mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-06-17 01:00:20 +02:00
Add missing files
Last commit meant to rename files, not delete them. Whoops!
This commit is contained in:
parent
aa7f0e25ac
commit
4aabc205cc
25 changed files with 8619 additions and 0 deletions
477
module/language/cps/utils.scm
Normal file
477
module/language/cps/utils.scm
Normal file
|
@ -0,0 +1,477 @@
|
|||
;;; Continuation-passing style (CPS) intermediate language (IL)
|
||||
|
||||
;; Copyright (C) 2013, 2014, 2015 Free Software Foundation, Inc.
|
||||
|
||||
;;;; This library is free software; you can redistribute it and/or
|
||||
;;;; modify it under the terms of the GNU Lesser General Public
|
||||
;;;; License as published by the Free Software Foundation; either
|
||||
;;;; version 3 of the License, or (at your option) any later version.
|
||||
;;;;
|
||||
;;;; This library is distributed in the hope that it will be useful,
|
||||
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
;;;; Lesser General Public License for more details.
|
||||
;;;;
|
||||
;;;; You should have received a copy of the GNU Lesser General Public
|
||||
;;;; License along with this library; if not, write to the Free Software
|
||||
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
|
||||
;;; Commentary:
|
||||
;;;
|
||||
;;; Helper facilities for working with CPS.
|
||||
;;;
|
||||
;;; Code:
|
||||
|
||||
(define-module (language cps utils)
|
||||
#:use-module (ice-9 match)
|
||||
#:use-module (srfi srfi-1)
|
||||
#:use-module (srfi srfi-11)
|
||||
#:use-module (language cps)
|
||||
#:use-module (language cps intset)
|
||||
#:use-module (language cps intmap)
|
||||
#:export (;; Fresh names.
|
||||
label-counter var-counter
|
||||
fresh-label fresh-var
|
||||
with-fresh-name-state compute-max-label-and-var
|
||||
let-fresh
|
||||
|
||||
;; Various utilities.
|
||||
fold1 fold2
|
||||
trivial-intset
|
||||
intmap-map
|
||||
intmap-keys
|
||||
invert-bijection invert-partition
|
||||
intset->intmap
|
||||
worklist-fold
|
||||
fixpoint
|
||||
|
||||
;; Flow analysis.
|
||||
compute-constant-values
|
||||
compute-function-body
|
||||
compute-reachable-functions
|
||||
compute-successors
|
||||
invert-graph
|
||||
compute-predecessors
|
||||
compute-reverse-post-order
|
||||
compute-strongly-connected-components
|
||||
compute-sorted-strongly-connected-components
|
||||
compute-idoms
|
||||
compute-dom-edges
|
||||
))
|
||||
|
||||
(define label-counter (make-parameter #f))
|
||||
(define var-counter (make-parameter #f))
|
||||
|
||||
(define (fresh-label)
|
||||
(let ((count (or (label-counter)
|
||||
(error "fresh-label outside with-fresh-name-state"))))
|
||||
(label-counter (1+ count))
|
||||
count))
|
||||
|
||||
(define (fresh-var)
|
||||
(let ((count (or (var-counter)
|
||||
(error "fresh-var outside with-fresh-name-state"))))
|
||||
(var-counter (1+ count))
|
||||
count))
|
||||
|
||||
(define-syntax-rule (let-fresh (label ...) (var ...) body ...)
|
||||
(let* ((label (fresh-label)) ...
|
||||
(var (fresh-var)) ...)
|
||||
body ...))
|
||||
|
||||
(define-syntax-rule (with-fresh-name-state fun body ...)
|
||||
(call-with-values (lambda () (compute-max-label-and-var fun))
|
||||
(lambda (max-label max-var)
|
||||
(parameterize ((label-counter (1+ max-label))
|
||||
(var-counter (1+ max-var)))
|
||||
body ...))))
|
||||
|
||||
(define (compute-max-label-and-var conts)
|
||||
(values (or (intmap-prev conts) -1)
|
||||
(intmap-fold (lambda (k cont max-var)
|
||||
(match cont
|
||||
(($ $kargs names syms body)
|
||||
(apply max max-var syms))
|
||||
(($ $kfun src meta self)
|
||||
(max max-var self))
|
||||
(_ max-var)))
|
||||
conts
|
||||
-1)))
|
||||
|
||||
(define-inlinable (fold1 f l s0)
|
||||
(let lp ((l l) (s0 s0))
|
||||
(match l
|
||||
(() s0)
|
||||
((elt . l) (lp l (f elt s0))))))
|
||||
|
||||
(define-inlinable (fold2 f l s0 s1)
|
||||
(let lp ((l l) (s0 s0) (s1 s1))
|
||||
(match l
|
||||
(() (values s0 s1))
|
||||
((elt . l)
|
||||
(call-with-values (lambda () (f elt s0 s1))
|
||||
(lambda (s0 s1)
|
||||
(lp l s0 s1)))))))
|
||||
|
||||
(define (trivial-intset set)
|
||||
"Returns the sole member of @var{set}, if @var{set} has exactly one
|
||||
member, or @code{#f} otherwise."
|
||||
(let ((first (intset-next set)))
|
||||
(and first
|
||||
(not (intset-next set (1+ first)))
|
||||
first)))
|
||||
|
||||
(define (intmap-map proc map)
|
||||
(persistent-intmap
|
||||
(intmap-fold (lambda (k v out) (intmap-replace! out k (proc k v)))
|
||||
map
|
||||
map)))
|
||||
|
||||
(define (intmap-keys map)
|
||||
"Return an intset of the keys in @var{map}."
|
||||
(persistent-intset
|
||||
(intmap-fold (lambda (k v keys) (intset-add! keys k)) map empty-intset)))
|
||||
|
||||
(define (invert-bijection map)
|
||||
"Assuming the values of @var{map} are integers and are unique, compute
|
||||
a map in which each value maps to its key. If the values are not
|
||||
unique, an error will be signalled."
|
||||
(intmap-fold (lambda (k v out) (intmap-add out v k)) map empty-intmap))
|
||||
|
||||
(define (invert-partition map)
|
||||
"Assuming the values of @var{map} are disjoint intsets, compute a map
|
||||
in which each member of each set maps to its key. If the values are not
|
||||
disjoint, an error will be signalled."
|
||||
(intmap-fold (lambda (k v* out)
|
||||
(intset-fold (lambda (v out) (intmap-add out v k)) v* out))
|
||||
map empty-intmap))
|
||||
|
||||
(define (intset->intmap f set)
|
||||
(persistent-intmap
|
||||
(intset-fold (lambda (label preds)
|
||||
(intmap-add! preds label (f label)))
|
||||
set empty-intmap)))
|
||||
|
||||
(define worklist-fold
|
||||
(case-lambda
|
||||
((f in out)
|
||||
(let lp ((in in) (out out))
|
||||
(if (eq? in empty-intset)
|
||||
out
|
||||
(call-with-values (lambda () (f in out)) lp))))
|
||||
((f in out0 out1)
|
||||
(let lp ((in in) (out0 out0) (out1 out1))
|
||||
(if (eq? in empty-intset)
|
||||
(values out0 out1)
|
||||
(call-with-values (lambda () (f in out0 out1)) lp))))))
|
||||
|
||||
(define fixpoint
|
||||
(case-lambda
|
||||
((f x)
|
||||
(let lp ((x x))
|
||||
(let ((x* (f x)))
|
||||
(if (eq? x x*) x* (lp x*)))))
|
||||
((f x0 x1)
|
||||
(let lp ((x0 x0) (x1 x1))
|
||||
(call-with-values (lambda () (f x0 x1))
|
||||
(lambda (x0* x1*)
|
||||
(if (and (eq? x0 x0*) (eq? x1 x1*))
|
||||
(values x0* x1*)
|
||||
(lp x0* x1*))))))))
|
||||
|
||||
(define (compute-defining-expressions conts)
|
||||
(define (meet-defining-expressions old new)
|
||||
;; If there are multiple definitions, punt and
|
||||
;; record #f.
|
||||
#f)
|
||||
(persistent-intmap
|
||||
(intmap-fold (lambda (label cont defs)
|
||||
(match cont
|
||||
(($ $kargs _ _ ($ $continue k src exp))
|
||||
(match (intmap-ref conts k)
|
||||
(($ $kargs (_) (var))
|
||||
(intmap-add! defs var exp meet-defining-expressions))
|
||||
(_ defs)))
|
||||
(_ defs)))
|
||||
conts
|
||||
empty-intmap)))
|
||||
|
||||
(define (compute-constant-values conts)
|
||||
(persistent-intmap
|
||||
(intmap-fold (lambda (var exp out)
|
||||
(match exp
|
||||
(($ $const val)
|
||||
(intmap-add! out var val))
|
||||
(_ out)))
|
||||
(compute-defining-expressions conts)
|
||||
empty-intmap)))
|
||||
|
||||
(define (compute-function-body conts kfun)
|
||||
(persistent-intset
|
||||
(let visit-cont ((label kfun) (labels empty-intset))
|
||||
(cond
|
||||
((intset-ref labels label) labels)
|
||||
(else
|
||||
(let ((labels (intset-add! labels label)))
|
||||
(match (intmap-ref conts label)
|
||||
(($ $kreceive arity k) (visit-cont k labels))
|
||||
(($ $kfun src meta self ktail kclause)
|
||||
(let ((labels (visit-cont ktail labels)))
|
||||
(if kclause
|
||||
(visit-cont kclause labels)
|
||||
labels)))
|
||||
(($ $ktail) labels)
|
||||
(($ $kclause arity kbody kalt)
|
||||
(if kalt
|
||||
(visit-cont kalt (visit-cont kbody labels))
|
||||
(visit-cont kbody labels)))
|
||||
(($ $kargs names syms ($ $continue k src exp))
|
||||
(visit-cont k (match exp
|
||||
(($ $branch k)
|
||||
(visit-cont k labels))
|
||||
(($ $prompt escape? tag k)
|
||||
(visit-cont k labels))
|
||||
(_ labels)))))))))))
|
||||
|
||||
(define (compute-reachable-functions conts kfun)
|
||||
"Compute a mapping LABEL->LABEL..., where each key is a reachable
|
||||
$kfun and each associated value is the body of the function, as an
|
||||
intset."
|
||||
(define (intset-cons i set) (intset-add set i))
|
||||
(define (visit-fun kfun body to-visit)
|
||||
(intset-fold
|
||||
(lambda (label to-visit)
|
||||
(define (return kfun*) (fold intset-cons to-visit kfun*))
|
||||
(define (return1 kfun) (intset-add to-visit kfun))
|
||||
(define (return0) to-visit)
|
||||
(match (intmap-ref conts label)
|
||||
(($ $kargs _ _ ($ $continue _ _ exp))
|
||||
(match exp
|
||||
(($ $fun label) (return1 label))
|
||||
(($ $rec _ _ (($ $fun labels) ...)) (return labels))
|
||||
(($ $closure label nfree) (return1 label))
|
||||
(($ $callk label) (return1 label))
|
||||
(_ (return0))))
|
||||
(_ (return0))))
|
||||
body
|
||||
to-visit))
|
||||
(let lp ((to-visit (intset kfun)) (visited empty-intmap))
|
||||
(let ((to-visit (intset-subtract to-visit (intmap-keys visited))))
|
||||
(if (eq? to-visit empty-intset)
|
||||
visited
|
||||
(call-with-values
|
||||
(lambda ()
|
||||
(intset-fold
|
||||
(lambda (kfun to-visit visited)
|
||||
(let ((body (compute-function-body conts kfun)))
|
||||
(values (visit-fun kfun body to-visit)
|
||||
(intmap-add visited kfun body))))
|
||||
to-visit
|
||||
empty-intset
|
||||
visited))
|
||||
lp)))))
|
||||
|
||||
(define* (compute-successors conts #:optional (kfun (intmap-next conts)))
|
||||
(define (visit label succs)
|
||||
(let visit ((label kfun) (succs empty-intmap))
|
||||
(define (propagate0)
|
||||
(intmap-add! succs label empty-intset))
|
||||
(define (propagate1 succ)
|
||||
(visit succ (intmap-add! succs label (intset succ))))
|
||||
(define (propagate2 succ0 succ1)
|
||||
(let ((succs (intmap-add! succs label (intset succ0 succ1))))
|
||||
(visit succ1 (visit succ0 succs))))
|
||||
(if (intmap-ref succs label (lambda (_) #f))
|
||||
succs
|
||||
(match (intmap-ref conts label)
|
||||
(($ $kargs names vars ($ $continue k src exp))
|
||||
(match exp
|
||||
(($ $branch kt) (propagate2 k kt))
|
||||
(($ $prompt escape? tag handler) (propagate2 k handler))
|
||||
(_ (propagate1 k))))
|
||||
(($ $kreceive arity k)
|
||||
(propagate1 k))
|
||||
(($ $kfun src meta self tail clause)
|
||||
(if clause
|
||||
(propagate2 clause tail)
|
||||
(propagate1 tail)))
|
||||
(($ $kclause arity kbody kalt)
|
||||
(if kalt
|
||||
(propagate2 kbody kalt)
|
||||
(propagate1 kbody)))
|
||||
(($ $ktail) (propagate0))))))
|
||||
(persistent-intmap (visit kfun empty-intmap)))
|
||||
|
||||
(define* (compute-predecessors conts kfun #:key
|
||||
(labels (compute-function-body conts kfun)))
|
||||
(define (meet cdr car)
|
||||
(cons car cdr))
|
||||
(define (add-preds label preds)
|
||||
(define (add-pred k preds)
|
||||
(intmap-add! preds k label meet))
|
||||
(match (intmap-ref conts label)
|
||||
(($ $kreceive arity k)
|
||||
(add-pred k preds))
|
||||
(($ $kfun src meta self ktail kclause)
|
||||
(add-pred ktail (if kclause (add-pred kclause preds) preds)))
|
||||
(($ $ktail)
|
||||
preds)
|
||||
(($ $kclause arity kbody kalt)
|
||||
(add-pred kbody (if kalt (add-pred kalt preds) preds)))
|
||||
(($ $kargs names syms ($ $continue k src exp))
|
||||
(add-pred k
|
||||
(match exp
|
||||
(($ $branch k) (add-pred k preds))
|
||||
(($ $prompt _ _ k) (add-pred k preds))
|
||||
(_ preds))))))
|
||||
(persistent-intmap
|
||||
(intset-fold add-preds labels
|
||||
(intset->intmap (lambda (label) '()) labels))))
|
||||
|
||||
(define (compute-reverse-post-order succs start)
|
||||
"Compute a reverse post-order numbering for a depth-first walk over
|
||||
nodes reachable from the start node."
|
||||
(let visit ((label start) (order '()) (visited empty-intset))
|
||||
(call-with-values
|
||||
(lambda ()
|
||||
(intset-fold (lambda (succ order visited)
|
||||
(if (intset-ref visited succ)
|
||||
(values order visited)
|
||||
(visit succ order visited)))
|
||||
(intmap-ref succs label)
|
||||
order
|
||||
(intset-add! visited label)))
|
||||
(lambda (order visited)
|
||||
;; After visiting successors, add label to the reverse post-order.
|
||||
(values (cons label order) visited)))))
|
||||
|
||||
(define (invert-graph succs)
|
||||
"Given a graph PRED->SUCC..., where PRED is a label and SUCC... is an
|
||||
intset of successors, return a graph SUCC->PRED...."
|
||||
(intmap-fold (lambda (pred succs preds)
|
||||
(intset-fold
|
||||
(lambda (succ preds)
|
||||
(intmap-add preds succ pred intset-add))
|
||||
succs
|
||||
preds))
|
||||
succs
|
||||
(intmap-map (lambda (label _) empty-intset) succs)))
|
||||
|
||||
(define (compute-strongly-connected-components succs start)
|
||||
"Given a LABEL->SUCCESSOR... graph, compute a SCC->LABEL... map
|
||||
partitioning the labels into strongly connected components (SCCs)."
|
||||
(let ((preds (invert-graph succs)))
|
||||
(define (visit-scc scc sccs-by-label)
|
||||
(let visit ((label scc) (sccs-by-label sccs-by-label))
|
||||
(if (intmap-ref sccs-by-label label (lambda (_) #f))
|
||||
sccs-by-label
|
||||
(intset-fold visit
|
||||
(intmap-ref preds label)
|
||||
(intmap-add sccs-by-label label scc)))))
|
||||
(intmap-fold
|
||||
(lambda (label scc sccs)
|
||||
(let ((labels (intset-add empty-intset label)))
|
||||
(intmap-add sccs scc labels intset-union)))
|
||||
(fold visit-scc empty-intmap (compute-reverse-post-order succs start))
|
||||
empty-intmap)))
|
||||
|
||||
(define (compute-sorted-strongly-connected-components edges)
|
||||
"Given a LABEL->SUCCESSOR... graph, return a list of strongly
|
||||
connected components in sorted order."
|
||||
(define nodes
|
||||
(intmap-keys edges))
|
||||
;; Add a "start" node that links to all nodes in the graph, and then
|
||||
;; remove it from the result.
|
||||
(define start
|
||||
(if (eq? nodes empty-intset)
|
||||
0
|
||||
(1+ (intset-prev nodes))))
|
||||
(define components
|
||||
(intmap-remove
|
||||
(compute-strongly-connected-components (intmap-add edges start nodes)
|
||||
start)
|
||||
start))
|
||||
(define node-components
|
||||
(intmap-fold (lambda (id nodes out)
|
||||
(intset-fold (lambda (node out) (intmap-add out node id))
|
||||
nodes out))
|
||||
components
|
||||
empty-intmap))
|
||||
(define (node-component node)
|
||||
(intmap-ref node-components node))
|
||||
(define (component-successors id nodes)
|
||||
(intset-remove
|
||||
(intset-fold (lambda (node out)
|
||||
(intset-fold
|
||||
(lambda (successor out)
|
||||
(intset-add out (node-component successor)))
|
||||
(intmap-ref edges node)
|
||||
out))
|
||||
nodes
|
||||
empty-intset)
|
||||
id))
|
||||
(define component-edges
|
||||
(intmap-map component-successors components))
|
||||
(define preds
|
||||
(invert-graph component-edges))
|
||||
(define roots
|
||||
(intmap-fold (lambda (id succs out)
|
||||
(if (eq? empty-intset succs)
|
||||
(intset-add out id)
|
||||
out))
|
||||
component-edges
|
||||
empty-intset))
|
||||
;; As above, add a "start" node that links to the roots, and remove it
|
||||
;; from the result.
|
||||
(match (compute-reverse-post-order (intmap-add preds start roots) start)
|
||||
(((? (lambda (id) (eqv? id start))) . ids)
|
||||
(map (lambda (id) (intmap-ref components id)) ids))))
|
||||
|
||||
;; Precondition: For each function in CONTS, the continuation names are
|
||||
;; topologically sorted.
|
||||
(define (compute-idoms conts kfun)
|
||||
;; This is the iterative O(n^2) fixpoint algorithm, originally from
|
||||
;; Allen and Cocke ("Graph-theoretic constructs for program flow
|
||||
;; analysis", 1972). See the discussion in Cooper, Harvey, and
|
||||
;; Kennedy's "A Simple, Fast Dominance Algorithm", 2001.
|
||||
(let ((preds-map (compute-predecessors conts kfun)))
|
||||
(define (compute-idom idoms preds)
|
||||
(define (idom-ref label)
|
||||
(intmap-ref idoms label (lambda (_) #f)))
|
||||
(match preds
|
||||
(() -1)
|
||||
((pred) pred) ; Shortcut.
|
||||
((pred . preds)
|
||||
(define (common-idom d0 d1)
|
||||
;; We exploit the fact that a reverse post-order is a
|
||||
;; topological sort, and so the idom of a node is always
|
||||
;; numerically less than the node itself.
|
||||
(let lp ((d0 d0) (d1 d1))
|
||||
(cond
|
||||
;; d0 or d1 can be false on the first iteration.
|
||||
((not d0) d1)
|
||||
((not d1) d0)
|
||||
((= d0 d1) d0)
|
||||
((< d0 d1) (lp d0 (idom-ref d1)))
|
||||
(else (lp (idom-ref d0) d1)))))
|
||||
(fold1 common-idom preds pred))))
|
||||
(define (adjoin-idom label preds idoms)
|
||||
(let ((idom (compute-idom idoms preds)))
|
||||
;; Don't use intmap-add! here.
|
||||
(intmap-add idoms label idom (lambda (old new) new))))
|
||||
(fixpoint (lambda (idoms)
|
||||
(intmap-fold adjoin-idom preds-map idoms))
|
||||
empty-intmap)))
|
||||
|
||||
;; Compute a vector containing, for each node, a list of the nodes that
|
||||
;; it immediately dominates. These are the "D" edges in the DJ tree.
|
||||
(define (compute-dom-edges idoms)
|
||||
(define (snoc cdr car) (cons car cdr))
|
||||
(persistent-intmap
|
||||
(intmap-fold (lambda (label idom doms)
|
||||
(let ((doms (intmap-add! doms label '())))
|
||||
(cond
|
||||
((< idom 0) doms) ;; No edge to entry.
|
||||
(else (intmap-add! doms idom label snoc)))))
|
||||
idoms
|
||||
empty-intmap)))
|
Loading…
Add table
Add a link
Reference in a new issue