1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-06-27 21:40:34 +02:00

Factor copy space out of pcc

This commit is contained in:
Andy Wingo 2024-08-05 08:56:01 +02:00
parent 6c5cdd73c9
commit 4c6889b751
2 changed files with 608 additions and 523 deletions

566
src/copy-space.h Normal file
View file

@ -0,0 +1,566 @@
#ifndef COPY_SPACE_H
#define COPY_SPACE_H
#include <stdlib.h>
#include "gc-api.h"
#define GC_IMPL 1
#include "gc-internal.h"
#include "assert.h"
#include "debug.h"
#include "gc-align.h"
#include "gc-attrs.h"
#include "gc-inline.h"
#include "spin.h"
// A copy space: a block-structured space that traces via evacuation.
#define COPY_SPACE_SLAB_SIZE (64 * 1024 * 1024)
#define COPY_SPACE_REGION_SIZE (64 * 1024)
#define COPY_SPACE_BLOCK_SIZE (2 * COPY_SPACE_REGION_SIZE)
#define COPY_SPACE_BLOCKS_PER_SLAB \
(COPY_SPACE_SLAB_SIZE / COPY_SPACE_BLOCK_SIZE)
#define COPY_SPACE_HEADER_BYTES_PER_BLOCK \
(COPY_SPACE_BLOCK_SIZE / COPY_SPACE_BLOCKS_PER_SLAB)
#define COPY_SPACE_HEADER_BLOCKS_PER_SLAB 1
#define COPY_SPACE_NONHEADER_BLOCKS_PER_SLAB \
(COPY_SPACE_BLOCKS_PER_SLAB - COPY_SPACE_HEADER_BLOCKS_PER_SLAB)
#define COPY_SPACE_HEADER_BYTES_PER_SLAB \
(COPY_SPACE_HEADER_BYTES_PER_BLOCK * COPY_SPACE_HEADER_BLOCKS_PER_SLAB)
struct copy_space_slab;
struct copy_space_slab_header {
union {
struct {
struct copy_space_slab *next;
struct copy_space_slab *prev;
unsigned incore_block_count;
};
uint8_t padding[COPY_SPACE_HEADER_BYTES_PER_SLAB];
};
};
STATIC_ASSERT_EQ(sizeof(struct copy_space_slab_header),
COPY_SPACE_HEADER_BYTES_PER_SLAB);
// Really just the block header.
struct copy_space_block {
union {
struct {
struct copy_space_block *next;
uint8_t in_core;
size_t allocated; // For partly-empty blocks.
};
uint8_t padding[COPY_SPACE_HEADER_BYTES_PER_BLOCK];
};
};
STATIC_ASSERT_EQ(sizeof(struct copy_space_block),
COPY_SPACE_HEADER_BYTES_PER_BLOCK);
struct copy_space_region {
char data[COPY_SPACE_REGION_SIZE];
};
struct copy_space_block_payload {
struct copy_space_region regions[2];
};
struct copy_space_slab {
struct copy_space_slab_header header;
struct copy_space_block headers[COPY_SPACE_NONHEADER_BLOCKS_PER_SLAB];
struct copy_space_block_payload blocks[COPY_SPACE_NONHEADER_BLOCKS_PER_SLAB];
};
STATIC_ASSERT_EQ(sizeof(struct copy_space_slab), COPY_SPACE_SLAB_SIZE);
static inline struct copy_space_block*
copy_space_block_header(struct copy_space_block_payload *payload) {
uintptr_t addr = (uintptr_t) payload;
uintptr_t base = align_down(addr, COPY_SPACE_SLAB_SIZE);
struct copy_space_slab *slab = (struct copy_space_slab*) base;
uintptr_t block_idx =
(addr / COPY_SPACE_BLOCK_SIZE) % COPY_SPACE_BLOCKS_PER_SLAB;
return &slab->headers[block_idx - COPY_SPACE_HEADER_BLOCKS_PER_SLAB];
}
static inline struct copy_space_block_payload*
copy_space_block_payload(struct copy_space_block *block) {
uintptr_t addr = (uintptr_t) block;
uintptr_t base = align_down(addr, COPY_SPACE_SLAB_SIZE);
struct copy_space_slab *slab = (struct copy_space_slab*) base;
uintptr_t block_idx =
(addr / COPY_SPACE_HEADER_BYTES_PER_BLOCK) % COPY_SPACE_BLOCKS_PER_SLAB;
return &slab->blocks[block_idx - COPY_SPACE_HEADER_BLOCKS_PER_SLAB];
}
static uint8_t
copy_space_object_region(struct gc_ref obj) {
return (gc_ref_value(obj) / COPY_SPACE_REGION_SIZE) & 1;
}
struct copy_space_extent {
uintptr_t low_addr;
uintptr_t high_addr;
};
struct copy_space {
struct copy_space_block *empty;
struct copy_space_block *partly_full;
struct copy_space_block *full ALIGNED_TO_AVOID_FALSE_SHARING;
size_t allocated_bytes;
size_t fragmentation;
struct copy_space_block *paged_out ALIGNED_TO_AVOID_FALSE_SHARING;
ssize_t bytes_to_page_out ALIGNED_TO_AVOID_FALSE_SHARING;
// The rest of these members are only changed rarely and with the heap
// lock.
uint8_t active_region ALIGNED_TO_AVOID_FALSE_SHARING;
size_t allocated_bytes_at_last_gc;
size_t fragmentation_at_last_gc;
struct copy_space_extent *extents;
size_t nextents;
struct copy_space_slab *slabs;
size_t nslabs;
};
struct copy_space_allocator {
uintptr_t hp;
uintptr_t limit;
struct copy_space_block *block;
};
static void
copy_space_push_block(struct copy_space_block **list,
struct copy_space_block *block) {
struct copy_space_block *next =
atomic_load_explicit(list, memory_order_acquire);
do {
block->next = next;
} while (!atomic_compare_exchange_weak(list, &next, block));
}
static struct copy_space_block*
copy_space_pop_block(struct copy_space_block **list) {
struct copy_space_block *head =
atomic_load_explicit(list, memory_order_acquire);
struct copy_space_block *next;
do {
if (!head)
return NULL;
} while (!atomic_compare_exchange_weak(list, &head, head->next));
head->next = NULL;
return head;
}
static struct copy_space_block*
copy_space_pop_empty_block(struct copy_space *space) {
struct copy_space_block *ret = copy_space_pop_block(&space->empty);
if (ret)
ret->allocated = 0;
return ret;
}
static void
copy_space_push_empty_block(struct copy_space *space,
struct copy_space_block *block) {
copy_space_push_block(&space->empty, block);
}
static struct copy_space_block*
copy_space_pop_full_block(struct copy_space *space) {
return copy_space_pop_block(&space->full);
}
static void
copy_space_push_full_block(struct copy_space *space,
struct copy_space_block *block) {
copy_space_push_block(&space->full, block);
}
static struct copy_space_block*
copy_space_pop_partly_full_block(struct copy_space *space) {
return copy_space_pop_block(&space->partly_full);
}
static void
copy_space_push_partly_full_block(struct copy_space *space,
struct copy_space_block *block) {
copy_space_push_block(&space->partly_full, block);
}
static struct copy_space_block*
copy_space_pop_paged_out_block(struct copy_space *space) {
return copy_space_pop_block(&space->paged_out);
}
static void
copy_space_push_paged_out_block(struct copy_space *space,
struct copy_space_block *block) {
copy_space_push_block(&space->paged_out, block);
}
static void
copy_space_page_out_block(struct copy_space *space,
struct copy_space_block *block) {
block->in_core = 0;
madvise(copy_space_block_payload(block), COPY_SPACE_BLOCK_SIZE, MADV_DONTNEED);
copy_space_push_paged_out_block(space, block);
}
static struct copy_space_block*
copy_space_page_in_block(struct copy_space *space) {
struct copy_space_block* block = copy_space_pop_paged_out_block(space);
if (block) block->in_core = 1;
return block;
}
static ssize_t
copy_space_request_release_memory(struct copy_space *space, size_t bytes) {
return atomic_fetch_add(&space->bytes_to_page_out, bytes) + bytes;
}
static int
copy_space_page_out_blocks_until_memory_released(struct copy_space *space) {
ssize_t pending = atomic_load(&space->bytes_to_page_out);
while (pending > 0) {
struct copy_space_block *block = copy_space_pop_empty_block(space);
if (!block) return 0;
copy_space_page_out_block(space, block);
pending = (atomic_fetch_sub(&space->bytes_to_page_out, COPY_SPACE_BLOCK_SIZE)
- COPY_SPACE_BLOCK_SIZE);
}
return 1;
}
static void
copy_space_reacquire_memory(struct copy_space *space, size_t bytes) {
ssize_t pending =
atomic_fetch_sub(&space->bytes_to_page_out, bytes) - bytes;
while (pending + COPY_SPACE_BLOCK_SIZE <= 0) {
struct copy_space_block *block = copy_space_page_in_block(space);
GC_ASSERT(block);
copy_space_push_empty_block(space, block);
pending = (atomic_fetch_add(&space->bytes_to_page_out, COPY_SPACE_BLOCK_SIZE)
+ COPY_SPACE_BLOCK_SIZE);
}
}
static inline void
copy_space_allocator_set_block(struct copy_space_allocator *alloc,
struct copy_space_block *block,
int active_region) {
struct copy_space_block_payload *payload = copy_space_block_payload(block);
struct copy_space_region *region = &payload->regions[active_region];
alloc->block = block;
alloc->hp = (uintptr_t)&region[0];
alloc->limit = (uintptr_t)&region[1];
}
static inline int
copy_space_allocator_acquire_block(struct copy_space_allocator *alloc,
struct copy_space_block *block,
int active_region) {
if (block) {
copy_space_allocator_set_block(alloc, block, active_region);
return 1;
}
return 0;
}
static int
copy_space_allocator_acquire_empty_block(struct copy_space_allocator *alloc,
struct copy_space *space) {
return copy_space_allocator_acquire_block(alloc,
copy_space_pop_empty_block(space),
space->active_region);
}
static int
copy_space_allocator_acquire_partly_full_block(struct copy_space_allocator *alloc,
struct copy_space *space) {
if (copy_space_allocator_acquire_block(alloc,
copy_space_pop_partly_full_block(space),
space->active_region)) {
alloc->hp += alloc->block->allocated;
return 1;
}
return 0;
}
static void
copy_space_allocator_release_full_block(struct copy_space_allocator *alloc,
struct copy_space *space) {
size_t fragmentation = alloc->limit - alloc->hp;
size_t allocated = COPY_SPACE_REGION_SIZE - alloc->block->allocated;
atomic_fetch_add_explicit(&space->allocated_bytes, allocated,
memory_order_relaxed);
if (fragmentation)
atomic_fetch_add_explicit(&space->fragmentation, fragmentation,
memory_order_relaxed);
copy_space_push_full_block(space, alloc->block);
alloc->hp = alloc->limit = 0;
alloc->block = NULL;
}
static void
copy_space_allocator_release_partly_full_block(struct copy_space_allocator *alloc,
struct copy_space *space) {
size_t allocated = alloc->hp & (COPY_SPACE_REGION_SIZE - 1);
if (allocated) {
atomic_fetch_add_explicit(&space->allocated_bytes,
allocated - alloc->block->allocated,
memory_order_relaxed);
alloc->block->allocated = allocated;
copy_space_push_partly_full_block(space, alloc->block);
} else {
// In this case, hp was bumped all the way to the limit, in which
// case allocated wraps to 0; the block is full.
atomic_fetch_add_explicit(&space->allocated_bytes,
COPY_SPACE_REGION_SIZE - alloc->block->allocated,
memory_order_relaxed);
copy_space_push_full_block(space, alloc->block);
}
alloc->hp = alloc->limit = 0;
alloc->block = NULL;
}
static inline struct gc_ref
copy_space_allocate(struct copy_space_allocator *alloc,
struct copy_space *space,
size_t size,
void (*get_more_empty_blocks)(void *data),
void *data) {
GC_ASSERT(size > 0);
GC_ASSERT(size <= gc_allocator_large_threshold());
size = align_up(size, gc_allocator_small_granule_size());
if (alloc->hp + size <= alloc->limit)
goto done;
if (alloc->block)
copy_space_allocator_release_full_block(alloc, space);
while (copy_space_allocator_acquire_partly_full_block(alloc, space)) {
if (alloc->hp + size <= alloc->limit)
goto done;
copy_space_allocator_release_full_block(alloc, space);
}
while (!copy_space_allocator_acquire_empty_block(alloc, space))
get_more_empty_blocks(data);
// The newly acquired block is empty and is therefore large enough for
// a small allocation.
done:
struct gc_ref ret = gc_ref(alloc->hp);
alloc->hp += size;
return ret;
}
static struct copy_space_block*
copy_space_append_block_lists(struct copy_space_block *head,
struct copy_space_block *tail) {
if (!head) return tail;
if (tail) {
struct copy_space_block *walk = head;
while (walk->next)
walk = walk->next;
walk->next = tail;
}
return head;
}
static void
copy_space_flip(struct copy_space *space) {
// Mutators stopped, can access nonatomically.
struct copy_space_block *flip = space->full;
flip = copy_space_append_block_lists(space->partly_full, flip);
flip = copy_space_append_block_lists(space->empty, flip);
space->empty = flip;
space->partly_full = NULL;
space->full = NULL;
space->allocated_bytes = 0;
space->fragmentation = 0;
space->active_region ^= 1;
}
static void
copy_space_finish_gc(struct copy_space *space) {
// Mutators stopped, can access nonatomically.
space->allocated_bytes_at_last_gc = space->allocated_bytes;
space->fragmentation_at_last_gc = space->fragmentation;
}
static void
copy_space_gc_during_evacuation(void *data) {
// If space is really tight and reordering of objects during
// evacuation resulted in more end-of-block fragmentation and thus
// block use than before collection started, we can actually run out
// of memory while collecting. We should probably attempt to expand
// the heap here, at least by a single block; it's better than the
// alternatives.
fprintf(stderr, "Out of memory\n");
GC_CRASH();
}
static inline int
copy_space_forward(struct copy_space *space, struct gc_edge edge,
struct gc_ref old_ref, struct copy_space_allocator *alloc) {
GC_ASSERT(copy_space_object_region(old_ref) != space->active_region);
struct gc_atomic_forward fwd = gc_atomic_forward_begin(old_ref);
if (fwd.state == GC_FORWARDING_STATE_NOT_FORWARDED)
gc_atomic_forward_acquire(&fwd);
switch (fwd.state) {
case GC_FORWARDING_STATE_NOT_FORWARDED:
case GC_FORWARDING_STATE_ABORTED:
default:
// Impossible.
GC_CRASH();
case GC_FORWARDING_STATE_ACQUIRED: {
// We claimed the object successfully; evacuating is up to us.
size_t bytes = gc_atomic_forward_object_size(&fwd);
struct gc_ref new_ref =
copy_space_allocate(alloc, space, bytes,
copy_space_gc_during_evacuation, NULL);
// Copy object contents before committing, as we don't know what
// part of the object (if any) will be overwritten by the
// commit.
memcpy(gc_ref_heap_object(new_ref), gc_ref_heap_object(old_ref), bytes);
gc_atomic_forward_commit(&fwd, new_ref);
gc_edge_update(edge, new_ref);
return 1;
}
case GC_FORWARDING_STATE_BUSY:
// Someone else claimed this object first. Spin until new address
// known, or evacuation aborts.
for (size_t spin_count = 0;; spin_count++) {
if (gc_atomic_forward_retry_busy(&fwd))
break;
yield_for_spin(spin_count);
}
GC_ASSERT(fwd.state == GC_FORWARDING_STATE_FORWARDED);
// Fall through.
case GC_FORWARDING_STATE_FORWARDED:
// The object has been evacuated already. Update the edge;
// whoever forwarded the object will make sure it's eventually
// traced.
gc_edge_update(edge, gc_ref(gc_atomic_forward_address(&fwd)));
return 0;
}
}
static int
copy_space_forward_if_traced(struct copy_space *space, struct gc_edge edge,
struct gc_ref old_ref) {
GC_ASSERT(copy_space_object_region(old_ref) != space->active_region);
struct gc_atomic_forward fwd = gc_atomic_forward_begin(old_ref);
switch (fwd.state) {
case GC_FORWARDING_STATE_NOT_FORWARDED:
return 0;
case GC_FORWARDING_STATE_BUSY:
// Someone else claimed this object first. Spin until new address
// known.
for (size_t spin_count = 0;; spin_count++) {
if (gc_atomic_forward_retry_busy(&fwd))
break;
yield_for_spin(spin_count);
}
GC_ASSERT(fwd.state == GC_FORWARDING_STATE_FORWARDED);
// Fall through.
case GC_FORWARDING_STATE_FORWARDED:
gc_edge_update(edge, gc_ref(gc_atomic_forward_address(&fwd)));
return 1;
default:
GC_CRASH();
}
}
static inline int
copy_space_contains(struct copy_space *space, struct gc_ref ref) {
for (size_t i = 0; i < space->nextents; i++)
if (space->extents[i].low_addr <= gc_ref_value(ref) &&
gc_ref_value(ref) < space->extents[i].high_addr)
return 1;
return 0;
}
static inline void
copy_space_allocator_init(struct copy_space_allocator *alloc,
struct copy_space *space) {
memset(alloc, 0, sizeof(*alloc));
}
static inline void
copy_space_allocator_finish(struct copy_space_allocator *alloc,
struct copy_space *space) {
if (alloc->block)
copy_space_allocator_release_partly_full_block(alloc, space);
}
static struct copy_space_slab*
copy_space_allocate_slabs(size_t nslabs) {
size_t size = nslabs * COPY_SPACE_SLAB_SIZE;
size_t extent = size + COPY_SPACE_SLAB_SIZE;
char *mem = mmap(NULL, extent, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (mem == MAP_FAILED) {
perror("mmap failed");
return NULL;
}
uintptr_t base = (uintptr_t) mem;
uintptr_t end = base + extent;
uintptr_t aligned_base = align_up(base, COPY_SPACE_SLAB_SIZE);
uintptr_t aligned_end = aligned_base + size;
if (aligned_base - base)
munmap((void*)base, aligned_base - base);
if (end - aligned_end)
munmap((void*)aligned_end, end - aligned_end);
return (struct copy_space_slab*) aligned_base;
}
static int
copy_space_init(struct copy_space *space, size_t size) {
size = align_up(size, COPY_SPACE_BLOCK_SIZE);
size_t reserved = align_up(size, COPY_SPACE_SLAB_SIZE);
size_t nslabs = reserved / COPY_SPACE_SLAB_SIZE;
struct copy_space_slab *slabs = copy_space_allocate_slabs(nslabs);
if (!slabs)
return 0;
space->empty = NULL;
space->partly_full = NULL;
space->full = NULL;
space->paged_out = NULL;
space->allocated_bytes = 0;
space->fragmentation = 0;
space->bytes_to_page_out = 0;
space->active_region = 0;
space->allocated_bytes_at_last_gc = 0;
space->fragmentation_at_last_gc = 0;
space->extents = calloc(1, sizeof(struct copy_space_extent));
space->extents[0].low_addr = (uintptr_t) slabs;
space->extents[0].high_addr = space->extents[0].low_addr + reserved;
space->nextents = 1;
space->slabs = slabs;
space->nslabs = nslabs;
for (size_t slab = 0; slab < nslabs; slab++) {
for (size_t idx = 0; idx < COPY_SPACE_NONHEADER_BLOCKS_PER_SLAB; idx++) {
struct copy_space_block *block = &slabs[slab].headers[idx];
if (reserved > size) {
block->in_core = 0;
copy_space_push_paged_out_block(space, block);
reserved -= COPY_SPACE_BLOCK_SIZE;
} else {
block->in_core = 1;
copy_space_push_empty_block(space, block);
}
}
}
return 1;
}
#endif // COPY_SPACE_H

565
src/pcc.c
View file

@ -12,6 +12,7 @@
#define GC_IMPL 1 #define GC_IMPL 1
#include "gc-internal.h" #include "gc-internal.h"
#include "copy-space.h"
#include "debug.h" #include "debug.h"
#include "gc-align.h" #include "gc-align.h"
#include "gc-inline.h" #include "gc-inline.h"
@ -21,106 +22,8 @@
#include "spin.h" #include "spin.h"
#include "pcc-attrs.h" #include "pcc-attrs.h"
#define SLAB_SIZE (64 * 1024 * 1024)
#define REGION_SIZE (64 * 1024)
#define BLOCK_SIZE (2 * REGION_SIZE)
#define BLOCKS_PER_SLAB (SLAB_SIZE / BLOCK_SIZE)
#define HEADER_BYTES_PER_BLOCK (BLOCK_SIZE / BLOCKS_PER_SLAB)
#define HEADER_BLOCKS_PER_SLAB 1
#define NONHEADER_BLOCKS_PER_SLAB (BLOCKS_PER_SLAB - HEADER_BLOCKS_PER_SLAB)
#define HEADER_BYTES_PER_SLAB (HEADER_BYTES_PER_BLOCK * HEADER_BLOCKS_PER_SLAB)
struct pcc_slab;
struct pcc_block;
struct pcc_slab_header {
union {
struct {
struct pcc_slab *next;
struct pcc_slab *prev;
unsigned incore_block_count;
};
uint8_t padding[HEADER_BYTES_PER_SLAB];
};
};
STATIC_ASSERT_EQ(sizeof(struct pcc_slab_header),
HEADER_BYTES_PER_SLAB);
// Really just the block header.
struct pcc_block {
union {
struct {
struct pcc_block *next;
uint8_t in_core;
size_t allocated; // For partly-empty blocks.
};
uint8_t padding[HEADER_BYTES_PER_BLOCK];
};
};
STATIC_ASSERT_EQ(sizeof(struct pcc_block),
HEADER_BYTES_PER_BLOCK);
struct pcc_region {
char data[REGION_SIZE];
};
struct pcc_block_payload {
struct pcc_region regions[2];
};
struct pcc_slab {
struct pcc_slab_header header;
struct pcc_block headers[NONHEADER_BLOCKS_PER_SLAB];
struct pcc_block_payload blocks[NONHEADER_BLOCKS_PER_SLAB];
};
STATIC_ASSERT_EQ(sizeof(struct pcc_slab), SLAB_SIZE);
static struct pcc_block *block_header(struct pcc_block_payload *payload) {
uintptr_t addr = (uintptr_t) payload;
uintptr_t base = align_down(addr, SLAB_SIZE);
struct pcc_slab *slab = (struct pcc_slab*) base;
uintptr_t block_idx = (addr / BLOCK_SIZE) % BLOCKS_PER_SLAB;
return &slab->headers[block_idx - HEADER_BLOCKS_PER_SLAB];
}
static struct pcc_block_payload *block_payload(struct pcc_block *block) {
uintptr_t addr = (uintptr_t) block;
uintptr_t base = align_down(addr, SLAB_SIZE);
struct pcc_slab *slab = (struct pcc_slab*) base;
uintptr_t block_idx = (addr / HEADER_BYTES_PER_BLOCK) % BLOCKS_PER_SLAB;
return &slab->blocks[block_idx - HEADER_BLOCKS_PER_SLAB];
}
static uint8_t pcc_object_region(struct gc_ref obj) {
return (gc_ref_value(obj) / REGION_SIZE) & 1;
}
struct pcc_extent {
uintptr_t low_addr;
uintptr_t high_addr;
};
struct pcc_space {
struct pcc_block *empty;
struct pcc_block *partly_full;
struct pcc_block *full ALIGNED_TO_AVOID_FALSE_SHARING;
size_t full_block_count;
struct pcc_block *paged_out ALIGNED_TO_AVOID_FALSE_SHARING;
size_t fragmentation ALIGNED_TO_AVOID_FALSE_SHARING;
ssize_t bytes_to_page_out ALIGNED_TO_AVOID_FALSE_SHARING;
// The rest of these members are only changed rarely and with the heap
// lock.
uint8_t active_region ALIGNED_TO_AVOID_FALSE_SHARING;
size_t live_bytes_at_last_gc;
size_t fragmentation_at_last_gc;
struct pcc_extent *extents;
size_t nextents;
struct pcc_slab *slabs;
size_t nslabs;
};
struct gc_heap { struct gc_heap {
struct pcc_space pcc_space; struct copy_space copy_space;
struct large_object_space large_object_space; struct large_object_space large_object_space;
struct gc_extern_space *extern_space; struct gc_extern_space *extern_space;
size_t large_object_pages; size_t large_object_pages;
@ -150,14 +53,8 @@ struct gc_heap {
#define MUTATOR_EVENT(mut, event, ...) \ #define MUTATOR_EVENT(mut, event, ...) \
(mut)->heap->event_listener.event((mut)->event_listener_data, ##__VA_ARGS__) (mut)->heap->event_listener.event((mut)->event_listener_data, ##__VA_ARGS__)
struct gc_allocator {
uintptr_t hp;
uintptr_t limit;
struct pcc_block *block;
};
struct gc_mutator { struct gc_mutator {
struct gc_allocator allocator; struct copy_space_allocator allocator;
struct gc_heap *heap; struct gc_heap *heap;
struct gc_mutator_roots *roots; struct gc_mutator_roots *roots;
void *event_listener_data; void *event_listener_data;
@ -166,11 +63,11 @@ struct gc_mutator {
}; };
struct gc_trace_worker_data { struct gc_trace_worker_data {
struct gc_allocator allocator; struct copy_space_allocator allocator;
}; };
static inline struct pcc_space* heap_pcc_space(struct gc_heap *heap) { static inline struct copy_space* heap_copy_space(struct gc_heap *heap) {
return &heap->pcc_space; return &heap->copy_space;
} }
static inline struct large_object_space* heap_large_object_space(struct gc_heap *heap) { static inline struct large_object_space* heap_large_object_space(struct gc_heap *heap) {
return &heap->large_object_space; return &heap->large_object_space;
@ -182,202 +79,6 @@ static inline struct gc_heap* mutator_heap(struct gc_mutator *mutator) {
return mutator->heap; return mutator->heap;
} }
static void push_block(struct pcc_block **list,
struct pcc_block *block) {
struct pcc_block *next = atomic_load_explicit(list, memory_order_acquire);
do {
block->next = next;
} while (!atomic_compare_exchange_weak(list, &next, block));
}
static struct pcc_block* pop_block(struct pcc_block **list) {
struct pcc_block *head = atomic_load_explicit(list, memory_order_acquire);
struct pcc_block *next;
do {
if (!head)
return NULL;
} while (!atomic_compare_exchange_weak(list, &head, head->next));
head->next = NULL;
return head;
}
static struct pcc_block* pop_empty_block(struct pcc_space *space) {
return pop_block(&space->empty);
}
static void push_empty_block(struct pcc_space *space,
struct pcc_block *block) {
push_block(&space->empty, block);
}
static struct pcc_block* pop_full_block(struct pcc_space *space) {
return pop_block(&space->full);
}
static void push_full_block(struct pcc_space *space,
struct pcc_block *block) {
push_block(&space->full, block);
atomic_fetch_add_explicit(&space->full_block_count, 1,
memory_order_relaxed);
}
static struct pcc_block* pop_partly_full_block(struct pcc_space *space) {
return pop_block(&space->partly_full);
}
static void push_partly_full_block(struct pcc_space *space,
struct pcc_block *block,
size_t allocated_bytes) {
GC_ASSERT(allocated_bytes);
block->allocated = allocated_bytes;
push_block(&space->partly_full, block);
}
static struct pcc_block* pop_paged_out_block(struct pcc_space *space) {
return pop_block(&space->paged_out);
}
static void push_paged_out_block(struct pcc_space *space,
struct pcc_block *block) {
push_block(&space->paged_out, block);
}
static void page_out_block(struct pcc_space *space,
struct pcc_block *block) {
block->in_core = 0;
madvise(block_payload(block), BLOCK_SIZE, MADV_DONTNEED);
push_paged_out_block(space, block);
}
static struct pcc_block* page_in_block(struct pcc_space *space) {
struct pcc_block* block = pop_paged_out_block(space);
if (block) block->in_core = 1;
return block;
}
static void record_fragmentation(struct pcc_space *space,
size_t bytes) {
atomic_fetch_add_explicit(&space->fragmentation, bytes,
memory_order_relaxed);
}
static ssize_t pcc_space_request_release_memory(struct pcc_space *space,
size_t bytes) {
return atomic_fetch_add(&space->bytes_to_page_out, bytes) + bytes;
}
static int
pcc_space_page_out_blocks_until_memory_released(struct pcc_space *space) {
ssize_t pending = atomic_load(&space->bytes_to_page_out);
while (pending > 0) {
struct pcc_block *block = pop_empty_block(space);
if (!block) return 0;
page_out_block(space, block);
pending =
atomic_fetch_sub(&space->bytes_to_page_out, BLOCK_SIZE) - BLOCK_SIZE;
}
return 1;
}
static void pcc_space_reacquire_memory(struct pcc_space *space,
size_t bytes) {
ssize_t pending =
atomic_fetch_sub(&space->bytes_to_page_out, bytes) - bytes;
while (pending + BLOCK_SIZE <= 0) {
struct pcc_block *block = page_in_block(space);
GC_ASSERT(block);
push_empty_block(space, block);
pending =
atomic_fetch_add(&space->bytes_to_page_out, BLOCK_SIZE) + BLOCK_SIZE;
}
}
static inline void allocator_set_block(struct gc_allocator *alloc,
struct pcc_block *block,
int active_region) {
struct pcc_block_payload *payload = block_payload(block);
struct pcc_region *region = &payload->regions[active_region];
alloc->block = block;
alloc->hp = (uintptr_t)&region[0];
alloc->limit = (uintptr_t)&region[1];
}
static inline int allocator_acquire_block(struct gc_allocator *alloc,
struct pcc_block *block,
int active_region) {
if (block) {
allocator_set_block(alloc, block, active_region);
return 1;
}
return 0;
}
static int
allocator_acquire_empty_block(struct gc_allocator *alloc,
struct pcc_space *space) {
return allocator_acquire_block(alloc, pop_empty_block(space),
space->active_region);
}
static int
allocator_acquire_partly_full_block(struct gc_allocator *alloc,
struct pcc_space *space) {
if (allocator_acquire_block(alloc, pop_partly_full_block(space),
space->active_region)) {
alloc->hp += alloc->block->allocated;
return 1;
}
return 0;
}
static void allocator_release_full_block(struct gc_allocator *alloc,
struct pcc_space *space) {
record_fragmentation(space, alloc->limit - alloc->hp);
push_full_block(space, alloc->block);
alloc->hp = alloc->limit = 0;
alloc->block = NULL;
}
static void allocator_release_partly_full_block(struct gc_allocator *alloc,
struct pcc_space *space) {
size_t allocated = alloc->hp & (REGION_SIZE - 1);
if (allocated) {
push_partly_full_block(space, alloc->block, allocated);
} else {
// Could be hp was bumped all the way to the limit, in which case
// allocated wraps to 0; in any case the block is full.
push_full_block(space, alloc->block);
}
alloc->hp = alloc->limit = 0;
alloc->block = NULL;
}
static inline struct gc_ref allocate(struct gc_allocator *alloc,
struct pcc_space *space,
size_t size,
void (*get_more_empty_blocks)(void *data),
void *data) {
GC_ASSERT(size > 0);
GC_ASSERT(size <= gc_allocator_large_threshold());
size = align_up(size, GC_ALIGNMENT);
if (alloc->hp + size <= alloc->limit)
goto done;
if (alloc->block)
allocator_release_full_block(alloc, space);
while (allocator_acquire_partly_full_block(alloc, space)) {
if (alloc->hp + size <= alloc->limit)
goto done;
allocator_release_full_block(alloc, space);
}
while (!allocator_acquire_empty_block(alloc, space))
get_more_empty_blocks(data);
// The newly acquired block is empty and is therefore large enough for
// a small allocation.
done:
struct gc_ref ret = gc_ref(alloc->hp);
alloc->hp += size;
return ret;
}
static void static void
gc_trace_worker_call_with_data(void (*f)(struct gc_tracer *tracer, gc_trace_worker_call_with_data(void (*f)(struct gc_tracer *tracer,
struct gc_heap *heap, struct gc_heap *heap,
@ -386,110 +87,10 @@ gc_trace_worker_call_with_data(void (*f)(struct gc_tracer *tracer,
struct gc_tracer *tracer, struct gc_tracer *tracer,
struct gc_heap *heap, struct gc_heap *heap,
struct gc_trace_worker *worker) { struct gc_trace_worker *worker) {
struct gc_trace_worker_data data = {{0,0,NULL},}; struct gc_trace_worker_data data;
copy_space_allocator_init(&data.allocator, heap_copy_space(heap));
f(tracer, heap, worker, &data); f(tracer, heap, worker, &data);
if (data.allocator.block) copy_space_allocator_finish(&data.allocator, heap_copy_space(heap));
allocator_release_partly_full_block(&data.allocator, heap_pcc_space(heap));
}
static struct pcc_block*
append_block_lists(struct pcc_block *head, struct pcc_block *tail) {
if (!head) return tail;
if (tail) {
struct pcc_block *walk = head;
while (walk->next)
walk = walk->next;
walk->next = tail;
}
return head;
}
static void pcc_space_flip(struct pcc_space *space) {
// Mutators stopped, can access nonatomically.
space->empty =
append_block_lists(space->empty,
append_block_lists(space->partly_full, space->full));
space->partly_full = NULL;
space->full = NULL;
space->full_block_count = 0;
space->fragmentation = 0;
space->active_region ^= 1;
}
static void pcc_space_finish_gc(struct pcc_space *space) {
// Mutators stopped, can access nonatomically.
space->live_bytes_at_last_gc = space->full_block_count * REGION_SIZE;
space->fragmentation_at_last_gc = space->fragmentation;
}
static void get_more_empty_blocks_during_evacuation(void *data) {
// If space is really tight and reordering of objects during
// evacuation resulted in more end-of-block fragmentation and thus
// block use than before collection started, we can actually run out
// of memory while collecting. We should probably attempt to expand
// the heap here, at least by a single block; it's better than the
// alternatives.
fprintf(stderr, "Out of memory\n");
GC_CRASH();
}
static inline int pcc_space_forward(struct pcc_space *space,
struct gc_edge edge,
struct gc_ref old_ref,
struct gc_trace_worker_data *data) {
GC_ASSERT(pcc_object_region(old_ref) != space->active_region);
struct gc_atomic_forward fwd = gc_atomic_forward_begin(old_ref);
if (fwd.state == GC_FORWARDING_STATE_NOT_FORWARDED)
gc_atomic_forward_acquire(&fwd);
switch (fwd.state) {
case GC_FORWARDING_STATE_NOT_FORWARDED:
case GC_FORWARDING_STATE_ABORTED:
default:
// Impossible.
GC_CRASH();
case GC_FORWARDING_STATE_ACQUIRED: {
// We claimed the object successfully; evacuating is up to us.
size_t bytes = gc_atomic_forward_object_size(&fwd);
struct gc_ref new_ref = allocate(&data->allocator, space, bytes,
get_more_empty_blocks_during_evacuation,
NULL);
// Copy object contents before committing, as we don't know what
// part of the object (if any) will be overwritten by the
// commit.
memcpy(gc_ref_heap_object(new_ref), gc_ref_heap_object(old_ref), bytes);
gc_atomic_forward_commit(&fwd, new_ref);
gc_edge_update(edge, new_ref);
return 1;
}
case GC_FORWARDING_STATE_BUSY:
// Someone else claimed this object first. Spin until new address
// known, or evacuation aborts.
for (size_t spin_count = 0;; spin_count++) {
if (gc_atomic_forward_retry_busy(&fwd))
break;
yield_for_spin(spin_count);
}
GC_ASSERT(fwd.state == GC_FORWARDING_STATE_FORWARDED);
// Fall through.
case GC_FORWARDING_STATE_FORWARDED:
// The object has been evacuated already. Update the edge;
// whoever forwarded the object will make sure it's eventually
// traced.
gc_edge_update(edge, gc_ref(gc_atomic_forward_address(&fwd)));
return 0;
}
}
static inline int pcc_space_contains(struct pcc_space *space,
struct gc_ref ref) {
for (size_t i = 0; i < space->nextents; i++)
if (space->extents[i].low_addr <= gc_ref_value(ref) &&
gc_ref_value(ref) < space->extents[i].high_addr)
return 1;
return 0;
} }
static inline int do_trace(struct gc_heap *heap, struct gc_edge edge, static inline int do_trace(struct gc_heap *heap, struct gc_edge edge,
@ -497,8 +98,9 @@ static inline int do_trace(struct gc_heap *heap, struct gc_edge edge,
struct gc_trace_worker_data *data) { struct gc_trace_worker_data *data) {
if (!gc_ref_is_heap_object(ref)) if (!gc_ref_is_heap_object(ref))
return 0; return 0;
if (GC_LIKELY(pcc_space_contains(heap_pcc_space(heap), ref))) if (GC_LIKELY(copy_space_contains(heap_copy_space(heap), ref)))
return pcc_space_forward(heap_pcc_space(heap), edge, ref, data); return copy_space_forward(heap_copy_space(heap), edge, ref,
&data->allocator);
else if (large_object_space_contains(heap_large_object_space(heap), ref)) else if (large_object_space_contains(heap_large_object_space(heap), ref))
return large_object_space_mark_object(heap_large_object_space(heap), ref); return large_object_space_mark_object(heap_large_object_space(heap), ref);
else else
@ -523,30 +125,10 @@ int gc_visit_ephemeron_key(struct gc_edge edge, struct gc_heap *heap) {
struct gc_ref ref = gc_edge_ref(edge); struct gc_ref ref = gc_edge_ref(edge);
if (!gc_ref_is_heap_object(ref)) if (!gc_ref_is_heap_object(ref))
return 0; return 0;
if (GC_LIKELY(pcc_space_contains(heap_pcc_space(heap), ref))) { if (GC_LIKELY(copy_space_contains(heap_copy_space(heap), ref)))
struct gc_atomic_forward fwd = gc_atomic_forward_begin(ref); return copy_space_forward_if_traced(heap_copy_space(heap), edge, ref);
switch (fwd.state) { if (large_object_space_contains(heap_large_object_space(heap), ref))
case GC_FORWARDING_STATE_NOT_FORWARDED:
return 0;
case GC_FORWARDING_STATE_BUSY:
// Someone else claimed this object first. Spin until new address
// known.
for (size_t spin_count = 0;; spin_count++) {
if (gc_atomic_forward_retry_busy(&fwd))
break;
yield_for_spin(spin_count);
}
GC_ASSERT(fwd.state == GC_FORWARDING_STATE_FORWARDED);
// Fall through.
case GC_FORWARDING_STATE_FORWARDED:
gc_edge_update(edge, gc_ref(gc_atomic_forward_address(&fwd)));
return 1;
default:
GC_CRASH();
}
} else if (large_object_space_contains(heap_large_object_space(heap), ref)) {
return large_object_space_is_copied(heap_large_object_space(heap), ref); return large_object_space_is_copied(heap_large_object_space(heap), ref);
}
GC_CRASH(); GC_CRASH();
} }
@ -571,6 +153,7 @@ static void add_mutator(struct gc_heap *heap, struct gc_mutator *mut) {
mut->heap = heap; mut->heap = heap;
mut->event_listener_data = mut->event_listener_data =
heap->event_listener.mutator_added(heap->event_listener_data); heap->event_listener.mutator_added(heap->event_listener_data);
copy_space_allocator_init(&mut->allocator, heap_copy_space(heap));
heap_lock(heap); heap_lock(heap);
// We have no roots. If there is a GC currently in progress, we have // We have no roots. If there is a GC currently in progress, we have
// nothing to add. Just wait until it's done. // nothing to add. Just wait until it's done.
@ -590,8 +173,7 @@ static void add_mutator(struct gc_heap *heap, struct gc_mutator *mut) {
static void remove_mutator(struct gc_heap *heap, struct gc_mutator *mut) { static void remove_mutator(struct gc_heap *heap, struct gc_mutator *mut) {
MUTATOR_EVENT(mut, mutator_removed); MUTATOR_EVENT(mut, mutator_removed);
mut->heap = NULL; mut->heap = NULL;
if (mut->allocator.block) copy_space_allocator_finish(&mut->allocator, heap_copy_space(heap));
allocator_release_partly_full_block(&mut->allocator, heap_pcc_space(heap));
heap_lock(heap); heap_lock(heap);
heap->mutator_count--; heap->mutator_count--;
if (mut->next) if (mut->next)
@ -627,7 +209,7 @@ static void heap_reset_large_object_pages(struct gc_heap *heap, size_t npages) {
GC_ASSERT(npages <= previous); GC_ASSERT(npages <= previous);
size_t bytes = (previous - npages) << size_t bytes = (previous - npages) <<
heap_large_object_space(heap)->page_size_log2; heap_large_object_space(heap)->page_size_log2;
pcc_space_reacquire_memory(heap_pcc_space(heap), bytes); copy_space_reacquire_memory(heap_copy_space(heap), bytes);
} }
void gc_mutator_set_roots(struct gc_mutator *mut, void gc_mutator_set_roots(struct gc_mutator *mut,
@ -654,8 +236,8 @@ tracer_visit(struct gc_edge edge, struct gc_heap *heap, void *trace_data) {
static inline void trace_one(struct gc_ref ref, struct gc_heap *heap, static inline void trace_one(struct gc_ref ref, struct gc_heap *heap,
struct gc_trace_worker *worker) { struct gc_trace_worker *worker) {
#ifdef DEBUG #ifdef DEBUG
if (pcc_space_contains(heap_pcc_space(heap), ref)) if (copy_space_contains(heap_copy_space(heap), ref))
GC_ASSERT(pcc_object_region(ref) == heap_pcc_space(heap)->active_region); GC_ASSERT(copy_space_object_region(ref) == heap_copy_space(heap)->active_region);
#endif #endif
gc_trace_object(ref, tracer_visit, heap, worker, NULL); gc_trace_object(ref, tracer_visit, heap, worker, NULL);
} }
@ -726,8 +308,7 @@ static void pause_mutator_for_collection_without_lock(struct gc_mutator *mut) {
struct gc_heap *heap = mutator_heap(mut); struct gc_heap *heap = mutator_heap(mut);
GC_ASSERT(mutators_are_stopping(heap)); GC_ASSERT(mutators_are_stopping(heap));
MUTATOR_EVENT(mut, mutator_stopping); MUTATOR_EVENT(mut, mutator_stopping);
if (mut->allocator.block) copy_space_allocator_finish(&mut->allocator, heap_copy_space(heap));
allocator_release_full_block(&mut->allocator, heap_pcc_space(heap));
heap_lock(heap); heap_lock(heap);
pause_mutator_for_collection(heap, mut); pause_mutator_for_collection(heap, mut);
heap_unlock(heap); heap_unlock(heap);
@ -794,7 +375,7 @@ static void sweep_ephemerons(struct gc_heap *heap) {
static void collect(struct gc_mutator *mut) GC_NEVER_INLINE; static void collect(struct gc_mutator *mut) GC_NEVER_INLINE;
static void collect(struct gc_mutator *mut) { static void collect(struct gc_mutator *mut) {
struct gc_heap *heap = mutator_heap(mut); struct gc_heap *heap = mutator_heap(mut);
struct pcc_space *cspace = heap_pcc_space(heap); struct copy_space *copy_space = heap_copy_space(heap);
struct large_object_space *lospace = heap_large_object_space(heap); struct large_object_space *lospace = heap_large_object_space(heap);
struct gc_extern_space *exspace = heap_extern_space(heap); struct gc_extern_space *exspace = heap_extern_space(heap);
MUTATOR_EVENT(mut, mutator_cause_gc); MUTATOR_EVENT(mut, mutator_cause_gc);
@ -808,7 +389,7 @@ static void collect(struct gc_mutator *mut) {
HEAP_EVENT(heap, waiting_for_stop); HEAP_EVENT(heap, waiting_for_stop);
wait_for_mutators_to_stop(heap); wait_for_mutators_to_stop(heap);
HEAP_EVENT(heap, mutators_stopped); HEAP_EVENT(heap, mutators_stopped);
pcc_space_flip(cspace); copy_space_flip(copy_space);
gc_tracer_prepare(&heap->tracer); gc_tracer_prepare(&heap->tracer);
add_roots(heap); add_roots(heap);
HEAP_EVENT(heap, roots_traced); HEAP_EVENT(heap, roots_traced);
@ -821,18 +402,18 @@ static void collect(struct gc_mutator *mut) {
HEAP_EVENT(heap, finalizers_traced); HEAP_EVENT(heap, finalizers_traced);
sweep_ephemerons(heap); sweep_ephemerons(heap);
gc_tracer_release(&heap->tracer); gc_tracer_release(&heap->tracer);
pcc_space_finish_gc(cspace); copy_space_finish_gc(copy_space);
large_object_space_finish_gc(lospace, 0); large_object_space_finish_gc(lospace, 0);
gc_extern_space_finish_gc(exspace, 0); gc_extern_space_finish_gc(exspace, 0);
heap->count++; heap->count++;
heap_reset_large_object_pages(heap, lospace->live_pages_at_last_collection); heap_reset_large_object_pages(heap, lospace->live_pages_at_last_collection);
size_t live_size = (cspace->live_bytes_at_last_gc + size_t live_size = (copy_space->allocated_bytes_at_last_gc +
large_object_space_size_at_last_collection(lospace)); large_object_space_size_at_last_collection(lospace));
HEAP_EVENT(heap, live_data_size, live_size); HEAP_EVENT(heap, live_data_size, live_size);
maybe_grow_heap(heap); maybe_grow_heap(heap);
if (!pcc_space_page_out_blocks_until_memory_released(cspace)) { if (!copy_space_page_out_blocks_until_memory_released(copy_space)) {
fprintf(stderr, "ran out of space, heap size %zu (%zu slabs)\n", fprintf(stderr, "ran out of space, heap size %zu (%zu slabs)\n",
heap->size, cspace->nslabs); heap->size, copy_space->nslabs);
GC_CRASH(); GC_CRASH();
} }
HEAP_EVENT(heap, restarting_mutators); HEAP_EVENT(heap, restarting_mutators);
@ -841,8 +422,7 @@ static void collect(struct gc_mutator *mut) {
static void trigger_collection(struct gc_mutator *mut) { static void trigger_collection(struct gc_mutator *mut) {
struct gc_heap *heap = mutator_heap(mut); struct gc_heap *heap = mutator_heap(mut);
if (mut->allocator.block) copy_space_allocator_finish(&mut->allocator, heap_copy_space(heap));
allocator_release_full_block(&mut->allocator, heap_pcc_space(heap));
heap_lock(heap); heap_lock(heap);
long epoch = heap->count; long epoch = heap->count;
while (mutators_are_stopping(heap)) while (mutators_are_stopping(heap))
@ -862,9 +442,9 @@ static void* allocate_large(struct gc_mutator *mut, size_t size) {
size_t npages = large_object_space_npages(space, size); size_t npages = large_object_space_npages(space, size);
pcc_space_request_release_memory(heap_pcc_space(heap), copy_space_request_release_memory(heap_copy_space(heap),
npages << space->page_size_log2); npages << space->page_size_log2);
while (!pcc_space_page_out_blocks_until_memory_released(heap_pcc_space(heap))) while (!copy_space_page_out_blocks_until_memory_released(heap_copy_space(heap)))
trigger_collection(mut); trigger_collection(mut);
atomic_fetch_add(&heap->large_object_pages, npages); atomic_fetch_add(&heap->large_object_pages, npages);
@ -890,10 +470,13 @@ void* gc_allocate_slow(struct gc_mutator *mut, size_t size) {
if (size > gc_allocator_large_threshold()) if (size > gc_allocator_large_threshold())
return allocate_large(mut, size); return allocate_large(mut, size);
return gc_ref_heap_object(allocate(&mut->allocator, struct gc_ref ret = copy_space_allocate(&mut->allocator,
heap_pcc_space(mutator_heap(mut)), heap_copy_space(mutator_heap(mut)),
size, get_more_empty_blocks_for_mutator, size,
mut)); get_more_empty_blocks_for_mutator,
mut);
gc_clear_fresh_allocation(ret, size);
return gc_ref_heap_object(ret);
} }
void* gc_allocate_pointerless(struct gc_mutator *mut, size_t size) { void* gc_allocate_pointerless(struct gc_mutator *mut, size_t size) {
@ -939,30 +522,6 @@ void gc_set_finalizer_callback(struct gc_heap *heap,
gc_finalizer_state_set_callback(heap->finalizer_state, callback); gc_finalizer_state_set_callback(heap->finalizer_state, callback);
} }
static struct pcc_slab* allocate_slabs(size_t nslabs) {
size_t size = nslabs * SLAB_SIZE;
size_t extent = size + SLAB_SIZE;
char *mem = mmap(NULL, extent, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (mem == MAP_FAILED) {
perror("mmap failed");
return NULL;
}
uintptr_t base = (uintptr_t) mem;
uintptr_t end = base + extent;
uintptr_t aligned_base = align_up(base, SLAB_SIZE);
uintptr_t aligned_end = aligned_base + size;
if (aligned_base - base)
munmap((void*)base, aligned_base - base);
if (end - aligned_end)
munmap((void*)aligned_end, end - aligned_end);
return (struct pcc_slab*) aligned_base;
}
static int heap_prepare_pending_ephemerons(struct gc_heap *heap) { static int heap_prepare_pending_ephemerons(struct gc_heap *heap) {
struct gc_pending_ephemerons *cur = heap->pending_ephemerons; struct gc_pending_ephemerons *cur = heap->pending_ephemerons;
size_t target = heap->size * heap->pending_ephemerons_size_factor; size_t target = heap->size * heap->pending_ephemerons_size_factor;
@ -1024,45 +583,6 @@ static int heap_init(struct gc_heap *heap, const struct gc_options *options) {
return 1; return 1;
} }
static int pcc_space_init(struct pcc_space *space, struct gc_heap *heap) {
size_t size = align_up(heap->size, SLAB_SIZE);
size_t nslabs = size / SLAB_SIZE;
struct pcc_slab *slabs = allocate_slabs(nslabs);
if (!slabs)
return 0;
space->empty = NULL;
space->partly_full = NULL;
space->full = NULL;
space->full_block_count = 0;
space->paged_out = NULL;
space->fragmentation = 0;
space->bytes_to_page_out = 0;
space->active_region = 0;
space->live_bytes_at_last_gc = 0;
space->fragmentation_at_last_gc = 0;
space->extents = calloc(1, sizeof(struct pcc_extent));
space->extents[0].low_addr = (uintptr_t) slabs;
space->extents[0].high_addr = space->extents[0].low_addr + size;
space->nextents = 1;
space->slabs = slabs;
space->nslabs = nslabs;
for (size_t slab = 0; slab < nslabs; slab++) {
for (size_t idx = 0; idx < NONHEADER_BLOCKS_PER_SLAB; idx++) {
struct pcc_block *block = &slabs[slab].headers[idx];
if (size > heap->size) {
block->in_core = 0;
push_paged_out_block(space, block);
size -= BLOCK_SIZE;
} else {
block->in_core = 1;
push_empty_block(space, block);
}
}
}
return 1;
}
int gc_init(const struct gc_options *options, struct gc_stack_addr *stack_base, int gc_init(const struct gc_options *options, struct gc_stack_addr *stack_base,
struct gc_heap **heap, struct gc_mutator **mut, struct gc_heap **heap, struct gc_mutator **mut,
struct gc_event_listener event_listener, struct gc_event_listener event_listener,
@ -1071,9 +591,9 @@ int gc_init(const struct gc_options *options, struct gc_stack_addr *stack_base,
GC_ASSERT_EQ(gc_allocator_large_threshold(), GC_LARGE_OBJECT_THRESHOLD); GC_ASSERT_EQ(gc_allocator_large_threshold(), GC_LARGE_OBJECT_THRESHOLD);
GC_ASSERT_EQ(0, offsetof(struct gc_mutator, allocator)); GC_ASSERT_EQ(0, offsetof(struct gc_mutator, allocator));
GC_ASSERT_EQ(gc_allocator_allocation_pointer_offset(), GC_ASSERT_EQ(gc_allocator_allocation_pointer_offset(),
offsetof(struct gc_allocator, hp)); offsetof(struct copy_space_allocator, hp));
GC_ASSERT_EQ(gc_allocator_allocation_limit_offset(), GC_ASSERT_EQ(gc_allocator_allocation_limit_offset(),
offsetof(struct gc_allocator, limit)); offsetof(struct copy_space_allocator, limit));
if (options->common.heap_size_policy != GC_HEAP_SIZE_FIXED) { if (options->common.heap_size_policy != GC_HEAP_SIZE_FIXED) {
fprintf(stderr, "fixed heap size is currently required\n"); fprintf(stderr, "fixed heap size is currently required\n");
@ -1090,8 +610,8 @@ int gc_init(const struct gc_options *options, struct gc_stack_addr *stack_base,
(*heap)->event_listener_data = event_listener_data; (*heap)->event_listener_data = event_listener_data;
HEAP_EVENT(*heap, init, (*heap)->size); HEAP_EVENT(*heap, init, (*heap)->size);
struct pcc_space *space = heap_pcc_space(*heap); struct copy_space *space = heap_copy_space(*heap);
if (!pcc_space_init(space, *heap)) { if (!copy_space_init(space, (*heap)->size)) {
free(*heap); free(*heap);
*heap = NULL; *heap = NULL;
return 0; return 0;
@ -1122,8 +642,7 @@ void gc_finish_for_thread(struct gc_mutator *mut) {
static void deactivate_mutator(struct gc_heap *heap, struct gc_mutator *mut) { static void deactivate_mutator(struct gc_heap *heap, struct gc_mutator *mut) {
GC_ASSERT(mut->next == NULL); GC_ASSERT(mut->next == NULL);
if (mut->allocator.block) copy_space_allocator_finish(&mut->allocator, heap_copy_space(heap));
allocator_release_partly_full_block(&mut->allocator, heap_pcc_space(heap));
heap_lock(heap); heap_lock(heap);
heap->inactive_mutator_count++; heap->inactive_mutator_count++;
if (all_mutators_stopped(heap)) if (all_mutators_stopped(heap))