mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-05-20 03:30:27 +02:00
Clean up scm_divide
* libguile/integers.h: * libguile/integers.c (scm_is_integer_divisible_ii): (scm_is_integer_divisible_zi): (scm_is_integer_divisible_zz): New helpers. * libguile/numbers.c (invert, divide, complex_div): New helpers for scm_divide. (scm_divide): Adapt.
This commit is contained in:
parent
3e08c9cec0
commit
8b2d58b993
3 changed files with 326 additions and 297 deletions
|
@ -2658,3 +2658,88 @@ scm_integer_mul_zz (struct scm_bignum *x, struct scm_bignum *y)
|
|||
scm_remember_upto_here_2 (x, y);
|
||||
return take_mpz (result);
|
||||
}
|
||||
|
||||
int
|
||||
scm_is_integer_divisible_ii (scm_t_inum x, scm_t_inum y)
|
||||
{
|
||||
ASSERT (y != 0);
|
||||
return (x % y) == 0;
|
||||
}
|
||||
|
||||
int
|
||||
scm_is_integer_divisible_zi (struct scm_bignum *x, scm_t_inum y)
|
||||
{
|
||||
ASSERT (y != 0);
|
||||
switch (y)
|
||||
{
|
||||
case -1:
|
||||
case 1:
|
||||
return 1;
|
||||
default:
|
||||
{
|
||||
scm_t_inum abs_y = y < 0 ? -y : y;
|
||||
mpz_t zx;
|
||||
alias_bignum_to_mpz (x, zx);
|
||||
int divisible = mpz_divisible_ui_p (zx, abs_y);
|
||||
scm_remember_upto_here_1 (x);
|
||||
return divisible;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int
|
||||
scm_is_integer_divisible_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||||
{
|
||||
mpz_t zx, zy;
|
||||
alias_bignum_to_mpz (x, zx);
|
||||
alias_bignum_to_mpz (y, zy);
|
||||
int divisible_p = mpz_divisible_p (zx, zy);
|
||||
scm_remember_upto_here_2 (x, y);
|
||||
return divisible_p;
|
||||
}
|
||||
|
||||
SCM
|
||||
scm_integer_exact_quotient_ii (scm_t_inum n, scm_t_inum d)
|
||||
{
|
||||
return scm_integer_truncate_quotient_ii (n, d);
|
||||
}
|
||||
|
||||
/* Return the exact integer q such that n = q*d, for exact integers n
|
||||
and d, where d is known in advance to divide n evenly (with zero
|
||||
remainder). For large integers, this can be computed more
|
||||
efficiently than when the remainder is unknown. */
|
||||
SCM
|
||||
scm_integer_exact_quotient_zi (struct scm_bignum *n, scm_t_inum d)
|
||||
{
|
||||
if (SCM_UNLIKELY (d == 0))
|
||||
scm_num_overflow ("quotient");
|
||||
else if (SCM_UNLIKELY (d == 1))
|
||||
return scm_from_bignum (n);
|
||||
|
||||
mpz_t q, zn;
|
||||
mpz_init (q);
|
||||
alias_bignum_to_mpz (n, zn);
|
||||
if (d > 0)
|
||||
mpz_divexact_ui (q, zn, d);
|
||||
else
|
||||
{
|
||||
mpz_divexact_ui (q, zn, -d);
|
||||
mpz_neg (q, q);
|
||||
}
|
||||
scm_remember_upto_here_1 (n);
|
||||
return take_mpz (q);
|
||||
}
|
||||
|
||||
SCM
|
||||
scm_integer_exact_quotient_zz (struct scm_bignum *n, struct scm_bignum *d)
|
||||
{
|
||||
mpz_t q, zn, zd;
|
||||
mpz_init (q);
|
||||
alias_bignum_to_mpz (n, zn);
|
||||
alias_bignum_to_mpz (d, zd);
|
||||
|
||||
mpz_divexact (q, zn, zd);
|
||||
scm_remember_upto_here_2 (n, d);
|
||||
return take_mpz (q);
|
||||
}
|
||||
|
||||
|
|
|
@ -184,6 +184,18 @@ SCM_INTERNAL SCM scm_integer_mul_ii (scm_t_inum x, scm_t_inum y);
|
|||
SCM_INTERNAL SCM scm_integer_mul_zi (struct scm_bignum *x, scm_t_inum y);
|
||||
SCM_INTERNAL SCM scm_integer_mul_zz (struct scm_bignum *x, struct scm_bignum *y);
|
||||
|
||||
SCM_INTERNAL int scm_is_integer_divisible_ii (scm_t_inum x, scm_t_inum y);
|
||||
SCM_INTERNAL int scm_is_integer_divisible_zi (struct scm_bignum *x,
|
||||
scm_t_inum y);
|
||||
SCM_INTERNAL int scm_is_integer_divisible_zz (struct scm_bignum *x,
|
||||
struct scm_bignum *y);
|
||||
|
||||
SCM_INTERNAL SCM scm_integer_exact_quotient_ii (scm_t_inum n, scm_t_inum d);
|
||||
SCM_INTERNAL SCM scm_integer_exact_quotient_zi (struct scm_bignum *n,
|
||||
scm_t_inum d);
|
||||
SCM_INTERNAL SCM scm_integer_exact_quotient_zz (struct scm_bignum *n,
|
||||
struct scm_bignum *d);
|
||||
|
||||
|
||||
|
||||
#endif /* SCM_INTEGERS_H */
|
||||
|
|
|
@ -5576,6 +5576,222 @@ arising out of or in connection with the use or performance of
|
|||
this software.
|
||||
****************************************************************/
|
||||
|
||||
static SCM
|
||||
invert (SCM x)
|
||||
{
|
||||
if (SCM_I_INUMP (x))
|
||||
switch (SCM_I_INUM (x))
|
||||
{
|
||||
case -1: return x;
|
||||
case 0: scm_num_overflow ("divide");
|
||||
case 1: return x;
|
||||
default: return scm_i_make_ratio_already_reduced (SCM_INUM1, x);
|
||||
}
|
||||
else if (SCM_BIGP (x))
|
||||
return scm_i_make_ratio_already_reduced (SCM_INUM1, x);
|
||||
else if (SCM_REALP (x))
|
||||
return scm_i_from_double (1.0 / SCM_REAL_VALUE (x));
|
||||
else if (SCM_COMPLEXP (x))
|
||||
{
|
||||
double r = SCM_COMPLEX_REAL (x);
|
||||
double i = SCM_COMPLEX_IMAG (x);
|
||||
if (fabs(r) <= fabs(i))
|
||||
{
|
||||
double t = r / i;
|
||||
double d = i * (1.0 + t * t);
|
||||
return scm_c_make_rectangular (t / d, -1.0 / d);
|
||||
}
|
||||
else
|
||||
{
|
||||
double t = i / r;
|
||||
double d = r * (1.0 + t * t);
|
||||
return scm_c_make_rectangular (1.0 / d, -t / d);
|
||||
}
|
||||
}
|
||||
else if (SCM_FRACTIONP (x))
|
||||
return scm_i_make_ratio_already_reduced (SCM_FRACTION_DENOMINATOR (x),
|
||||
SCM_FRACTION_NUMERATOR (x));
|
||||
else
|
||||
abort (); /* Unreachable. */
|
||||
}
|
||||
|
||||
static SCM
|
||||
complex_div (double a, SCM y)
|
||||
{
|
||||
double r = SCM_COMPLEX_REAL (y);
|
||||
double i = SCM_COMPLEX_IMAG (y);
|
||||
if (fabs(r) <= fabs(i))
|
||||
{
|
||||
double t = r / i;
|
||||
double d = i * (1.0 + t * t);
|
||||
return scm_c_make_rectangular ((a * t) / d, -a / d);
|
||||
}
|
||||
else
|
||||
{
|
||||
double t = i / r;
|
||||
double d = r * (1.0 + t * t);
|
||||
return scm_c_make_rectangular (a / d, -(a * t) / d);
|
||||
}
|
||||
}
|
||||
|
||||
static SCM
|
||||
divide (SCM x, SCM y)
|
||||
{
|
||||
if (scm_is_eq (y, SCM_INUM0))
|
||||
scm_num_overflow ("divide");
|
||||
|
||||
if (SCM_I_INUMP (x))
|
||||
{
|
||||
if (scm_is_eq (x, SCM_INUM1))
|
||||
return invert (y);
|
||||
if (SCM_I_INUMP (y))
|
||||
return scm_is_integer_divisible_ii (SCM_I_INUM (x), SCM_I_INUM (y))
|
||||
? scm_integer_exact_quotient_ii (SCM_I_INUM (x), SCM_I_INUM (y))
|
||||
: scm_i_make_ratio (x, y);
|
||||
else if (SCM_BIGP (y))
|
||||
return scm_i_make_ratio (x, y);
|
||||
else if (SCM_REALP (y))
|
||||
/* FIXME: Precision may be lost here due to:
|
||||
(1) The cast from 'scm_t_inum' to 'double'
|
||||
(2) Double rounding */
|
||||
return scm_i_from_double ((double) SCM_I_INUM (x) / SCM_REAL_VALUE (y));
|
||||
else if (SCM_COMPLEXP (y))
|
||||
return complex_div (SCM_I_INUM (x), y);
|
||||
else if (SCM_FRACTIONP (y))
|
||||
/* a / b/c = ac / b */
|
||||
return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
|
||||
SCM_FRACTION_NUMERATOR (y));
|
||||
else
|
||||
abort (); /* Unreachable. */
|
||||
}
|
||||
else if (SCM_BIGP (x))
|
||||
{
|
||||
if (SCM_I_INUMP (y))
|
||||
return scm_is_integer_divisible_zi (scm_bignum (x), SCM_I_INUM (y))
|
||||
? scm_integer_exact_quotient_zi (scm_bignum (x), SCM_I_INUM (y))
|
||||
: scm_i_make_ratio (x, y);
|
||||
else if (SCM_BIGP (y))
|
||||
return scm_is_integer_divisible_zz (scm_bignum (x), scm_bignum (y))
|
||||
? scm_integer_exact_quotient_zz (scm_bignum (x), scm_bignum (y))
|
||||
: scm_i_make_ratio (x, y);
|
||||
else if (SCM_REALP (y))
|
||||
/* FIXME: Precision may be lost here due to:
|
||||
(1) scm_integer_to_double_z (2) Double rounding */
|
||||
return scm_i_from_double (scm_integer_to_double_z (scm_bignum (x))
|
||||
/ SCM_REAL_VALUE (y));
|
||||
else if (SCM_COMPLEXP (y))
|
||||
return complex_div (scm_integer_to_double_z (scm_bignum (x)), y);
|
||||
else if (SCM_FRACTIONP (y))
|
||||
return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
|
||||
SCM_FRACTION_NUMERATOR (y));
|
||||
else
|
||||
abort (); /* Unreachable. */
|
||||
}
|
||||
else if (SCM_REALP (x))
|
||||
{
|
||||
double rx = SCM_REAL_VALUE (x);
|
||||
if (SCM_I_INUMP (y))
|
||||
/* FIXME: Precision may be lost here due to:
|
||||
(1) The cast from 'scm_t_inum' to 'double'
|
||||
(2) Double rounding */
|
||||
return scm_i_from_double (rx / (double) SCM_I_INUM (y));
|
||||
else if (SCM_BIGP (y))
|
||||
/* FIXME: Precision may be lost here due to:
|
||||
(1) The conversion from bignum to double
|
||||
(2) Double rounding */
|
||||
return scm_i_from_double (rx / scm_integer_to_double_z (scm_bignum (y)));
|
||||
else if (SCM_REALP (y))
|
||||
return scm_i_from_double (rx / SCM_REAL_VALUE (y));
|
||||
else if (SCM_COMPLEXP (y))
|
||||
return complex_div (rx, y);
|
||||
else if (SCM_FRACTIONP (y))
|
||||
return scm_i_from_double (rx / scm_i_fraction2double (y));
|
||||
else
|
||||
abort () ; /* Unreachable. */
|
||||
}
|
||||
else if (SCM_COMPLEXP (x))
|
||||
{
|
||||
double rx = SCM_COMPLEX_REAL (x);
|
||||
double ix = SCM_COMPLEX_IMAG (x);
|
||||
if (SCM_I_INUMP (y))
|
||||
{
|
||||
/* FIXME: Precision may be lost here due to:
|
||||
(1) The conversion from 'scm_t_inum' to double
|
||||
(2) Double rounding */
|
||||
double d = SCM_I_INUM (y);
|
||||
return scm_c_make_rectangular (rx / d, ix / d);
|
||||
}
|
||||
else if (SCM_BIGP (y))
|
||||
{
|
||||
/* FIXME: Precision may be lost here due to:
|
||||
(1) The conversion from bignum to double
|
||||
(2) Double rounding */
|
||||
double d = scm_integer_to_double_z (scm_bignum (y));
|
||||
return scm_c_make_rectangular (rx / d, ix / d);
|
||||
}
|
||||
else if (SCM_REALP (y))
|
||||
{
|
||||
double d = SCM_REAL_VALUE (y);
|
||||
return scm_c_make_rectangular (rx / d, ix / d);
|
||||
}
|
||||
else if (SCM_COMPLEXP (y))
|
||||
{
|
||||
double ry = SCM_COMPLEX_REAL (y);
|
||||
double iy = SCM_COMPLEX_IMAG (y);
|
||||
if (fabs(ry) <= fabs(iy))
|
||||
{
|
||||
double t = ry / iy;
|
||||
double d = iy * (1.0 + t * t);
|
||||
return scm_c_make_rectangular ((rx * t + ix) / d,
|
||||
(ix * t - rx) / d);
|
||||
}
|
||||
else
|
||||
{
|
||||
double t = iy / ry;
|
||||
double d = ry * (1.0 + t * t);
|
||||
return scm_c_make_rectangular ((rx + ix * t) / d,
|
||||
(ix - rx * t) / d);
|
||||
}
|
||||
}
|
||||
else if (SCM_FRACTIONP (y))
|
||||
{
|
||||
/* FIXME: Precision may be lost here due to:
|
||||
(1) The conversion from fraction to double
|
||||
(2) Double rounding */
|
||||
double d = scm_i_fraction2double (y);
|
||||
return scm_c_make_rectangular (rx / d, ix / d);
|
||||
}
|
||||
else
|
||||
abort (); /* Unreachable. */
|
||||
}
|
||||
else if (SCM_FRACTIONP (x))
|
||||
{
|
||||
if (scm_is_exact_integer (y))
|
||||
return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
|
||||
scm_product (SCM_FRACTION_DENOMINATOR (x), y));
|
||||
else if (SCM_REALP (y))
|
||||
/* FIXME: Precision may be lost here due to:
|
||||
(1) The conversion from fraction to double
|
||||
(2) Double rounding */
|
||||
return scm_i_from_double (scm_i_fraction2double (x) /
|
||||
SCM_REAL_VALUE (y));
|
||||
else if (SCM_COMPLEXP (y))
|
||||
/* FIXME: Precision may be lost here due to:
|
||||
(1) The conversion from fraction to double
|
||||
(2) Double rounding */
|
||||
return complex_div (scm_i_fraction2double (x), y);
|
||||
else if (SCM_FRACTIONP (y))
|
||||
return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
|
||||
SCM_FRACTION_DENOMINATOR (y)),
|
||||
scm_product (SCM_FRACTION_NUMERATOR (y),
|
||||
SCM_FRACTION_DENOMINATOR (x)));
|
||||
else
|
||||
abort (); /* Unreachable. */
|
||||
}
|
||||
else
|
||||
abort (); /* Unreachable. */
|
||||
}
|
||||
|
||||
SCM_PRIMITIVE_GENERIC (scm_i_divide, "/", 0, 2, 1,
|
||||
(SCM x, SCM y, SCM rest),
|
||||
"Divide the first argument by the product of the remaining\n"
|
||||
|
@ -5592,313 +5808,29 @@ SCM_PRIMITIVE_GENERIC (scm_i_divide, "/", 0, 2, 1,
|
|||
}
|
||||
#undef FUNC_NAME
|
||||
|
||||
#define s_divide s_scm_i_divide
|
||||
#define g_divide g_scm_i_divide
|
||||
|
||||
SCM
|
||||
scm_divide (SCM x, SCM y)
|
||||
#define FUNC_NAME s_divide
|
||||
{
|
||||
double a;
|
||||
|
||||
if (SCM_UNLIKELY (SCM_UNBNDP (y)))
|
||||
if (SCM_UNBNDP (y))
|
||||
{
|
||||
if (SCM_UNBNDP (x))
|
||||
return scm_wta_dispatch_0 (g_divide, s_divide);
|
||||
else if (SCM_I_INUMP (x))
|
||||
{
|
||||
scm_t_inum xx = SCM_I_INUM (x);
|
||||
if (xx == 1 || xx == -1)
|
||||
return x;
|
||||
else if (xx == 0)
|
||||
scm_num_overflow (s_divide);
|
||||
else
|
||||
return scm_i_make_ratio_already_reduced (SCM_INUM1, x);
|
||||
}
|
||||
else if (SCM_BIGP (x))
|
||||
return scm_i_make_ratio_already_reduced (SCM_INUM1, x);
|
||||
else if (SCM_REALP (x))
|
||||
return scm_i_from_double (1.0 / SCM_REAL_VALUE (x));
|
||||
else if (SCM_COMPLEXP (x))
|
||||
{
|
||||
double r = SCM_COMPLEX_REAL (x);
|
||||
double i = SCM_COMPLEX_IMAG (x);
|
||||
if (fabs(r) <= fabs(i))
|
||||
{
|
||||
double t = r / i;
|
||||
double d = i * (1.0 + t * t);
|
||||
return scm_c_make_rectangular (t / d, -1.0 / d);
|
||||
}
|
||||
else
|
||||
{
|
||||
double t = i / r;
|
||||
double d = r * (1.0 + t * t);
|
||||
return scm_c_make_rectangular (1.0 / d, -t / d);
|
||||
}
|
||||
}
|
||||
else if (SCM_FRACTIONP (x))
|
||||
return scm_i_make_ratio_already_reduced (SCM_FRACTION_DENOMINATOR (x),
|
||||
SCM_FRACTION_NUMERATOR (x));
|
||||
return scm_wta_dispatch_0 (g_scm_i_divide, s_scm_i_divide);
|
||||
if (SCM_NUMBERP (x))
|
||||
return invert (x);
|
||||
else
|
||||
return scm_wta_dispatch_1 (g_divide, x, SCM_ARG1, s_divide);
|
||||
return scm_wta_dispatch_1 (g_scm_i_divide, x, SCM_ARG1,
|
||||
s_scm_i_divide);
|
||||
}
|
||||
|
||||
if (SCM_LIKELY (SCM_I_INUMP (x)))
|
||||
{
|
||||
scm_t_inum xx = SCM_I_INUM (x);
|
||||
if (SCM_LIKELY (SCM_I_INUMP (y)))
|
||||
{
|
||||
scm_t_inum yy = SCM_I_INUM (y);
|
||||
if (yy == 0)
|
||||
scm_num_overflow (s_divide);
|
||||
else if (xx % yy != 0)
|
||||
return scm_i_make_ratio (x, y);
|
||||
else
|
||||
{
|
||||
scm_t_inum z = xx / yy;
|
||||
if (SCM_FIXABLE (z))
|
||||
return SCM_I_MAKINUM (z);
|
||||
else
|
||||
return scm_i_inum2big (z);
|
||||
}
|
||||
}
|
||||
else if (SCM_BIGP (y))
|
||||
return scm_i_make_ratio (x, y);
|
||||
else if (SCM_REALP (y))
|
||||
/* FIXME: Precision may be lost here due to:
|
||||
(1) The cast from 'scm_t_inum' to 'double'
|
||||
(2) Double rounding */
|
||||
return scm_i_from_double ((double) xx / SCM_REAL_VALUE (y));
|
||||
else if (SCM_COMPLEXP (y))
|
||||
{
|
||||
a = xx;
|
||||
complex_div: /* y _must_ be a complex number */
|
||||
{
|
||||
double r = SCM_COMPLEX_REAL (y);
|
||||
double i = SCM_COMPLEX_IMAG (y);
|
||||
if (fabs(r) <= fabs(i))
|
||||
{
|
||||
double t = r / i;
|
||||
double d = i * (1.0 + t * t);
|
||||
return scm_c_make_rectangular ((a * t) / d, -a / d);
|
||||
}
|
||||
else
|
||||
{
|
||||
double t = i / r;
|
||||
double d = r * (1.0 + t * t);
|
||||
return scm_c_make_rectangular (a / d, -(a * t) / d);
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (SCM_FRACTIONP (y))
|
||||
/* a / b/c = ac / b */
|
||||
return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
|
||||
SCM_FRACTION_NUMERATOR (y));
|
||||
else
|
||||
return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
|
||||
}
|
||||
else if (SCM_BIGP (x))
|
||||
{
|
||||
if (SCM_I_INUMP (y))
|
||||
{
|
||||
scm_t_inum yy = SCM_I_INUM (y);
|
||||
if (yy == 0)
|
||||
scm_num_overflow (s_divide);
|
||||
else if (yy == 1)
|
||||
return x;
|
||||
else
|
||||
{
|
||||
/* FIXME: HMM, what are the relative performance issues here?
|
||||
We need to test. Is it faster on average to test
|
||||
divisible_p, then perform whichever operation, or is it
|
||||
faster to perform the integer div opportunistically and
|
||||
switch to real if there's a remainder? For now we take the
|
||||
middle ground: test, then if divisible, use the faster div
|
||||
func. */
|
||||
if (!SCM_NUMBERP (x))
|
||||
return scm_wta_dispatch_2 (g_scm_i_divide, x, y, SCM_ARG1,
|
||||
s_scm_i_divide);
|
||||
if (!SCM_NUMBERP (y))
|
||||
return scm_wta_dispatch_2 (g_scm_i_divide, x, y, SCM_ARG2,
|
||||
s_scm_i_divide);
|
||||
|
||||
scm_t_inum abs_yy = yy < 0 ? -yy : yy;
|
||||
int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
|
||||
|
||||
if (divisible_p)
|
||||
{
|
||||
SCM result = scm_i_mkbig ();
|
||||
mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
|
||||
scm_remember_upto_here_1 (x);
|
||||
if (yy < 0)
|
||||
mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
|
||||
return scm_i_normbig (result);
|
||||
}
|
||||
else
|
||||
return scm_i_make_ratio (x, y);
|
||||
}
|
||||
}
|
||||
else if (SCM_BIGP (y))
|
||||
{
|
||||
int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
|
||||
SCM_I_BIG_MPZ (y));
|
||||
if (divisible_p)
|
||||
{
|
||||
SCM result = scm_i_mkbig ();
|
||||
mpz_divexact (SCM_I_BIG_MPZ (result),
|
||||
SCM_I_BIG_MPZ (x),
|
||||
SCM_I_BIG_MPZ (y));
|
||||
scm_remember_upto_here_2 (x, y);
|
||||
return scm_i_normbig (result);
|
||||
}
|
||||
else
|
||||
return scm_i_make_ratio (x, y);
|
||||
}
|
||||
else if (SCM_REALP (y))
|
||||
/* FIXME: Precision may be lost here due to:
|
||||
(1) scm_i_big2dbl (2) Double rounding */
|
||||
return scm_i_from_double (scm_i_big2dbl (x) / SCM_REAL_VALUE (y));
|
||||
else if (SCM_COMPLEXP (y))
|
||||
{
|
||||
a = scm_i_big2dbl (x);
|
||||
goto complex_div;
|
||||
}
|
||||
else if (SCM_FRACTIONP (y))
|
||||
return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
|
||||
SCM_FRACTION_NUMERATOR (y));
|
||||
else
|
||||
return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
|
||||
}
|
||||
else if (SCM_REALP (x))
|
||||
{
|
||||
double rx = SCM_REAL_VALUE (x);
|
||||
if (SCM_I_INUMP (y))
|
||||
{
|
||||
scm_t_inum yy = SCM_I_INUM (y);
|
||||
if (yy == 0)
|
||||
scm_num_overflow (s_divide);
|
||||
else
|
||||
/* FIXME: Precision may be lost here due to:
|
||||
(1) The cast from 'scm_t_inum' to 'double'
|
||||
(2) Double rounding */
|
||||
return scm_i_from_double (rx / (double) yy);
|
||||
}
|
||||
else if (SCM_BIGP (y))
|
||||
{
|
||||
/* FIXME: Precision may be lost here due to:
|
||||
(1) The conversion from bignum to double
|
||||
(2) Double rounding */
|
||||
double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
|
||||
scm_remember_upto_here_1 (y);
|
||||
return scm_i_from_double (rx / dby);
|
||||
}
|
||||
else if (SCM_REALP (y))
|
||||
return scm_i_from_double (rx / SCM_REAL_VALUE (y));
|
||||
else if (SCM_COMPLEXP (y))
|
||||
{
|
||||
a = rx;
|
||||
goto complex_div;
|
||||
}
|
||||
else if (SCM_FRACTIONP (y))
|
||||
return scm_i_from_double (rx / scm_i_fraction2double (y));
|
||||
else
|
||||
return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
|
||||
}
|
||||
else if (SCM_COMPLEXP (x))
|
||||
{
|
||||
double rx = SCM_COMPLEX_REAL (x);
|
||||
double ix = SCM_COMPLEX_IMAG (x);
|
||||
if (SCM_I_INUMP (y))
|
||||
{
|
||||
scm_t_inum yy = SCM_I_INUM (y);
|
||||
if (yy == 0)
|
||||
scm_num_overflow (s_divide);
|
||||
else
|
||||
{
|
||||
/* FIXME: Precision may be lost here due to:
|
||||
(1) The conversion from 'scm_t_inum' to double
|
||||
(2) Double rounding */
|
||||
double d = yy;
|
||||
return scm_c_make_rectangular (rx / d, ix / d);
|
||||
}
|
||||
}
|
||||
else if (SCM_BIGP (y))
|
||||
{
|
||||
/* FIXME: Precision may be lost here due to:
|
||||
(1) The conversion from bignum to double
|
||||
(2) Double rounding */
|
||||
double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
|
||||
scm_remember_upto_here_1 (y);
|
||||
return scm_c_make_rectangular (rx / dby, ix / dby);
|
||||
}
|
||||
else if (SCM_REALP (y))
|
||||
{
|
||||
double yy = SCM_REAL_VALUE (y);
|
||||
return scm_c_make_rectangular (rx / yy, ix / yy);
|
||||
}
|
||||
else if (SCM_COMPLEXP (y))
|
||||
{
|
||||
double ry = SCM_COMPLEX_REAL (y);
|
||||
double iy = SCM_COMPLEX_IMAG (y);
|
||||
if (fabs(ry) <= fabs(iy))
|
||||
{
|
||||
double t = ry / iy;
|
||||
double d = iy * (1.0 + t * t);
|
||||
return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
|
||||
}
|
||||
else
|
||||
{
|
||||
double t = iy / ry;
|
||||
double d = ry * (1.0 + t * t);
|
||||
return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
|
||||
}
|
||||
}
|
||||
else if (SCM_FRACTIONP (y))
|
||||
{
|
||||
/* FIXME: Precision may be lost here due to:
|
||||
(1) The conversion from fraction to double
|
||||
(2) Double rounding */
|
||||
double yy = scm_i_fraction2double (y);
|
||||
return scm_c_make_rectangular (rx / yy, ix / yy);
|
||||
}
|
||||
else
|
||||
return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
|
||||
}
|
||||
else if (SCM_FRACTIONP (x))
|
||||
{
|
||||
if (SCM_I_INUMP (y))
|
||||
{
|
||||
scm_t_inum yy = SCM_I_INUM (y);
|
||||
if (yy == 0)
|
||||
scm_num_overflow (s_divide);
|
||||
else
|
||||
return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
|
||||
scm_product (SCM_FRACTION_DENOMINATOR (x), y));
|
||||
}
|
||||
else if (SCM_BIGP (y))
|
||||
{
|
||||
return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
|
||||
scm_product (SCM_FRACTION_DENOMINATOR (x), y));
|
||||
}
|
||||
else if (SCM_REALP (y))
|
||||
/* FIXME: Precision may be lost here due to:
|
||||
(1) The conversion from fraction to double
|
||||
(2) Double rounding */
|
||||
return scm_i_from_double (scm_i_fraction2double (x) /
|
||||
SCM_REAL_VALUE (y));
|
||||
else if (SCM_COMPLEXP (y))
|
||||
{
|
||||
/* FIXME: Precision may be lost here due to:
|
||||
(1) The conversion from fraction to double
|
||||
(2) Double rounding */
|
||||
a = scm_i_fraction2double (x);
|
||||
goto complex_div;
|
||||
}
|
||||
else if (SCM_FRACTIONP (y))
|
||||
return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
|
||||
scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
|
||||
else
|
||||
return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
|
||||
}
|
||||
else
|
||||
return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARG1, s_divide);
|
||||
return divide (x, y);
|
||||
}
|
||||
#undef FUNC_NAME
|
||||
|
||||
|
||||
double
|
||||
scm_c_truncate (double x)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue