1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-05-20 03:30:27 +02:00

Reimplement integer-expt in Scheme

* libguile/numbers.c (integer_expt_var): New static variable.
(init_integer_expt_var): New helper.
(scm_integer_expt): Delegate to Scheme.
* module/ice-9/boot-9.scm (integer-expt): Reimplement in Scheme.  Misses
some optimizations for fractions but that is probably OK!
This commit is contained in:
Andy Wingo 2022-01-03 16:19:44 +01:00
parent 2d5dc6a14c
commit 3ad3ac740f
2 changed files with 57 additions and 121 deletions

View file

@ -61,6 +61,7 @@
#include "boolean.h"
#include "deprecation.h"
#include "eq.h"
#include "eval.h"
#include "feature.h"
#include "finalizers.h"
#include "goops.h"
@ -72,6 +73,8 @@
#include "simpos.h"
#include "smob.h"
#include "strings.h"
#include "threads.h"
#include "variable.h"
#include "values.h"
#include "numbers.h"
@ -3208,128 +3211,23 @@ SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
}
#undef FUNC_NAME
SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
(SCM n, SCM k),
"Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
"exact integer, @var{n} can be any number.\n"
"\n"
"Negative @var{k} is supported, and results in\n"
"@math{1/@var{n}^abs(@var{k})} in the usual way.\n"
"@math{@var{n}^0} is 1, as usual, and that\n"
"includes @math{0^0} is 1.\n"
"\n"
"@lisp\n"
"(integer-expt 2 5) @result{} 32\n"
"(integer-expt -3 3) @result{} -27\n"
"(integer-expt 5 -3) @result{} 1/125\n"
"(integer-expt 0 0) @result{} 1\n"
"@end lisp")
#define FUNC_NAME s_scm_integer_expt
static SCM integer_expt_var;
static void
init_integer_expt_var (void)
{
scm_t_inum i2 = 0;
SCM z_i2 = SCM_BOOL_F;
int i2_is_big = 0;
SCM acc = SCM_I_MAKINUM (1L);
/* Specifically refrain from checking the type of the first argument.
This allows us to exponentiate any object that can be multiplied.
If we must raise to a negative power, we must also be able to
take its reciprocal. */
if (!SCM_LIKELY (SCM_I_INUMP (k)) && !SCM_LIKELY (SCM_BIGP (k)))
SCM_WRONG_TYPE_ARG (2, k);
if (SCM_UNLIKELY (scm_is_eq (k, SCM_INUM0)))
return SCM_INUM1; /* n^(exact0) is exact 1, regardless of n */
else if (SCM_UNLIKELY (scm_is_eq (n, SCM_I_MAKINUM (-1L))))
return scm_is_false (scm_even_p (k)) ? n : SCM_INUM1;
/* The next check is necessary only because R6RS specifies different
behavior for 0^(-k) than for (/ 0). If n is not a scheme number,
we simply skip this case and move on. */
else if (SCM_NUMBERP (n) && scm_is_true (scm_zero_p (n)))
{
/* k cannot be 0 at this point, because we
have already checked for that case above */
if (scm_is_true (scm_positive_p (k)))
return n;
else /* return NaN for (0 ^ k) for negative k per R6RS */
return scm_nan ();
}
else if (SCM_FRACTIONP (n))
{
/* Optimize the fraction case by (a/b)^k ==> (a^k)/(b^k), to avoid
needless reduction of intermediate products to lowest terms.
If a and b have no common factors, then a^k and b^k have no
common factors. Use 'scm_i_make_ratio_already_reduced' to
construct the final result, so that no gcd computations are
needed to exponentiate a fraction. */
if (scm_is_true (scm_positive_p (k)))
return scm_i_make_ratio_already_reduced
(scm_integer_expt (SCM_FRACTION_NUMERATOR (n), k),
scm_integer_expt (SCM_FRACTION_DENOMINATOR (n), k));
else
{
k = scm_difference (k, SCM_UNDEFINED);
return scm_i_make_ratio_already_reduced
(scm_integer_expt (SCM_FRACTION_DENOMINATOR (n), k),
scm_integer_expt (SCM_FRACTION_NUMERATOR (n), k));
}
}
if (SCM_I_INUMP (k))
i2 = SCM_I_INUM (k);
else if (SCM_BIGP (k))
{
z_i2 = scm_i_clonebig (k, 1);
scm_remember_upto_here_1 (k);
i2_is_big = 1;
}
else
SCM_WRONG_TYPE_ARG (2, k);
if (i2_is_big)
{
if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
{
mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
n = scm_divide (n, SCM_UNDEFINED);
}
while (1)
{
if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
{
return acc;
}
if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
{
return scm_product (acc, n);
}
if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
acc = scm_product (acc, n);
n = scm_product (n, n);
mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
}
}
else
{
if (i2 < 0)
{
i2 = -i2;
n = scm_divide (n, SCM_UNDEFINED);
}
while (1)
{
if (0 == i2)
return acc;
if (1 == i2)
return scm_product (acc, n);
if (i2 & 1)
acc = scm_product (acc, n);
n = scm_product (n, n);
i2 >>= 1;
}
}
integer_expt_var = scm_c_module_lookup (scm_the_root_module (),
"integer-expt");
}
SCM
scm_integer_expt (SCM n, SCM k)
{
static scm_i_pthread_once_t once = SCM_I_PTHREAD_ONCE_INIT;
scm_i_pthread_once (&once, init_integer_expt_var);
return scm_call_2 (scm_variable_ref (integer_expt_var), n, k);
}
#undef FUNC_NAME
/* Efficiently compute (N * 2^COUNT),
where N is an exact integer, and COUNT > 0. */

View file

@ -1,6 +1,6 @@
;;; -*- mode: scheme; coding: utf-8; -*-
;;;; Copyright (C) 1995-2014, 2016-2021 Free Software Foundation, Inc.
;;;; Copyright (C) 1995-2014, 2016-2022 Free Software Foundation, Inc.
;;;;
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
@ -4618,6 +4618,44 @@ when none is available, reading FILE-NAME with READER."
;;; {Math helpers}
;;;
(define (integer-expt n k)
"Return @var{n} raised to the power @var{k}. @var{k} must be an exact
integer, @var{n} can be any number.
Negative @var{k} is supported, and results in
@math{1/@var{n}^abs(@var{k})} in the usual way. @math{@var{n}^0} is 1,
as usual, and that includes @math{0^0} is 1.
@lisp
(integer-expt 2 5) @result{} 32
(integer-expt -3 3) @result{} -27
(integer-expt 5 -3) @result{} 1/125
(integer-expt 0 0) @result{} 1
@end lisp"
(cond
((not (exact-integer? k))
(scm-error 'wrong-type-arg "integer-expt"
"Wrong type (expected an exact integer): ~S"
(list k) #f))
((negative? k)
(if (and (number? n) (zero? n))
+nan.0
(integer-expt (/ n) (- k))))
(else
(let lp ((acc 1) (k k) (n n))
(cond
((eqv? k 0) acc)
((eqv? k 1) (* acc n))
(else
(lp (if (odd? k) (* acc n) acc)
(ash k -1)
(* n n))))))))
;;; {R6RS and R7RS}
;;;