1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-05-14 17:50:22 +02:00

Fix and/or double evaluation. Add math.modf, math.fmod.

* module/language/lua/compile-tree-il.scm: Fix and/or double evaluation.

* module/language/lua/notes.org: Add file describing known issues.

* module/language/lua/parser.scm: (token-type): Recognize and/or.

* module/language/lua/standard/math.scm: Add modf, fmod implementations.

* test-suite/tests/lua-eval-3.test: Add another test file for basic
  language features.
This commit is contained in:
Phil 2011-04-21 18:05:48 -05:00 committed by Ian Price
parent 8c91ae59f9
commit becaec9a4e
5 changed files with 124 additions and 44 deletions

View file

@ -21,14 +21,14 @@
(define-module (language lua standard math)
#:use-module (language lua runtime))
;; TODO: math.modf
;; TODO: math.deg,rad,frexp,random not tested
;; TODO: math.frexp
;; NOTE: as opposed to lua, math.sqrt accepts negative arguments, as
;; guile's numeric tower is capable of representing complex numbers
(define huge +inf.0)
(define *nan* (nan))
;; We define some constants here to more closely match Lua's behavior
(define pi 3.14159265358979323846)
(define radians_per_degree (/ pi 180.0))
@ -91,6 +91,24 @@
(define (atan2 x y)
(atan (/ x y)))
(define (deg x)
(/ x radians_per_degree))
(define (ldexp x exp)
(cond ((= exp 0) x)
((= exp *nan*) *nan*)
((= exp +inf.0) +inf.0)
((= exp -inf.0) -inf.0)
(else (* x (expt 2 exp)))))
(define log2
(let ((log2 (log 2)))
(lambda (x)
(/ (log x) log2))))
(define (rad x)
(* x radians_per_degree))
;; copy the global random state for this module so we don't mutate it
(define randomstate (copy-random-state *random-state*))
@ -105,32 +123,3 @@
((and m) (+ 1 ((@ (guile) random) m)))
((and m n) (+ m ((@ (guile) random) n)))
(else (error #:RANDOM "should not happen"))))
(define (deg x)
(/ x radians_per_degree))
(define (rad x)
(* x radians_per_degree))
(define (ldexp x exp)
(cond ((= exp 0) x)
((= exp *nan*) *nan*)
((= exp +inf.0) +inf.0)
((= exp -inf.0) -inf.0)
(else (* x (expt 2 exp)))))
(define log2
(let ((log2 (log 2)))
(lambda (x)
(/ (log x) log2))))
(define (frexp x)
(if (zero? x)
0.0
(let* ((l2 (log2 x))
(e (floor (log2 x)))
(e (if (= l2 e)
(inexact->exact e)
(+ (inexact->exact e) 1)))
(f (/ x (expt 2 e))))
f)))