1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-07-01 15:20:34 +02:00

Implementation and test cases for the R6RS (rnrs arithmetic flonums)

library.

* module/Makefile.am: Add rnrs/arithmetic/6/fixnums.scm and
  rnrs/arithmetic/6/flonums.scm to RNRS_SOURCES.
* module/rnrs/6/base.scm: (div-and-mod, div0, mod0, div0-and-mod0): New
  functions; this `div' implementation is not quite right, but we'll come
  back to it later.
* module/rnrs/arithmetic/6/fixnums.scm: New file.
* module/rnrs/arithmetic/6/flonums.scm: New file.
* test-suite/Makefile.am: Add tests/r6rs-arithmetic-flonums.test to
  SCM_TESTS.
* test-suite/tests/r6rs-arithmetic-flonums.test: New file.
This commit is contained in:
Julian Graham 2010-04-03 23:04:24 -04:00
parent 15ce5cafbc
commit b01818d752
6 changed files with 803 additions and 2 deletions

View file

@ -273,6 +273,8 @@ RNRS_SOURCES = \
rnrs/6/syntax-case.scm \
rnrs/6/unicode.scm \
rnrs/arithmetic/6/bitwise.scm \
rnrs/arithmetic/6/fixnums.scm \
rnrs/arithmetic/6/flonums.scm \
rnrs/bytevector.scm \
rnrs/io/6/simple.scm \
rnrs/io/ports.scm \

View file

@ -71,7 +71,24 @@
let-syntax letrec-syntax
syntax-rules identifier-syntax)
(import (guile)
(import (rename (guile) (quotient div) (modulo mod))
(rename (only (guile) for-each map)
(for-each vector-for-each) (map vector-map))
(srfi srfi-11)))
(srfi srfi-11))
(define (div-and-mod x y) (let ((q (div x y)) (r (mod x y))) (values q r)))
(define (div0 x y)
(call-with-values (lambda () (div0-and-mod0 x y)) (lambda (q r) q)))
(define (mod0 x y)
(call-with-values (lambda () (div0-and-mod0 x y)) (lambda (q r) r)))
(define (div0-and-mod0 x y)
(call-with-values (lambda () (div-and-mod x y))
(lambda (q r)
(cond ((< r (abs (/ y 2))) (values q r))
((negative? y) (values (- q 1) (+ r y)))
(else (values (+ q 1) (+ r y)))))))
)

View file

@ -0,0 +1,255 @@
;;; fixnums.scm --- The R6RS fixnums arithmetic library
;; Copyright (C) 2010 Free Software Foundation, Inc.
;;
;; This library is free software; you can redistribute it and/or
;; modify it under the terms of the GNU Lesser General Public
;; License as published by the Free Software Foundation; either
;; version 3 of the License, or (at your option) any later version.
;;
;; This library is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; Lesser General Public License for more details.
;;
;; You should have received a copy of the GNU Lesser General Public
;; License along with this library; if not, write to the Free Software
;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
(library (rnrs arithmetic fixnums (6))
(export fixnum?
fixnum-width
least-fixnum
greatest-fixnum
fx=?
fx>?
fx<?
fx>=?
fx<=?
fxzero?
fxpositive?
fxnegative?
fxodd?
fxeven?
fxmax
fxmin
fx+
fx*
fx-
fxdiv-and-mod
fxdiv
fxmod
fxdiv0-and-mod0
fxdiv0
fxmod0
fx+/carry
fx-/carry
fx*/carry
fxand
fxior
fxxor
fxif
fxbit-count
fxlength
fxfirst-bit-set
fxbit-set?
fxcopy-bit
fxbit-field
fxcopy-bit-field
fxarithmetic-shift
fxarithmetic-shift-left
fxarithmetic-shift-right
fxrotate-bit-field
fxreverse-bit-field)
(import (rename (only (guile) logand
logbit?
logcount
logior
lognot
most-positive-fixnum
most-negative-fixnum)
(most-positive-fixnum greatest-fixnum)
(most-negative-fixnum least-fixnum))
(ice-9 optargs)
(rnrs base (6))
(rnrs arithmetic bitwise (6))
(rnrs conditions (6))
(rnrs exceptions (6)))
(define fixnum-width (round (/ (log (+ greatest-fixnum 1)) (log 2))))
(define (fixnum? obj)
(and (exact? obj)
(integer? obj)
(>= obj least-fixnum)
(<= obj greatest-fixnum)))
(define (assert-fixnum . args)
(or (every fixnum? args) (raise (make-assertion-violation))))
(define (assert-fixnum-result . args)
(or (every fixnum? args)
(raise (make-implementation-restriction-violation))))
(define (fx=? fx1 fx2 . rst)
(let ((args (cons* fx1 fx2 rst)))
(apply assert-fixnum args)
(apply = args)))
(define (fx>? fx1 fx2 . rst)
(let ((args (cons* fx1 fx2 rst)))
(apply assert-fixnum args)
(apply > args)))
(define (fx<? fx1 fx2 . rst)
(let ((args (cons* fx1 fx2 rst)))
(apply assert-fixnum rst)
(apply < args)))
(define (fx>=? fx1 fx2 . rst)
(let ((args (cons* fx1 fx2 rst)))
(apply assert-fixnum rst)
(apply >= args)))
(define (fx<=? fx1 fx2 . rst)
(let ((args (cons* fx1 fx2 rst)))
(apply assert-fixnum rst)
(apply <= args)))
(define (fxzero? fx) (assert-fixnum fx) (zero? fx))
(define (fxpositive? fx) (assert-fixnum fx) (positive? fx))
(define (fxnegative? fx) (assert-fixnum fx) (negative? fx))
(define (fxodd? fx) (assert-fixnum fx) (odd? fx))
(define (fxeven? fx) (assert-fixnum fx) (even? fx))
(define (fxmax fx1 fx2 . rst)
(let ((args (cons* fx1 fx2 rst)))
(assert-fixnum args)
(apply max args)))
(define (fxmin fx1 fx2 . rst)
(let ((args (cons* fx1 fx2 rst)))
(assert-fixnum args)
(apply min args)))
(define (fx+ fx1 fx2)
(assert-fixnum fx1 fx2) (let ((r (+ fx1 fx2))) (assert-fixnum-result r) r))
(define (fx* fx1 fx2)
(assert-fixnum fx1 fx2) (let ((r (* fx1 fx2))) (assert-fixnum-result r) r))
(define* (fx- fx1 #:optional fx2)
(assert-fixnum fx1)
(if fx2
(begin
(assert-fixnum fx2)
(let ((r (- fx1 fx2))) (assert-fixnum-result r) r))
(let ((r (- fx1))) (assert-fixnum-result r) r)))
(define (fxdiv x1 x2)
(assert-fixnum x1 x2)
(if (zero? fx2) (raise (make-assertion-violation)))
(let ((r (quotient x1 x2))) (assert-fixnum-result r) r))
(define (fxmod x1 x2)
(assert-fixnum x1 x2)
(if (zero? fx2) (raise (make-assertion-violation)))
(let ((r (modulo x1 x2))) (assert-fixnum-result r) r))
(define (fxdiv-and-mod fx1 fx2)
(assert-fixnum fx1 fx2)
(if (zero? fx2) (raise (make-assertion-violation)))
(let ((q (quotient fx1 fx2))
(m (modulo fx1 fx2)))
(assert-fixnum-result q m)
(values q m)))
(define (fxdiv0 fx1 fx2)
(assert-fixnum fx1 fx2)
(if (zero? fx2) (raise (make-assertion-violation)))
(let ((r (div0 fx1 fx2))) (assert-fixnum-result r) r))
(define (fxmod0 fx1 fx2)
(assert-fixnum fx1 fx2)
(if (zero? fx2) (raise (make-assertion-violation)))
(let ((r (mod0 fx1 fx2))) (assert-fixnum-result r) r))
(define (fxdiv0-and-mod0 fx1 fx2)
(assert-fixnum fx1 fx2)
(if (zero? fx2) (raise (make-assertion-violation)))
(call-with-values (lambda () (div0-and-mod0 fx1 fx2))
(lambda (q r) (assert-fixnum-result q r) (values q r))))
(define (fx+/carry fx1 fx2 fx3)
(assert-fixnum fx1 fx2 fx3)
(let* ((s (+ fx1 fx2 fx3))
(s0 (mod0 s (expt 2 (fixnum-width))))
(s1 (div0 s (expt 2 (fixnum-width)))))
(values s0 s1)))
(define (fx-/carry fx1 fx2 fx3)
(assert-fixnum fx1 fx2 fx3)
(let* ((d (- fx1 fx2 fx3))
(d0 (mod0 d (expt 2 (fixnum-width))))
(d1 (div0 d (expt 2 (fixnum-width)))))
(values d0 d1)))
(define (fx*/carry fx1 fx2 fx3)
(assert-fixnum fx1 fx2 fx3)
(let* ((s (+ (* fx1 fx2) fx3))
(s0 (mod0 s (expt 2 (fixnum-width))))
(s1 (div0 s (expt 2 (fixnum-width)))))
(values s0 s1)))
(define (fxnot fx) (assert-fixnum fx) (lognot fx))
(define (fxand . args) (apply assert-fixnum args) (apply logand args))
(define (fxior . args) (apply assert-fixnum args) (apply logior args))
(define (fxxor . args) (apply assert-fixnum args) (apply logxor args))
(define (fxif fx1 fx2 fx3)
(assert-fixnum fx1 fx2 fx3)
(bitwise-if fx1 fx2 fx2))
(define (fxbit-count fx) (assert-fixnum fx) (logcount fx))
(define (fxlength fx) (assert-fixnum fx) (bitwise-length fx))
(define (fxfirst-bit-set fx) (assert-fixnum fx) (bitwise-first-bit-set fx))
(define (fxbit-set? fx1 fx2) (assert-fixnum fx1 fx2) (logbit? fx1 fx2))
(define (fxcopy-bit fx1 fx2 fx3)
(assert-fixnum fx1 fx2 fx3)
(bitwise-copy-bit fx1 fx2 fx3))
(define (fxbit-field fx1 fx2 fx3)
(assert-fixnum fx1 fx2 fx3)
(bitwise-bit-field fx1 fx2 fx3))
(define (fxcopy-bit-field fx1 fx2 fx3 fx4)
(assert-fixnum fx1 fx2 fx3 fx4)
(bitwise-copy-bit-field fx1 fx2 fx3 fx4))
(define (fxarithmetic-shift fx1 fx2) (assert-fixnum fx1 fx2) (ash fx1 fx2))
(define fxarithmetic-shift-left fxarithmetic-shift)
(define (fxarithmetic-shift-right fx1 fx2)
(assert-fixnum fx1 fx2) (ash fx2 (- fx2)))
(define (fxrotate-bit-field fx1 fx2 fx3 fx4)
(assert-fixnum fx1 fx2 fx3 fx4)
(bitwise-rotate-bit-field fx1 fx2 fx3 fx4))
(define (fxreverse-bit-field fx1 fx2 fx3)
(assert-fixnum fx1 fx2 fx3)
(bitwise-reverse-bit-field fx1 fx2 fx3))
)

View file

@ -0,0 +1,216 @@
;;; flonums.scm --- The R6RS flonums arithmetic library
;; Copyright (C) 2010 Free Software Foundation, Inc.
;;
;; This library is free software; you can redistribute it and/or
;; modify it under the terms of the GNU Lesser General Public
;; License as published by the Free Software Foundation; either
;; version 3 of the License, or (at your option) any later version.
;;
;; This library is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; Lesser General Public License for more details.
;;
;; You should have received a copy of the GNU Lesser General Public
;; License along with this library; if not, write to the Free Software
;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
(library (rnrs arithmetic flonums (6))
(export flonum?
real->flonum
fl=? fl<? fl<=? fl>? fl>=?
flinteger? flzero? flpositive? flnegative? flodd? fleven? flfinite?
flinfinite? flnan?
flmax flmin
fl+ fl* fl- fl/
flabs
fldiv-and-mod
fldiv
flmod
fldiv0-and-mod0
fldiv0
flmod0
flnumerator
fldenominator
flfloor flceiling fltruncate flround
flexp fllog flsin flcos fltan flacos flasin flatan
flsqrt flexpt
&no-infinities
make-no-infinities-violation
no-infinities-violation?
&no-nans
make-no-nans-violation
no-nans-violation?
fixnum->flonum)
(import (ice-9 optargs)
(only (guile) inf?)
(rnrs arithmetic fixnums (6))
(rnrs base (6))
(rnrs conditions (6))
(rnrs exceptions (6))
(rnrs lists (6))
(rnrs r5rs (6)))
(define (flonum? obj) (and (number? obj) (inexact? obj)))
(define (assert-flonum . args)
(or (for-all flonum? args) (raise (make-assertion-violation))))
(define (assert-iflonum . args)
(or (for-all (lambda (i) (and (flonum? i) (integer? i))) args)
(raise (make-assertion-violation))))
(define (real->flonum x)
(or (real? x) (raise (make-assertion-violation)))
(exact->inexact x))
(define (fl=? . args) (apply assert-flonum args) (apply = args))
(define (fl<? . args) (apply assert-flonum args) (apply < args))
(define (fl<=? . args) (apply assert-flonum args) (apply <= args))
(define (fl>? . args) (apply assert-flonum args) (apply > args))
(define (fl>=? . args) (apply assert-flonum args) (apply >= args))
(define (flinteger? fl) (assert-flonum fl) (integer? fl))
(define (flzero? fl) (assert-flonum fl) (zero? fl))
(define (flpositive? fl) (assert-flonum fl) (positive? fl))
(define (flnegative? fl) (assert-flonum fl) (negative? fl))
(define (flodd? ifl) (assert-iflonum ifl) (odd? ifl))
(define (fleven? ifl) (assert-iflonum ifl) (even? ifl))
(define (flfinite? fl) (assert-flonum fl) (not (inf? fl)))
(define (flinfinite? fl) (assert-flonum fl) (inf? fl))
(define (flnan? fl) (assert-flonum fl) (nan? fl))
(define (flmax fl1 . args)
(let ((flargs (cons fl1 args)))
(apply assert-flonum flargs)
(apply max flargs)))
(define (flmin fl1 . args)
(let ((flargs (cons fl1 args)))
(apply assert-flonum flargs)
(apply min flargs)))
(define (fl+ fl1 . args)
(let ((flargs (cons fl1 args)))
(apply assert-flonum flargs)
(apply + flargs)))
(define (fl* fl1 . args)
(let ((flargs (cons fl1 args)))
(apply assert-flonum flargs)
(apply * flargs)))
(define (fl- fl1 . args)
(let ((flargs (cons fl1 args)))
(apply assert-flonum flargs)
(apply - flargs)))
(define (fl/ fl1 . args)
(let ((flargs (cons fl1 args)))
(apply assert-flonum flargs)
(apply / flargs)))
(define (flabs fl) (assert-flonum fl) (abs fl))
(define (fldiv-and-mod fl1 fl2)
(assert-iflonum fl1 fl2)
(if (zero? fl2) (raise (make-assertion-violation)))
(let ((fx1 (inexact->exact fl1))
(fx2 (inexact->exact fl2)))
(call-with-values (lambda () (div-and-mod fx1 fx2))
(lambda (div mod) (values (exact->inexact div)
(exact->inexact mod))))))
(define (fldiv fl1 fl2)
(assert-iflonum fl1 fl2)
(if (zero? fl2) (raise (make-assertion-violation)))
(let ((fx1 (inexact->exact fl1))
(fx2 (inexact->exact fl2)))
(exact->inexact (quotient fx1 fx2))))
(define (flmod fl1 fl2)
(assert-iflonum fl1 fl2)
(if (zero? fl2) (raise (make-assertion-violation)))
(let ((fx1 (inexact->exact fl1))
(fx2 (inexact->exact fl2)))
(exact->inexact (modulo fx1 fx2))))
(define (fldiv0-and-mod0 fl1 fl2)
(assert-iflonum fl1 fl2)
(if (zero? fl2) (raise (make-assertion-violation)))
(let* ((fx1 (inexact->exact fl1))
(fx2 (inexact->exact fl2)))
(call-with-values (lambda () (div0-and-mod0 fx1 fx2))
(lambda (q r) (values (real->flonum q) (real->flonum r))))))
(define (fldiv0 fl1 fl2)
(call-with-values (lambda () (fldiv0-and-mod0 fl1 fl2)) (lambda (q r) q)))
(define (flmod0 fl1 fl2)
(call-with-values (lambda () (fldiv0-and-mod0 fl1 fl2)) (lambda (q r) r)))
(define (flnumerator fl)
(assert-flonum fl)
(case fl
((+inf.0) +inf.0)
((-inf.0) -inf.0)
(else (numerator fl))))
(define (fldenominator fl)
(assert-flonum fl)
(case fl
((+inf.0) 1.0)
((-inf.0) 1.0)
(else (denominator fl))))
(define (flfloor fl) (assert-flonum fl) (floor fl))
(define (flceiling fl) (assert-flonum fl) (ceiling fl))
(define (fltruncate fl) (assert-flonum fl) (truncate fl))
(define (flround fl) (assert-flonum fl) (round fl))
(define (flexp fl) (assert-flonum fl) (exp fl))
(define* (fllog fl #:optional fl2)
(assert-flonum fl)
(cond ((fl=? fl -inf.0) +nan.0)
(fl2 (begin (assert-flonum fl2) (/ (log fl) (log fl2))))
(else (log fl))))
(define (flsin fl) (assert-flonum fl) (sin fl))
(define (flcos fl) (assert-flonum fl) (cos fl))
(define (fltan fl) (assert-flonum fl) (tan fl))
(define (flasin fl) (assert-flonum fl) (asin fl))
(define (flacos fl) (assert-flonum fl) (acos fl))
(define* (flatan fl #:optional fl2)
(assert-flonum fl)
(if fl2 (begin (assert-flonum fl2) (atan fl fl2)) (atan fl)))
(define (flsqrt fl) (assert-flonum fl) (sqrt fl))
(define (flexpt fl1 fl2) (assert-flonum fl1 fl2) (expt fl1 fl2))
(define-condition-type &no-infinities
&implementation-restriction
make-no-infinities-violation
no-infinities-violation?)
(define-condition-type &no-nans
&implementation-restriction
make-no-nans-violation
no-nans-violation?)
(define (fixnum->flonum fx)
(or (fixnum? fx) (raise (make-assertion-violation)))
(exact->inexact fx))
)

View file

@ -77,6 +77,7 @@ SCM_TESTS = tests/00-initial-env.test \
tests/r4rs.test \
tests/r5rs_pitfall.test \
tests/r6rs-arithmetic-bitwise.test \
tests/r6rs-arithmetic-flonums.test \
tests/r6rs-conditions.test \
tests/r6rs-control.test \
tests/r6rs-enums.test \

View file

@ -0,0 +1,310 @@
;;; arithmetic-flonums.test --- Test suite for R6RS (rnrs arithmetic flonums)
;; Copyright (C) 2010 Free Software Foundation, Inc.
;;
;; This library is free software; you can redistribute it and/or
;; modify it under the terms of the GNU Lesser General Public
;; License as published by the Free Software Foundation; either
;; version 3 of the License, or (at your option) any later version.
;;
;; This library is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; Lesser General Public License for more details.
;;
;; You should have received a copy of the GNU Lesser General Public
;; License along with this library; if not, write to the Free Software
;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
(define-module (test-suite test-r6rs-arithmetic-flonums)
:use-module ((rnrs arithmetic flonums) :version (6))
:use-module ((rnrs conditions) :version (6))
:use-module ((rnrs exceptions) :version (6))
:use-module (test-suite lib))
(define fake-pi 3.14159265)
(define (reasonably-close? x y) (< (abs (- x y)) 0.0000001))
(with-test-prefix "flonum?"
(pass-if "flonum? is #t on flonum"
(flonum? 1.5))
(pass-if "flonum? is #f on non-flonum"
(not (flonum? 3))))
(with-test-prefix "real->flonum"
(pass-if "simple"
(flonum? (real->flonum 3))))
(with-test-prefix "fl=?"
(pass-if "fl=? is #t for eqv inputs"
(fl=? 3.0 3.0 3.0))
(pass-if "fl=? is #f for non-eqv inputs"
(not (fl=? 1.5 0.0 3.0)))
(pass-if "+inf.0 is fl= to itself"
(fl=? +inf.0 +inf.0))
(pass-if "0.0 and -0.0 are fl="
(fl=? 0.0 -0.0)))
(with-test-prefix "fl<?"
(pass-if "fl<? is #t for monotonically < inputs"
(fl<? 1.0 2.0 3.0))
(pass-if "fl<? is #f for non-monotonically < inputs"
(not (fl<? 2.0 2.0 1.4))))
(with-test-prefix "fl<=?"
(pass-if "fl<=? is #t for monotonically < or = inputs"
(fl<=? 1.0 1.2 1.2))
(pass-if "fl<=? is #f non-monotonically < or = inputs"
(not (fl<=? 2.0 1.0 0.9))))
(with-test-prefix "fl>?"
(pass-if "fl>? is #t for monotonically > inputs"
(fl>? 3.0 2.0 1.0))
(pass-if "fl>? is #f for non-monotonically > inputs"
(not (fl>? 1.0 1.0 1.2))))
(with-test-prefix "fl>=?"
(pass-if "fl>=? is #t for monotonically > or = inputs"
(fl>=? 3.0 2.0 2.0))
(pass-if "fl>=? is #f for non-monotonically > or = inputs"
(not (fl>=? 1.0 1.2 1.2))))
(with-test-prefix "flinteger?"
(pass-if "flinteger? is #t on integer flomnums"
(flinteger? 1.0))
(pass-if "flinteger? is #f on non-integer flonums"
(not (flinteger? 1.5))))
(with-test-prefix "flzero?"
(pass-if "flzero? is #t for 0.0 and -0.0"
(and (flzero? 0.0) (flzero? -0.0)))
(pass-if "flzero? is #f for non-zero flonums"
(not (flzero? 1.0))))
(with-test-prefix "flpositive?"
(pass-if "flpositive? is #t on positive flonum"
(flpositive? 1.0))
(pass-if "flpositive? is #f on negative flonum"
(not (flpositive? -1.0)))
(pass-if "0.0 and -0.0 are not flpositive"
(and (not (flpositive? 0.0)) (not (flpositive? -0.0)))))
(with-test-prefix "flnegative?"
(pass-if "flnegative? is #t on negative flonum"
(flnegative? -1.0))
(pass-if "flnegative? is #f on positive flonum"
(not (flnegative? 1.0)))
(pass-if "0.0 and -0.0 are not flnegative"
(and (not (flnegative? 0.0)) (not (flnegative? -0.0)))))
(with-test-prefix "flodd?"
(pass-if "&assertion raised on non-integer flonum"
(guard (condition ((assertion-violation? condition) #t) (else #f))
(begin (flodd? 1.5) #f)))
(pass-if "flodd? is #t on odd flonums"
(flodd? 3.0))
(pass-if "flodd? is #f on even flonums"
(not (flodd? 2.0))))
(with-test-prefix "fleven?"
(pass-if "&assertion raised on non-integer flonum"
(guard (condition ((assertion-violation? condition) #t) (else #f))
(begin (fleven? 1.5) #f)))
(pass-if "fleven? is #t on even flonums"
(fleven? 2.0))
(pass-if "fleven? is #f on odd flonums"
(not (fleven? 3.0))))
(with-test-prefix "flfinite?"
(pass-if "flfinite? is #t on non-infinite flonums"
(flfinite? 2.0))
(pass-if "flfinite? is #f on infinities"
(and (not (flfinite? +inf.0)) (not (flfinite? -inf.0)))))
(with-test-prefix "flinfinite?"
(pass-if "flinfinite? is #t on infinities"
(and (flinfinite? +inf.0) (flinfinite? -inf.0)))
(pass-if "flinfinite? is #f on non-infinite flonums"
(not (flinfinite? 2.0))))
(with-test-prefix "flnan?"
(pass-if "flnan? is #t on NaN and -NaN"
(and (flnan? +nan.0) (flnan? -nan.0)))
(pass-if "flnan? is #f on non-NaN values"
(not (flnan? 1.5))))
(with-test-prefix "flmax"
(pass-if "simple" (fl=? (flmax 1.0 3.0 2.0) 3.0)))
(with-test-prefix "flmin"
(pass-if "simple" (fl=? (flmin -1.0 0.0 2.0) -1.0)))
(with-test-prefix "fl+"
(pass-if "simple" (fl=? (fl+ 2.141 1.0 0.1) 3.241)))
(with-test-prefix "fl*"
(pass-if "simple" (fl=? (fl* 1.0 2.0 3.0 1.5) 9.0)))
(with-test-prefix "fl-"
(pass-if "unary fl- negates argument" (fl=? (fl- 2.0) -2.0))
(pass-if "simple" (fl=? (fl- 10.5 6.0 0.5) 4.0)))
(with-test-prefix "fl/"
(pass-if "unary fl/ returns multiplicative inverse" (fl=? (fl/ 10.0) 0.1))
(pass-if "simple" (fl=? (fl/ 10.0 2.0 2.0) 2.5)))
(with-test-prefix "flabs"
(pass-if "simple" (and (fl=? (flabs -1.0) 1.0) (fl=? (flabs 1.23) 1.23))))
(with-test-prefix "fldiv-and-mod"
(pass-if "simple"
(call-with-values (lambda () (fldiv-and-mod 5.0 2.0))
(lambda (div mod) (fl=? div 2.0) (fl=? mod 1.0)))))
(with-test-prefix "fldiv"
(pass-if "simple" (fl=? (fldiv 5.0 2.0) 2.0)))
(with-test-prefix "flmod"
(pass-if "simple" (fl=? (flmod 5.0 2.0) 1.0)))
(with-test-prefix "fldiv0-and-mod0"
(pass-if "simple"
(call-with-values (lambda () (fldiv0-and-mod0 -123.0 10.0))
(lambda (div mod)
(or (and (fl=? div -12.0) (fl=? mod -3.0))
(throw 'unresolved))))))
(with-test-prefix "fldiv0"
(pass-if "simple" (or (fl=? (fldiv0 -123.0 10.0) -12.0) (throw 'unresolved))))
(with-test-prefix "flmod0"
(pass-if "simple" (or (fl=? (flmod0 -123.0 10.0) -3.0) (throw 'unresolved))))
(with-test-prefix "flnumerator"
(pass-if "simple" (fl=? (flnumerator 0.5) 1.0))
(pass-if "infinities"
(and (fl=? (flnumerator +inf.0) +inf.0)
(fl=? (flnumerator -inf.0) -inf.0)))
(pass-if "negative zero" (fl=? (flnumerator -0.0) -0.0)))
(with-test-prefix "fldenominator"
(pass-if "simple" (fl=? (fldenominator 0.5) 2.0))
(pass-if "infinities"
(and (fl=? (fldenominator +inf.0) 1.0)
(fl=? (fldenominator -inf.0) 1.0)))
(pass-if "zero" (fl=? (fldenominator 0.0) 1.0)))
(with-test-prefix "flfloor"
(pass-if "simple"
(and (fl=? (flfloor -4.3) -5.0)
(fl=? (flfloor 3.5) 3.0))))
(with-test-prefix "flceiling"
(pass-if "simple"
(and (fl=? (flceiling -4.3) -4.0)
(fl=? (flceiling 3.5) 4.0))))
(with-test-prefix "fltruncate"
(pass-if "simple"
(and (fl=? (fltruncate -4.3) -4.0)
(fl=? (fltruncate 3.5) 3.0))))
(with-test-prefix "flround"
(pass-if "simple"
(and (fl=? (flround -4.3) -4.0)
(fl=? (flround 3.5) 4.0))))
(with-test-prefix "flexp"
(pass-if "infinities"
(and (fl=? (flexp +inf.0) +inf.0)
(fl=? (flexp -inf.0) 0.0))))
(with-test-prefix "fllog"
(pass-if "unary fllog returns natural log"
(let ((l (fllog 2.718281828459045)))
(and (fl<=? 0.9 l) (fl>=? 1.1 l))))
(pass-if "infinities"
(and (fl=? (fllog +inf.0) +inf.0)
(flnan? (fllog -inf.0))))
(pass-if "zeroes" (fl=? (fllog 0.0) -inf.0))
(pass-if "binary fllog returns log in specified base"
(fl=? (fllog 8.0 2.0) 3.0)))
(with-test-prefix "flsin"
(pass-if "simple"
(and (reasonably-close? (flsin (/ fake-pi 2)) 1.0)
(reasonably-close? (flsin (/ fake-pi 6)) 0.5))))
(with-test-prefix "flcos"
(pass-if "simple"
(and (fl=? (flcos 0.0) 1.0) (reasonably-close? (flcos (/ fake-pi 3)) 0.5))))
(with-test-prefix "fltan"
(pass-if "simple"
(and (reasonably-close? (fltan (/ fake-pi 4)) 1.0)
(reasonably-close? (fltan (/ (* 3 fake-pi) 4)) -1.0))))
(with-test-prefix "flasin"
(pass-if "simple"
(and (reasonably-close? (flasin 1.0) (/ fake-pi 2))
(reasonably-close? (flasin 0.5) (/ fake-pi 6)))))
(with-test-prefix "flacos"
(pass-if "simple"
(and (fl=? (flacos 1.0) 0.0)
(reasonably-close? (flacos 0.5) (/ fake-pi 3)))))
(with-test-prefix "flatan"
(pass-if "unary flatan"
(and (reasonably-close? (flatan 1.0) (/ fake-pi 4))
(reasonably-close? (flatan -1.0) (/ fake-pi -4))))
(pass-if "infinities"
(and (reasonably-close? (flatan -inf.0) -1.5707963267949)
(reasonably-close? (flatan +inf.0) 1.5707963267949)))
(pass-if "binary flatan"
(and (reasonably-close? (flatan 3.5 3.5) (/ fake-pi 4)))))
(with-test-prefix "flsqrt"
(pass-if "simple" (fl=? (flsqrt 4.0) 2.0))
(pass-if "infinity" (fl=? (flsqrt +inf.0) +inf.0))
(pass-if "negative zero" (fl=? (flsqrt -0.0) -0.0)))
(with-test-prefix "flexpt" (pass-if "simple" (fl=? (flexpt 2.0 3.0) 8.0)))
(with-test-prefix "fixnum->flonum"
(pass-if "simple" (fl=? (fixnum->flonum 100) 100.0)))