From b352309301a0d7fe41196b08e34186edda210d86 Mon Sep 17 00:00:00 2001 From: Andy Wingo Date: Sun, 29 Jun 2014 10:41:57 +0200 Subject: [PATCH] New module (language cps intmap) * module/language/cps/intmap.scm: New file. * module/Makefile.am: Add to build. --- module/Makefile.am | 1 + module/language/cps/intmap.scm | 387 +++++++++++++++++++++++++++++++++ 2 files changed, 388 insertions(+) create mode 100644 module/language/cps/intmap.scm diff --git a/module/Makefile.am b/module/Makefile.am index 7b45d9043..59fd1d2ba 100644 --- a/module/Makefile.am +++ b/module/Makefile.am @@ -131,6 +131,7 @@ CPS_LANG_SOURCES = \ language/cps/dfg.scm \ language/cps/effects-analysis.scm \ language/cps/elide-values.scm \ + language/cps/intmap.scm \ language/cps/intset.scm \ language/cps/nameset.scm \ language/cps/primitives.scm \ diff --git a/module/language/cps/intmap.scm b/module/language/cps/intmap.scm new file mode 100644 index 000000000..19d04c020 --- /dev/null +++ b/module/language/cps/intmap.scm @@ -0,0 +1,387 @@ +;;; Functional name maps +;;; Copyright (C) 2014 Free Software Foundation, Inc. +;;; +;;; This library is free software: you can redistribute it and/or modify +;;; it under the terms of the GNU Lesser General Public License as +;;; published by the Free Software Foundation, either version 3 of the +;;; License, or (at your option) any later version. +;;; +;;; This library is distributed in the hope that it will be useful, but +;;; WITHOUT ANY WARRANTY; without even the implied warranty of +;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +;;; Lesser General Public License for more details. +;;; +;;; You should have received a copy of the GNU Lesser General Public +;;; License along with this program. If not, see +;;; . + +;;; Commentary: +;;; +;;; Some CPS passes need to perform a flow analysis in which every +;;; program point has an associated map over some set of labels or +;;; variables. The naive way to implement this is with an array of +;;; arrays, but this has N^2 complexity, and it really can hurt us. +;;; +;;; Instead, this module provides a functional map that can share space +;;; between program points, reducing the amortized space complexity of +;;; the representations down to O(n log n). Adding entries to the +;;; mapping and lookup are O(log n). Intersection and union between +;;; intmaps that share state are fast, too. +;;; +;;; Code: + +(define-module (language cps intmap) + #:use-module (srfi srfi-9) + #:use-module (ice-9 match) + #:export (empty-intmap + intmap? + intmap-add + intmap-remove + intmap-ref + intmap-next + intmap-union + intmap-intersect)) + +;; Persistent sparse intmaps. + +(define-syntax-rule (define-inline name val) + (define-syntax name (identifier-syntax val))) + +(define-inline *branch-bits* 4) +(define-inline *branch-size* (ash 1 *branch-bits*)) +(define-inline *branch-mask* (1- *branch-size*)) + +(define-record-type + (make-intmap min shift root) + intmap? + (min intmap-min) + (shift intmap-shift) + (root intmap-root)) + +(define (new-branch) + (make-vector *branch-size* #f)) +(define (clone-branch-and-set branch i elt) + (let ((new (new-branch))) + (when branch (vector-move-left! branch 0 *branch-size* new 0)) + (vector-set! new i elt) + new)) +(define (branch-empty? branch) + (let lp ((i 0)) + (or (= i *branch-size*) + (and (not (vector-ref branch i)) + (lp (1+ i)))))) + +(define (round-down min shift) + (logand min (lognot (1- (ash 1 shift))))) + +(define empty-intmap (make-intmap 0 0 #f)) + +(define (add-level min shift root) + (let* ((shift* (+ shift *branch-bits*)) + (min* (round-down min shift*)) + (idx (logand (ash (- min min*) (- shift)) + *branch-mask*))) + (make-intmap min* shift* (clone-branch-and-set #f idx root)))) + +(define (make-intmap/prune min shift root) + (if (zero? shift) + (make-intmap min shift root) + (let lp ((i 0) (elt #f)) + (cond + ((< i *branch-size*) + (if (vector-ref root i) + (if elt + (make-intmap min shift root) + (lp (1+ i) i)) + (lp (1+ i) elt))) + (elt + (let ((shift (- shift *branch-bits*))) + (make-intmap/prune (+ min (ash elt shift)) + shift + (vector-ref root elt)))) + ;; Shouldn't be reached... + (else empty-intmap))))) + +(define (intmap-add bs i val meet) + (define (adjoin i shift root) + (cond + ((zero? shift) + (cond + ((eq? root val) root) + ((not root) val) + (else (meet root val)))) + (else + (let* ((shift (- shift *branch-bits*)) + (idx (logand (ash i (- shift)) *branch-mask*)) + (node (and root (vector-ref root idx))) + (new-node (adjoin i shift node))) + (if (eq? node new-node) + root + (clone-branch-and-set root idx new-node)))))) + (match bs + (($ min shift root) + (cond + ((not val) (intmap-remove bs i)) + ((not root) + ;; Add first element. + (make-intmap i 0 val)) + ((and (<= min i) (< i (+ min (ash 1 shift)))) + ;; Add element to map; level will not change. + (let ((old-root root) + (root (adjoin (- i min) shift root))) + (if (eq? root old-root) + bs + (make-intmap min shift root)))) + ((< i min) + ;; Rebuild the tree by unioning two intmaps. + (intmap-union (intmap-add empty-intmap i val error) bs error)) + (else + ;; Add a new level and try again. + (intmap-add (add-level min shift root) i val error)))))) + +(define (intmap-remove bs i) + (define (remove i shift root) + (cond + ((zero? shift) #f) + (else + (let* ((shift (- shift *branch-bits*)) + (idx (logand (ash i (- shift)) *branch-mask*))) + (cond + ((vector-ref root idx) + => (lambda (node) + (let ((new-node (remove i shift node))) + (if (eq? node new-node) + root + (let ((root (clone-branch-and-set root idx new-node))) + (and (or new-node (not (branch-empty? root))) + root)))))) + (else root)))))) + (match bs + (($ min shift root) + (cond + ((not root) bs) + ((and (<= min i) (< i (+ min (ash 1 shift)))) + ;; Add element to map; level will not change. + (let ((old-root root) + (root (remove (- i min) shift root))) + (if (eq? root old-root) + bs + (make-intmap/prune min shift root)))) + (else bs))))) + +(define (intmap-ref bs i) + (match bs + (($ min shift root) + (and (<= min i) (< i (+ min (ash 1 shift))) + (let ((i (- i min))) + (let lp ((node root) (shift shift)) + (and node + (if (= shift *branch-bits*) + (vector-ref node (logand i *branch-mask*)) + (let* ((shift (- shift *branch-bits*)) + (idx (logand (ash i (- shift)) + *branch-mask*))) + (lp (vector-ref node idx) shift)))))))))) + +(define (intmap-next bs i) + (define (visit-branch node shift i) + (let lp ((i i) (idx (logand (ash i (- shift)) *branch-mask*))) + (and (< idx *branch-size*) + (or (visit-node (vector-ref node idx) shift i) + (let ((inc (ash 1 shift))) + (lp (+ (round-down i shift) inc) (1+ idx))))))) + (define (visit-node node shift i) + (and node + (if (zero? shift) + i + (visit-branch node (- shift *branch-bits*) i)))) + (match bs + (($ min shift root) + (let ((i (if (and i (< min i)) + (- i min) + 0))) + (and (< i (ash 1 shift)) + (let ((i (visit-node root shift i))) + (and i (+ min i)))))))) + +(define (intmap-union a b meet) + ;; Union A and B from index I; the result will be fresh. + (define (union-branches/fresh shift a b i fresh) + (let lp ((i 0)) + (cond + ((< i *branch-size*) + (let* ((a-child (vector-ref a i)) + (b-child (vector-ref b i))) + (vector-set! fresh i (union shift a-child b-child)) + (lp (1+ i)))) + (else fresh)))) + ;; Union A and B from index I; the result may be eq? to A. + (define (union-branches/a shift a b i) + (let lp ((i i)) + (cond + ((< i *branch-size*) + (let* ((a-child (vector-ref a i)) + (b-child (vector-ref b i))) + (if (eq? a-child b-child) + (lp (1+ i)) + (let ((child (union shift a-child b-child))) + (cond + ((eq? a-child child) + (lp (1+ i))) + (else + (let ((result (clone-branch-and-set a i child))) + (union-branches/fresh shift a b (1+ i) result)))))))) + (else a)))) + ;; Union A and B; the may could be eq? to either. + (define (union-branches shift a b) + (let lp ((i 0)) + (cond + ((< i *branch-size*) + (let* ((a-child (vector-ref a i)) + (b-child (vector-ref b i))) + (if (eq? a-child b-child) + (lp (1+ i)) + (let ((child (union shift a-child b-child))) + (cond + ((eq? a-child child) + (union-branches/a shift a b (1+ i))) + ((eq? b-child child) + (union-branches/a shift b a (1+ i))) + (else + (let ((result (clone-branch-and-set a i child))) + (union-branches/fresh shift a b (1+ i) result)))))))) + ;; Seems they are the same but not eq?. Odd. + (else a)))) + (define (union shift a-node b-node) + (cond + ((not a-node) b-node) + ((not b-node) a-node) + ((eq? a-node b-node) a-node) + ((zero? shift) (meet a-node b-node)) + (else (union-branches (- shift *branch-bits*) a-node b-node)))) + (match (cons a b) + ((($ a-min a-shift a-root) . ($ b-min b-shift b-root)) + (cond + ((not (= b-shift a-shift)) + ;; Hoist the map with the lowest shift to meet the one with the + ;; higher shift. + (if (< b-shift a-shift) + (intmap-union a (add-level b-min b-shift b-root) meet) + (intmap-union (add-level a-min a-shift a-root) b meet))) + ((not (= b-min a-min)) + ;; Nodes at the same shift but different minimums will cover + ;; disjoint ranges (due to the round-down call on min). Hoist + ;; both until they cover the same range. + (intmap-union (add-level a-min a-shift a-root) + (add-level b-min b-shift b-root) + meet)) + (else + ;; At this point, A and B cover the same range. + (let ((root (union a-shift a-root b-root))) + (cond + ((eq? root a-root) a) + ((eq? root b-root) b) + (else (make-intmap a-min a-shift root))))))))) + +(define (intmap-intersect a b meet) + ;; Intersect A and B from index I; the result will be fresh. + (define (intersect-branches/fresh shift a b i fresh) + (let lp ((i 0)) + (cond + ((< i *branch-size*) + (let* ((a-child (vector-ref a i)) + (b-child (vector-ref b i))) + (vector-set! fresh i (intersect shift a-child b-child)) + (lp (1+ i)))) + ((branch-empty? fresh) #f) + (else fresh)))) + ;; Intersect A and B from index I; the result may be eq? to A. + (define (intersect-branches/a shift a b i) + (let lp ((i i)) + (cond + ((< i *branch-size*) + (let* ((a-child (vector-ref a i)) + (b-child (vector-ref b i))) + (if (eq? a-child b-child) + (lp (1+ i)) + (let ((child (intersect shift a-child b-child))) + (cond + ((eq? a-child child) + (lp (1+ i))) + (else + (let ((result (clone-branch-and-set a i child))) + (intersect-branches/fresh shift a b (1+ i) result)))))))) + (else a)))) + ;; Intersect A and B; the may could be eq? to either. + (define (intersect-branches shift a b) + (let lp ((i 0)) + (cond + ((< i *branch-size*) + (let* ((a-child (vector-ref a i)) + (b-child (vector-ref b i))) + (if (eq? a-child b-child) + (lp (1+ i)) + (let ((child (intersect shift a-child b-child))) + (cond + ((eq? a-child child) + (intersect-branches/a shift a b (1+ i))) + ((eq? b-child child) + (intersect-branches/a shift b a (1+ i))) + (else + (let ((result (clone-branch-and-set a i child))) + (intersect-branches/fresh shift a b (1+ i) result)))))))) + ;; Seems they are the same but not eq?. Odd. + (else a)))) + (define (intersect shift a-node b-node) + (cond + ((or (not a-node) (not b-node)) #f) + ((eq? a-node b-node) a-node) + ((zero? shift) (meet a-node b-node)) + (else (intersect-branches (- shift *branch-bits*) a-node b-node)))) + + (define (different-mins lo-min lo-shift lo-root hi-min hi-shift hi lo-is-a?) + (cond + ((<= lo-shift hi-shift) + ;; If LO has a lower shift and a lower min, it is disjoint. If + ;; it has the same shift and a different min, it is also + ;; disjoint. + empty-intmap) + (else + (let* ((lo-shift (- lo-shift *branch-bits*)) + (lo-idx (ash (- hi-min lo-min) (- lo-shift)))) + (if (>= lo-idx *branch-size*) + ;; HI has a lower shift, but it not within LO. + empty-intmap + (let ((lo (make-intmap (+ lo-min (ash lo-idx lo-shift)) + lo-shift + (vector-ref lo-root lo-idx)))) + (if lo-is-a? + (intmap-intersect lo hi meet) + (intmap-intersect hi lo meet)))))))) + + (define (different-shifts-same-min min hi-shift hi-root lo lo-is-a?) + (let ((hi (make-intmap min + (- hi-shift *branch-bits*) + (vector-ref hi-root 0)))) + (if lo-is-a? + (intmap-intersect lo hi meet) + (intmap-intersect hi lo meet)))) + + (match (cons a b) + ((($ a-min a-shift a-root) . ($ b-min b-shift b-root)) + (cond + ((< a-min b-min) + (different-mins a-min a-shift a-root b-min b-shift b #t)) + ((< b-min a-min) + (different-mins b-min b-shift b-root a-min a-shift a #f)) + ((< a-shift b-shift) + (different-shifts-same-min b-min b-shift b-root a #t)) + ((< b-shift a-shift) + (different-shifts-same-min a-min a-shift a-root b #f)) + (else + ;; At this point, A and B cover the same range. + (let ((root (intersect a-shift a-root b-root))) + (cond + ((eq? root a-root) a) + ((eq? root b-root) b) + (else (make-intmap/prune a-min a-shift root)))))))))