;; For fixpoint procedures, we can do some tricks to avoid
;; heap-allocation. Since we know the vals are lambdas, we can
;; set them to their local var slots first, then capture their
;; bindings, mutating them in place.
(for-each (lambda (x v)
(emit-code #f (flatten-lambda x v allocation))
(if (not (null? (cddr (hashq-ref allocation x))))
;; But we do have to make-closure them first, so
;; we are mutating fresh closures on the heap.
(begin
(emit-code #f (make-glil-const #f))
(emit-code #f (make-glil-call 'make-closure 2))))
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #f . ,n)
(emit-code src (make-glil-lexical #t #f 'set n)))
(,loc (error "badness" x loc))))
vals
vars)
(emit-bindings src names vars allocation self emit-code)
;; Now go back and fix up the bindings.
(for-each
(lambda (x v)
(let ((free-locs (cddr (hashq-ref allocation x))))
(if (not (null? free-locs))
(begin
(for-each
(lambda (loc)
(pmatch loc
((,local? ,boxed? . ,n)
(emit-code #f (make-glil-lexical local? #f 'ref n)))
(else (error "what" x loc))))
free-locs)
(emit-code #f (make-glil-call 'vector (length free-locs)))
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #f . ,n)
(emit-code #f (make-glil-lexical #t #f 'fix n)))
(,loc (error "badness" x loc)))))))
vals
vars)
(comp-tail body)
(emit-code #f (make-glil-unbind)))
;; The ideal here is to just render the lambda bodies inline, and
;; wire the code together with gotos. We can do that if
;; analyze-lexicals has determined that a given var has "label"
;; allocation -- which is the case if it is in `fix-labels'.
;;
;; But even for closures that we can't inline, we can do some
;; tricks to avoid heap-allocation for the binding itself. Since
;; we know the vals are lambdas, we can set them to their local
;; var slots first, then capture their bindings, mutating them in
;; place.
(let ((RA (if (eq? context 'tail) #f (make-label))))
(for-each
(lambda (x v)
(cond
((hashq-ref allocation x)
;; allocating a closure
(emit-code #f (flatten-lambda x v allocation))
(if (not (null? (cddr (hashq-ref allocation x))))
;; Need to make-closure first, but with a temporary #f
;; free-variables vector, so we are mutating fresh
;; closures on the heap.
(begin
(emit-code #f (make-glil-const #f))
(emit-code #f (make-glil-call 'make-closure 2))))
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #f . ,n)
(emit-code src (make-glil-lexical #t #f 'set n)))
(,loc (error "badness" x loc))))
(else
;; labels allocation: emit label & body, but jump over it
(let ((POST (make-label)))
(emit-branch #f 'br POST)
(emit-label v)
;; we know the lambda vars are a list
(emit-bindings #f (lambda-names x) (lambda-vars x)
allocation self emit-code)
(if (lambda-src x)
(emit-code #f (make-glil-source (lambda-src x))))
(comp-fix (lambda-body x) RA)
(emit-code #f (make-glil-unbind))
(emit-label POST)))))
vals
vars)
;; Emit bindings metadata for closures
(let ((binds (let lp ((out '()) (vars vars) (names names))
(cond ((null? vars) (reverse! out))
((memq (car vars) fix-labels)
(lp out (cdr vars) (cdr names)))
(else
(lp (acons (car vars) (car names) out)
(cdr vars) (cdr names)))))))
(emit-bindings src (map cdr binds) (map car binds)
allocation self emit-code))
;; Now go back and fix up the bindings for closures.
(for-each
(lambda (x v)
(let ((free-locs (if (hashq-ref allocation x)
(cddr (hashq-ref allocation x))
;; can hit this latter case for labels allocation
'())))
(if (not (null? free-locs))
(begin
(for-each
(lambda (loc)
(pmatch loc
((,local? ,boxed? . ,n)
(emit-code #f (make-glil-lexical local? #f 'ref n)))
(else (error "what" x loc))))
free-locs)
(emit-code #f (make-glil-call 'vector (length free-locs)))
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #f . ,n)
(emit-code #f (make-glil-lexical #t #f 'fix n)))
(,loc (error "badness" x loc)))))))
vals
vars)
(comp-tail body)
(emit-label RA)
(emit-code #f (make-glil-unbind))))
((<let-values> src names vars exp body)
(let lp ((names '()) (vars '()) (inames names) (ivars vars) (rest? #f))