1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-05-01 04:10:18 +02:00

Fix rounding in scm_i_divide2double for negative arguments.

* libguile/numbers.c (INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE):
  New macro.
  (scm_i_divide2double): Use INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE to
  determine if our fast path is safe.  Previously, negative arguments
  were not checked properly.

* test-suite/tests/numbers.test (exact->inexact): Add tests.
This commit is contained in:
Mark H Weaver 2013-07-16 00:00:23 -04:00
parent 7e8166f5bd
commit 4cc2e41cf7
2 changed files with 24 additions and 4 deletions

View file

@ -100,6 +100,13 @@ typedef scm_t_signed_bits scm_t_inum;
#define DOUBLE_IS_POSITIVE_INFINITY(x) (isinf(x) && ((x) > 0))
#define DOUBLE_IS_NEGATIVE_INFINITY(x) (isinf(x) && ((x) < 0))
/* Test an inum to see if it can be converted to a double without loss
of precision. Note that this will sometimes return 0 even when 1
could have been returned, e.g. for large powers of 2. It is designed
to be a fast check to optimize common cases. */
#define INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE(n) \
(SCM_I_FIXNUM_BIT-1 <= DBL_MANT_DIG \
|| ((n) ^ ((n) >> (SCM_I_FIXNUM_BIT-1))) < (1L << DBL_MANT_DIG))
#if ! HAVE_DECL_MPZ_INITS
@ -506,10 +513,10 @@ scm_i_divide2double (SCM n, SCM d)
if (SCM_LIKELY (SCM_I_INUMP (d)))
{
if (SCM_LIKELY (SCM_I_INUMP (n)
&& (SCM_I_FIXNUM_BIT-1 <= DBL_MANT_DIG
|| (SCM_I_INUM (n) < (1L << DBL_MANT_DIG)
&& SCM_I_INUM (d) < (1L << DBL_MANT_DIG)))))
if (SCM_LIKELY
(SCM_I_INUMP (n)
&& INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE (SCM_I_INUM (n))
&& INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE (SCM_I_INUM (d))))
/* If both N and D can be losslessly converted to doubles, then
we can rely on IEEE floating point to do proper rounding much
faster than we can. */

View file

@ -4021,6 +4021,19 @@
(let ((big (ash 1 4096)))
(= 1.0 (exact->inexact (/ (1+ big) big)))))
;; In guile 2.0.9, 'exact->inexact' guaranteed proper rounding when
;; applied to non-negative fractions, but on 64-bit systems would
;; sometimes double-round when applied to negative fractions,
;; specifically when the numerator was a fixnum not exactly
;; representable as a double.
(with-test-prefix "frac inum/inum, numerator not exactly representable as a double"
(let ((n (+ 1 (expt 2 dbl-mant-dig))))
(for-each (lambda (d)
(test (/ n d)
(/ n d)
(exact->inexact (/ n d))))
'(3 5 6 7 9 11 13 17 19 23 0.0 -0.0 +nan.0 +inf.0 -inf.0))))
(test "round up to odd"
;; =====================================================
;; 11111111111111111111111111111111111111111111111111000101 ->