mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-05-20 03:30:27 +02:00
Simplify scm_exact_integer_quotient
* libguile/integers.h: * libguile/integers.c (scm_integer_exact_quotient_iz): New internal function. * libguile/numbers.c (scm_i_make_ratio): Simplify and enforce invariants. (scm_exact_integer_quotient): Use integer lib.
This commit is contained in:
parent
0754dbf3e8
commit
a4524da8c1
3 changed files with 44 additions and 74 deletions
|
@ -2939,6 +2939,20 @@ scm_integer_exact_quotient_ii (scm_t_inum n, scm_t_inum d)
|
|||
return scm_integer_truncate_quotient_ii (n, d);
|
||||
}
|
||||
|
||||
SCM
|
||||
scm_integer_exact_quotient_iz (scm_t_inum n, struct scm_bignum *d)
|
||||
{
|
||||
// There are only two fixnum numerators that are evenly divided by
|
||||
// bignum denominators: 0, which is evenly divided 0 times by
|
||||
// anything, and SCM_MOST_NEGATIVE_FIXNUM, which is evenly divided -1
|
||||
// time by SCM_MOST_POSITIVE_FIXNUM+1.
|
||||
if (n == 0)
|
||||
return SCM_INUM0;
|
||||
ASSERT (n == SCM_MOST_NEGATIVE_FIXNUM);
|
||||
ASSERT (bignum_cmp_long (d, SCM_MOST_POSITIVE_FIXNUM + 1) == 0);
|
||||
return SCM_I_MAKINUM (-1);
|
||||
}
|
||||
|
||||
/* Return the exact integer q such that n = q*d, for exact integers n
|
||||
and d, where d is known in advance to divide n evenly (with zero
|
||||
remainder). For large integers, this can be computed more
|
||||
|
|
|
@ -197,6 +197,8 @@ SCM_INTERNAL int scm_is_integer_divisible_zz (struct scm_bignum *x,
|
|||
struct scm_bignum *y);
|
||||
|
||||
SCM_INTERNAL SCM scm_integer_exact_quotient_ii (scm_t_inum n, scm_t_inum d);
|
||||
SCM_INTERNAL SCM scm_integer_exact_quotient_iz (scm_t_inum n,
|
||||
struct scm_bignum *d);
|
||||
SCM_INTERNAL SCM scm_integer_exact_quotient_zi (struct scm_bignum *n,
|
||||
scm_t_inum d);
|
||||
SCM_INTERNAL SCM scm_integer_exact_quotient_zz (struct scm_bignum *n,
|
||||
|
|
|
@ -412,22 +412,19 @@ static SCM
|
|||
scm_i_make_ratio (SCM numerator, SCM denominator)
|
||||
#define FUNC_NAME "make-ratio"
|
||||
{
|
||||
/* Make sure the arguments are proper */
|
||||
if (!SCM_LIKELY (SCM_I_INUMP (numerator) || SCM_BIGP (numerator)))
|
||||
SCM_WRONG_TYPE_ARG (1, numerator);
|
||||
else if (!SCM_LIKELY (SCM_I_INUMP (denominator) || SCM_BIGP (denominator)))
|
||||
SCM_WRONG_TYPE_ARG (2, denominator);
|
||||
else
|
||||
if (!scm_is_exact_integer (numerator))
|
||||
abort();
|
||||
if (!scm_is_exact_integer (denominator))
|
||||
abort();
|
||||
|
||||
SCM the_gcd = scm_gcd (numerator, denominator);
|
||||
if (!(scm_is_eq (the_gcd, SCM_INUM1)))
|
||||
{
|
||||
SCM the_gcd = scm_gcd (numerator, denominator);
|
||||
if (!(scm_is_eq (the_gcd, SCM_INUM1)))
|
||||
{
|
||||
/* Reduce to lowest terms */
|
||||
numerator = scm_exact_integer_quotient (numerator, the_gcd);
|
||||
denominator = scm_exact_integer_quotient (denominator, the_gcd);
|
||||
}
|
||||
return scm_i_make_ratio_already_reduced (numerator, denominator);
|
||||
/* Reduce to lowest terms */
|
||||
numerator = scm_exact_integer_quotient (numerator, the_gcd);
|
||||
denominator = scm_exact_integer_quotient (denominator, the_gcd);
|
||||
}
|
||||
return scm_i_make_ratio_already_reduced (numerator, denominator);
|
||||
}
|
||||
#undef FUNC_NAME
|
||||
|
||||
|
@ -921,73 +918,30 @@ static SCM
|
|||
scm_exact_integer_quotient (SCM n, SCM d)
|
||||
#define FUNC_NAME "exact-integer-quotient"
|
||||
{
|
||||
if (SCM_LIKELY (SCM_I_INUMP (n)))
|
||||
if (SCM_I_INUMP (n))
|
||||
{
|
||||
scm_t_inum nn = SCM_I_INUM (n);
|
||||
if (SCM_LIKELY (SCM_I_INUMP (d)))
|
||||
{
|
||||
scm_t_inum dd = SCM_I_INUM (d);
|
||||
if (SCM_UNLIKELY (dd == 0))
|
||||
scm_num_overflow ("exact-integer-quotient");
|
||||
else
|
||||
{
|
||||
scm_t_inum qq = nn / dd;
|
||||
if (SCM_LIKELY (SCM_FIXABLE (qq)))
|
||||
return SCM_I_MAKINUM (qq);
|
||||
else
|
||||
return scm_i_inum2big (qq);
|
||||
}
|
||||
}
|
||||
else if (SCM_LIKELY (SCM_BIGP (d)))
|
||||
{
|
||||
/* n is an inum and d is a bignum. Given that d is known to
|
||||
divide n evenly, there are only two possibilities: n is 0,
|
||||
or else n is fixnum-min and d is abs(fixnum-min). */
|
||||
if (nn == 0)
|
||||
return SCM_INUM0;
|
||||
else
|
||||
return SCM_I_MAKINUM (-1);
|
||||
}
|
||||
if (scm_is_eq (n, d))
|
||||
return SCM_INUM1;
|
||||
if (SCM_I_INUMP (d))
|
||||
return scm_integer_exact_quotient_ii (SCM_I_INUM (n), SCM_I_INUM (d));
|
||||
else if (SCM_BIGP (d))
|
||||
return scm_integer_exact_quotient_iz (SCM_I_INUM (n), scm_bignum (d));
|
||||
else
|
||||
SCM_WRONG_TYPE_ARG (2, d);
|
||||
abort (); // Unreachable.
|
||||
}
|
||||
else if (SCM_LIKELY (SCM_BIGP (n)))
|
||||
else if (SCM_BIGP (n))
|
||||
{
|
||||
if (SCM_LIKELY (SCM_I_INUMP (d)))
|
||||
{
|
||||
scm_t_inum dd = SCM_I_INUM (d);
|
||||
if (SCM_UNLIKELY (dd == 0))
|
||||
scm_num_overflow ("exact-integer-quotient");
|
||||
else if (SCM_UNLIKELY (dd == 1))
|
||||
return n;
|
||||
else
|
||||
{
|
||||
SCM q = scm_i_mkbig ();
|
||||
if (dd > 0)
|
||||
mpz_divexact_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (n), dd);
|
||||
else
|
||||
{
|
||||
mpz_divexact_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (n), -dd);
|
||||
mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
|
||||
}
|
||||
scm_remember_upto_here_1 (n);
|
||||
return scm_i_normbig (q);
|
||||
}
|
||||
}
|
||||
else if (SCM_LIKELY (SCM_BIGP (d)))
|
||||
{
|
||||
SCM q = scm_i_mkbig ();
|
||||
mpz_divexact (SCM_I_BIG_MPZ (q),
|
||||
SCM_I_BIG_MPZ (n),
|
||||
SCM_I_BIG_MPZ (d));
|
||||
scm_remember_upto_here_2 (n, d);
|
||||
return scm_i_normbig (q);
|
||||
}
|
||||
if (scm_is_eq (n, d))
|
||||
return SCM_INUM1;
|
||||
if (SCM_I_INUMP (d))
|
||||
return scm_integer_exact_quotient_zi (scm_bignum (n), SCM_I_INUM (d));
|
||||
else if (SCM_BIGP (d))
|
||||
return scm_integer_exact_quotient_zz (scm_bignum (n), scm_bignum (d));
|
||||
else
|
||||
SCM_WRONG_TYPE_ARG (2, d);
|
||||
abort (); // Unreachable.
|
||||
}
|
||||
else
|
||||
SCM_WRONG_TYPE_ARG (1, n);
|
||||
abort (); // Unreachable.
|
||||
}
|
||||
#undef FUNC_NAME
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue