1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-29 19:30:36 +02:00

Remove more Gnulib generated files.

This commit is contained in:
Ludovic Courtès 2023-01-18 22:30:09 +01:00
parent aeb22f4861
commit d98888290b
6 changed files with 0 additions and 4329 deletions

File diff suppressed because it is too large Load diff

View file

@ -1,529 +0,0 @@
/* DO NOT EDIT! GENERATED AUTOMATICALLY! */
/* Type-safe arrays which grow dynamically.
Copyright (C) 2017-2021 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
/* Pre-processor macros which act as parameters:
DYNARRAY_STRUCT
The struct tag of dynamic array to be defined.
DYNARRAY_ELEMENT
The type name of the element type. Elements are copied
as if by memcpy, and can change address as the dynamic
array grows.
DYNARRAY_PREFIX
The prefix of the functions which are defined.
The following parameters are optional:
DYNARRAY_ELEMENT_FREE
DYNARRAY_ELEMENT_FREE (E) is evaluated to deallocate the
contents of elements. E is of type DYNARRAY_ELEMENT *.
DYNARRAY_ELEMENT_INIT
DYNARRAY_ELEMENT_INIT (E) is evaluated to initialize a new
element. E is of type DYNARRAY_ELEMENT *.
If DYNARRAY_ELEMENT_FREE but not DYNARRAY_ELEMENT_INIT is
defined, new elements are automatically zero-initialized.
Otherwise, new elements have undefined contents.
DYNARRAY_INITIAL_SIZE
The size of the statically allocated array (default:
at least 2, more elements if they fit into 128 bytes).
Must be a preprocessor constant. If DYNARRAY_INITIAL_SIZE is 0,
there is no statically allocated array at, and all non-empty
arrays are heap-allocated.
DYNARRAY_FINAL_TYPE
The name of the type which holds the final array. If not
defined, is PREFIX##finalize not provided. DYNARRAY_FINAL_TYPE
must be a struct type, with members of type DYNARRAY_ELEMENT and
size_t at the start (in this order).
These macros are undefined after this header file has been
included.
The following types are provided (their members are private to the
dynarray implementation):
struct DYNARRAY_STRUCT
The following functions are provided:
void DYNARRAY_PREFIX##init (struct DYNARRAY_STRUCT *);
void DYNARRAY_PREFIX##free (struct DYNARRAY_STRUCT *);
bool DYNARRAY_PREFIX##has_failed (const struct DYNARRAY_STRUCT *);
void DYNARRAY_PREFIX##mark_failed (struct DYNARRAY_STRUCT *);
size_t DYNARRAY_PREFIX##size (const struct DYNARRAY_STRUCT *);
DYNARRAY_ELEMENT *DYNARRAY_PREFIX##begin (const struct DYNARRAY_STRUCT *);
DYNARRAY_ELEMENT *DYNARRAY_PREFIX##end (const struct DYNARRAY_STRUCT *);
DYNARRAY_ELEMENT *DYNARRAY_PREFIX##at (struct DYNARRAY_STRUCT *, size_t);
void DYNARRAY_PREFIX##add (struct DYNARRAY_STRUCT *, DYNARRAY_ELEMENT);
DYNARRAY_ELEMENT *DYNARRAY_PREFIX##emplace (struct DYNARRAY_STRUCT *);
bool DYNARRAY_PREFIX##resize (struct DYNARRAY_STRUCT *, size_t);
void DYNARRAY_PREFIX##remove_last (struct DYNARRAY_STRUCT *);
void DYNARRAY_PREFIX##clear (struct DYNARRAY_STRUCT *);
The following functions are provided are provided if the
prerequisites are met:
bool DYNARRAY_PREFIX##finalize (struct DYNARRAY_STRUCT *,
DYNARRAY_FINAL_TYPE *);
(if DYNARRAY_FINAL_TYPE is defined)
DYNARRAY_ELEMENT *DYNARRAY_PREFIX##finalize (struct DYNARRAY_STRUCT *,
size_t *);
(if DYNARRAY_FINAL_TYPE is not defined)
*/
#include <malloc/dynarray.gl.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#ifndef DYNARRAY_STRUCT
# error "DYNARRAY_STRUCT must be defined"
#endif
#ifndef DYNARRAY_ELEMENT
# error "DYNARRAY_ELEMENT must be defined"
#endif
#ifndef DYNARRAY_PREFIX
# error "DYNARRAY_PREFIX must be defined"
#endif
#ifdef DYNARRAY_INITIAL_SIZE
# if DYNARRAY_INITIAL_SIZE < 0
# error "DYNARRAY_INITIAL_SIZE must be non-negative"
# endif
# if DYNARRAY_INITIAL_SIZE > 0
# define DYNARRAY_HAVE_SCRATCH 1
# else
# define DYNARRAY_HAVE_SCRATCH 0
# endif
#else
/* Provide a reasonable default which limits the size of
DYNARRAY_STRUCT. */
# define DYNARRAY_INITIAL_SIZE \
(sizeof (DYNARRAY_ELEMENT) > 64 ? 2 : 128 / sizeof (DYNARRAY_ELEMENT))
# define DYNARRAY_HAVE_SCRATCH 1
#endif
/* Public type definitions. */
/* All fields of this struct are private to the implementation. */
struct DYNARRAY_STRUCT
{
union
{
struct dynarray_header dynarray_abstract;
struct
{
/* These fields must match struct dynarray_header. */
size_t used;
size_t allocated;
DYNARRAY_ELEMENT *array;
} dynarray_header;
} u;
#if DYNARRAY_HAVE_SCRATCH
/* Initial inline allocation. */
DYNARRAY_ELEMENT scratch[DYNARRAY_INITIAL_SIZE];
#endif
};
/* Internal use only: Helper macros. */
/* Ensure macro-expansion of DYNARRAY_PREFIX. */
#define DYNARRAY_CONCAT0(prefix, name) prefix##name
#define DYNARRAY_CONCAT1(prefix, name) DYNARRAY_CONCAT0(prefix, name)
#define DYNARRAY_NAME(name) DYNARRAY_CONCAT1(DYNARRAY_PREFIX, name)
/* Use DYNARRAY_FREE instead of DYNARRAY_NAME (free),
so that Gnulib does not change 'free' to 'rpl_free'. */
#define DYNARRAY_FREE DYNARRAY_CONCAT1 (DYNARRAY_NAME (f), ree)
/* Address of the scratch buffer if any. */
#if DYNARRAY_HAVE_SCRATCH
# define DYNARRAY_SCRATCH(list) (list)->scratch
#else
# define DYNARRAY_SCRATCH(list) NULL
#endif
/* Internal use only: Helper functions. */
/* Internal function. Call DYNARRAY_ELEMENT_FREE with the array
elements. Name mangling needed due to the DYNARRAY_ELEMENT_FREE
macro expansion. */
static inline void
DYNARRAY_NAME (free__elements__) (DYNARRAY_ELEMENT *__dynarray_array,
size_t __dynarray_used)
{
#ifdef DYNARRAY_ELEMENT_FREE
for (size_t __dynarray_i = 0; __dynarray_i < __dynarray_used; ++__dynarray_i)
DYNARRAY_ELEMENT_FREE (&__dynarray_array[__dynarray_i]);
#endif /* DYNARRAY_ELEMENT_FREE */
}
/* Internal function. Free the non-scratch array allocation. */
static inline void
DYNARRAY_NAME (free__array__) (struct DYNARRAY_STRUCT *list)
{
#if DYNARRAY_HAVE_SCRATCH
if (list->u.dynarray_header.array != list->scratch)
free (list->u.dynarray_header.array);
#else
free (list->u.dynarray_header.array);
#endif
}
/* Public functions. */
/* Initialize a dynamic array object. This must be called before any
use of the object. */
_GL_ATTRIBUTE_NONNULL ((1))
static void
DYNARRAY_NAME (init) (struct DYNARRAY_STRUCT *list)
{
list->u.dynarray_header.used = 0;
list->u.dynarray_header.allocated = DYNARRAY_INITIAL_SIZE;
list->u.dynarray_header.array = DYNARRAY_SCRATCH (list);
}
/* Deallocate the dynamic array and its elements. */
_GL_ATTRIBUTE_MAYBE_UNUSED _GL_ATTRIBUTE_NONNULL ((1))
static void
DYNARRAY_FREE (struct DYNARRAY_STRUCT *list)
{
DYNARRAY_NAME (free__elements__)
(list->u.dynarray_header.array, list->u.dynarray_header.used);
DYNARRAY_NAME (free__array__) (list);
DYNARRAY_NAME (init) (list);
}
/* Return true if the dynamic array is in an error state. */
_GL_ATTRIBUTE_NONNULL ((1))
static inline bool
DYNARRAY_NAME (has_failed) (const struct DYNARRAY_STRUCT *list)
{
return list->u.dynarray_header.allocated == __dynarray_error_marker ();
}
/* Mark the dynamic array as failed. All elements are deallocated as
a side effect. */
_GL_ATTRIBUTE_NONNULL ((1))
static void
DYNARRAY_NAME (mark_failed) (struct DYNARRAY_STRUCT *list)
{
DYNARRAY_NAME (free__elements__)
(list->u.dynarray_header.array, list->u.dynarray_header.used);
DYNARRAY_NAME (free__array__) (list);
list->u.dynarray_header.array = DYNARRAY_SCRATCH (list);
list->u.dynarray_header.used = 0;
list->u.dynarray_header.allocated = __dynarray_error_marker ();
}
/* Return the number of elements which have been added to the dynamic
array. */
_GL_ATTRIBUTE_NONNULL ((1))
static inline size_t
DYNARRAY_NAME (size) (const struct DYNARRAY_STRUCT *list)
{
return list->u.dynarray_header.used;
}
/* Return a pointer to the array element at INDEX. Terminate the
process if INDEX is out of bounds. */
_GL_ATTRIBUTE_NONNULL ((1))
static inline DYNARRAY_ELEMENT *
DYNARRAY_NAME (at) (struct DYNARRAY_STRUCT *list, size_t index)
{
if (_GL_UNLIKELY (index >= DYNARRAY_NAME (size) (list)))
__libc_dynarray_at_failure (DYNARRAY_NAME (size) (list), index);
return list->u.dynarray_header.array + index;
}
/* Return a pointer to the first array element, if any. For a
zero-length array, the pointer can be NULL even though the dynamic
array has not entered the failure state. */
_GL_ATTRIBUTE_NONNULL ((1))
static inline DYNARRAY_ELEMENT *
DYNARRAY_NAME (begin) (struct DYNARRAY_STRUCT *list)
{
return list->u.dynarray_header.array;
}
/* Return a pointer one element past the last array element. For a
zero-length array, the pointer can be NULL even though the dynamic
array has not entered the failure state. */
_GL_ATTRIBUTE_NONNULL ((1))
static inline DYNARRAY_ELEMENT *
DYNARRAY_NAME (end) (struct DYNARRAY_STRUCT *list)
{
return list->u.dynarray_header.array + list->u.dynarray_header.used;
}
/* Internal function. Slow path for the add function below. */
static void
DYNARRAY_NAME (add__) (struct DYNARRAY_STRUCT *list, DYNARRAY_ELEMENT item)
{
if (_GL_UNLIKELY
(!__libc_dynarray_emplace_enlarge (&list->u.dynarray_abstract,
DYNARRAY_SCRATCH (list),
sizeof (DYNARRAY_ELEMENT))))
{
DYNARRAY_NAME (mark_failed) (list);
return;
}
/* Copy the new element and increase the array length. */
list->u.dynarray_header.array[list->u.dynarray_header.used++] = item;
}
/* Add ITEM at the end of the array, enlarging it by one element.
Mark *LIST as failed if the dynamic array allocation size cannot be
increased. */
_GL_ATTRIBUTE_NONNULL ((1))
static inline void
DYNARRAY_NAME (add) (struct DYNARRAY_STRUCT *list, DYNARRAY_ELEMENT item)
{
/* Do nothing in case of previous error. */
if (DYNARRAY_NAME (has_failed) (list))
return;
/* Enlarge the array if necessary. */
if (_GL_UNLIKELY (list->u.dynarray_header.used
== list->u.dynarray_header.allocated))
{
DYNARRAY_NAME (add__) (list, item);
return;
}
/* Copy the new element and increase the array length. */
list->u.dynarray_header.array[list->u.dynarray_header.used++] = item;
}
/* Internal function. Building block for the emplace functions below.
Assumes space for one more element in *LIST. */
static inline DYNARRAY_ELEMENT *
DYNARRAY_NAME (emplace__tail__) (struct DYNARRAY_STRUCT *list)
{
DYNARRAY_ELEMENT *result
= &list->u.dynarray_header.array[list->u.dynarray_header.used];
++list->u.dynarray_header.used;
#if defined (DYNARRAY_ELEMENT_INIT)
DYNARRAY_ELEMENT_INIT (result);
#elif defined (DYNARRAY_ELEMENT_FREE)
memset (result, 0, sizeof (*result));
#endif
return result;
}
/* Internal function. Slow path for the emplace function below. */
static DYNARRAY_ELEMENT *
DYNARRAY_NAME (emplace__) (struct DYNARRAY_STRUCT *list)
{
if (_GL_UNLIKELY
(!__libc_dynarray_emplace_enlarge (&list->u.dynarray_abstract,
DYNARRAY_SCRATCH (list),
sizeof (DYNARRAY_ELEMENT))))
{
DYNARRAY_NAME (mark_failed) (list);
return NULL;
}
return DYNARRAY_NAME (emplace__tail__) (list);
}
/* Allocate a place for a new element in *LIST and return a pointer to
it. The pointer can be NULL if the dynamic array cannot be
enlarged due to a memory allocation failure. */
_GL_ATTRIBUTE_MAYBE_UNUSED _GL_ATTRIBUTE_NODISCARD
_GL_ATTRIBUTE_NONNULL ((1))
static
/* Avoid inlining with the larger initialization code. */
#if !(defined (DYNARRAY_ELEMENT_INIT) || defined (DYNARRAY_ELEMENT_FREE))
inline
#endif
DYNARRAY_ELEMENT *
DYNARRAY_NAME (emplace) (struct DYNARRAY_STRUCT *list)
{
/* Do nothing in case of previous error. */
if (DYNARRAY_NAME (has_failed) (list))
return NULL;
/* Enlarge the array if necessary. */
if (_GL_UNLIKELY (list->u.dynarray_header.used
== list->u.dynarray_header.allocated))
return (DYNARRAY_NAME (emplace__) (list));
return DYNARRAY_NAME (emplace__tail__) (list);
}
/* Change the size of *LIST to SIZE. If SIZE is larger than the
existing size, new elements are added (which can be initialized).
Otherwise, the list is truncated, and elements are freed. Return
false on memory allocation failure (and mark *LIST as failed). */
_GL_ATTRIBUTE_MAYBE_UNUSED _GL_ATTRIBUTE_NONNULL ((1))
static bool
DYNARRAY_NAME (resize) (struct DYNARRAY_STRUCT *list, size_t size)
{
if (size > list->u.dynarray_header.used)
{
bool ok;
#if defined (DYNARRAY_ELEMENT_INIT)
/* The new elements have to be initialized. */
size_t old_size = list->u.dynarray_header.used;
ok = __libc_dynarray_resize (&list->u.dynarray_abstract,
size, DYNARRAY_SCRATCH (list),
sizeof (DYNARRAY_ELEMENT));
if (ok)
for (size_t i = old_size; i < size; ++i)
{
DYNARRAY_ELEMENT_INIT (&list->u.dynarray_header.array[i]);
}
#elif defined (DYNARRAY_ELEMENT_FREE)
/* Zero initialization is needed so that the elements can be
safely freed. */
ok = __libc_dynarray_resize_clear
(&list->u.dynarray_abstract, size,
DYNARRAY_SCRATCH (list), sizeof (DYNARRAY_ELEMENT));
#else
ok = __libc_dynarray_resize (&list->u.dynarray_abstract,
size, DYNARRAY_SCRATCH (list),
sizeof (DYNARRAY_ELEMENT));
#endif
if (_GL_UNLIKELY (!ok))
DYNARRAY_NAME (mark_failed) (list);
return ok;
}
else
{
/* The list has shrunk in size. Free the removed elements. */
DYNARRAY_NAME (free__elements__)
(list->u.dynarray_header.array + size,
list->u.dynarray_header.used - size);
list->u.dynarray_header.used = size;
return true;
}
}
/* Remove the last element of LIST if it is present. */
_GL_ATTRIBUTE_MAYBE_UNUSED _GL_ATTRIBUTE_NONNULL ((1))
static void
DYNARRAY_NAME (remove_last) (struct DYNARRAY_STRUCT *list)
{
/* used > 0 implies that the array is the non-failed state. */
if (list->u.dynarray_header.used > 0)
{
size_t new_length = list->u.dynarray_header.used - 1;
#ifdef DYNARRAY_ELEMENT_FREE
DYNARRAY_ELEMENT_FREE (&list->u.dynarray_header.array[new_length]);
#endif
list->u.dynarray_header.used = new_length;
}
}
/* Remove all elements from the list. The elements are freed, but the
list itself is not. */
_GL_ATTRIBUTE_MAYBE_UNUSED _GL_ATTRIBUTE_NONNULL ((1))
static void
DYNARRAY_NAME (clear) (struct DYNARRAY_STRUCT *list)
{
/* free__elements__ does nothing if the list is in the failed
state. */
DYNARRAY_NAME (free__elements__)
(list->u.dynarray_header.array, list->u.dynarray_header.used);
list->u.dynarray_header.used = 0;
}
#ifdef DYNARRAY_FINAL_TYPE
/* Transfer the dynamic array to a permanent location at *RESULT.
Returns true on success on false on allocation failure. In either
case, *LIST is re-initialized and can be reused. A NULL pointer is
stored in *RESULT if LIST refers to an empty list. On success, the
pointer in *RESULT is heap-allocated and must be deallocated using
free. */
_GL_ATTRIBUTE_MAYBE_UNUSED _GL_ATTRIBUTE_NODISCARD
_GL_ATTRIBUTE_NONNULL ((1, 2))
static bool
DYNARRAY_NAME (finalize) (struct DYNARRAY_STRUCT *list,
DYNARRAY_FINAL_TYPE *result)
{
struct dynarray_finalize_result res;
if (__libc_dynarray_finalize (&list->u.dynarray_abstract,
DYNARRAY_SCRATCH (list),
sizeof (DYNARRAY_ELEMENT), &res))
{
/* On success, the result owns all the data. */
DYNARRAY_NAME (init) (list);
*result = (DYNARRAY_FINAL_TYPE) { res.array, res.length };
return true;
}
else
{
/* On error, we need to free all data. */
DYNARRAY_FREE (list);
errno = ENOMEM;
return false;
}
}
#else /* !DYNARRAY_FINAL_TYPE */
/* Transfer the dynamic array to a heap-allocated array and return a
pointer to it. The pointer is NULL if memory allocation fails, or
if the array is empty, so this function should be used only for
arrays which are known not be empty (usually because they always
have a sentinel at the end). If LENGTHP is not NULL, the array
length is written to *LENGTHP. *LIST is re-initialized and can be
reused. */
_GL_ATTRIBUTE_MAYBE_UNUSED _GL_ATTRIBUTE_NODISCARD
_GL_ATTRIBUTE_NONNULL ((1))
static DYNARRAY_ELEMENT *
DYNARRAY_NAME (finalize) (struct DYNARRAY_STRUCT *list, size_t *lengthp)
{
struct dynarray_finalize_result res;
if (__libc_dynarray_finalize (&list->u.dynarray_abstract,
DYNARRAY_SCRATCH (list),
sizeof (DYNARRAY_ELEMENT), &res))
{
/* On success, the result owns all the data. */
DYNARRAY_NAME (init) (list);
if (lengthp != NULL)
*lengthp = res.length;
return res.array;
}
else
{
/* On error, we need to free all data. */
DYNARRAY_FREE (list);
errno = ENOMEM;
return NULL;
}
}
#endif /* !DYNARRAY_FINAL_TYPE */
/* Undo macro definitions. */
#undef DYNARRAY_CONCAT0
#undef DYNARRAY_CONCAT1
#undef DYNARRAY_NAME
#undef DYNARRAY_SCRATCH
#undef DYNARRAY_HAVE_SCRATCH
#undef DYNARRAY_STRUCT
#undef DYNARRAY_ELEMENT
#undef DYNARRAY_PREFIX
#undef DYNARRAY_ELEMENT_FREE
#undef DYNARRAY_ELEMENT_INIT
#undef DYNARRAY_INITIAL_SIZE
#undef DYNARRAY_FINAL_TYPE

View file

@ -1,174 +0,0 @@
/* DO NOT EDIT! GENERATED AUTOMATICALLY! */
/* Type-safe arrays which grow dynamically. Shared definitions.
Copyright (C) 2017-2021 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
/* To use the dynarray facility, you need to include
<malloc/dynarray-skeleton.c> and define the parameter macros
documented in that file.
A minimal example which provides a growing list of integers can be
defined like this:
struct int_array
{
// Pointer to result array followed by its length,
// as required by DYNARRAY_FINAL_TYPE.
int *array;
size_t length;
};
#define DYNARRAY_STRUCT dynarray_int
#define DYNARRAY_ELEMENT int
#define DYNARRAY_PREFIX dynarray_int_
#define DYNARRAY_FINAL_TYPE struct int_array
#include <malloc/dynarray-skeleton.c>
To create a three-element array with elements 1, 2, 3, use this
code:
struct dynarray_int dyn;
dynarray_int_init (&dyn);
for (int i = 1; i <= 3; ++i)
{
int *place = dynarray_int_emplace (&dyn);
assert (place != NULL);
*place = i;
}
struct int_array result;
bool ok = dynarray_int_finalize (&dyn, &result);
assert (ok);
assert (result.length == 3);
assert (result.array[0] == 1);
assert (result.array[1] == 2);
assert (result.array[2] == 3);
free (result.array);
If the elements contain resources which must be freed, define
DYNARRAY_ELEMENT_FREE appropriately, like this:
struct str_array
{
char **array;
size_t length;
};
#define DYNARRAY_STRUCT dynarray_str
#define DYNARRAY_ELEMENT char *
#define DYNARRAY_ELEMENT_FREE(ptr) free (*ptr)
#define DYNARRAY_PREFIX dynarray_str_
#define DYNARRAY_FINAL_TYPE struct str_array
#include <malloc/dynarray-skeleton.c>
Compared to scratch buffers, dynamic arrays have the following
features:
- They have an element type, and are not just an untyped buffer of
bytes.
- When growing, previously stored elements are preserved. (It is
expected that scratch_buffer_grow_preserve and
scratch_buffer_set_array_size eventually go away because all
current users are moved to dynamic arrays.)
- Scratch buffers have a more aggressive growth policy because
growing them typically means a retry of an operation (across an
NSS service module boundary), which is expensive.
- For the same reason, scratch buffers have a much larger initial
stack allocation. */
#ifndef _DYNARRAY_H
#define _DYNARRAY_H
#include <stdbool.h>
#include <stddef.h>
#include <string.h>
struct dynarray_header
{
size_t used;
size_t allocated;
void *array;
};
/* Marker used in the allocated member to indicate that an error was
encountered. */
static inline size_t
__dynarray_error_marker (void)
{
return -1;
}
/* Internal function. See the has_failed function in
dynarray-skeleton.c. */
static inline bool
__dynarray_error (struct dynarray_header *list)
{
return list->allocated == __dynarray_error_marker ();
}
/* Internal function. Enlarge the dynamically allocated area of the
array to make room for one more element. SCRATCH is a pointer to
the scratch area (which is not heap-allocated and must not be
freed). ELEMENT_SIZE is the size, in bytes, of one element.
Return false on failure, true on success. */
bool __libc_dynarray_emplace_enlarge (struct dynarray_header *,
void *scratch, size_t element_size);
/* Internal function. Enlarge the dynamically allocated area of the
array to make room for at least SIZE elements (which must be larger
than the existing used part of the dynamic array). SCRATCH is a
pointer to the scratch area (which is not heap-allocated and must
not be freed). ELEMENT_SIZE is the size, in bytes, of one element.
Return false on failure, true on success. */
bool __libc_dynarray_resize (struct dynarray_header *, size_t size,
void *scratch, size_t element_size);
/* Internal function. Like __libc_dynarray_resize, but clear the new
part of the dynamic array. */
bool __libc_dynarray_resize_clear (struct dynarray_header *, size_t size,
void *scratch, size_t element_size);
/* Internal type. */
struct dynarray_finalize_result
{
void *array;
size_t length;
};
/* Internal function. Copy the dynamically-allocated area to an
explicitly-sized heap allocation. SCRATCH is a pointer to the
embedded scratch space. ELEMENT_SIZE is the size, in bytes, of the
element type. On success, true is returned, and pointer and length
are written to *RESULT. On failure, false is returned. The caller
has to take care of some of the memory management; this function is
expected to be called from dynarray-skeleton.c. */
bool __libc_dynarray_finalize (struct dynarray_header *list, void *scratch,
size_t element_size,
struct dynarray_finalize_result *result);
/* Internal function. Terminate the process after an index error.
SIZE is the number of elements of the dynamic array. INDEX is the
lookup index which triggered the failure. */
_Noreturn void __libc_dynarray_at_failure (size_t size, size_t index);
#ifndef _ISOMAC
#endif
#endif /* _DYNARRAY_H */

View file

@ -1,580 +0,0 @@
/* DO NOT EDIT! GENERATED AUTOMATICALLY! */
/* A GNU-like <sched.h>.
Copyright (C) 2008-2022 Free Software Foundation, Inc.
This file is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This file is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
#ifndef _GL_SCHED_H
#if __GNUC__ >= 3
#pragma GCC system_header
#endif
/* The include_next requires a split double-inclusion guard. */
#if 1
# if 1
# include <sys/cdefs.h>
# endif
# include_next <sched.h>
#endif
#ifndef _GL_SCHED_H
#define _GL_SCHED_H
/* Get pid_t.
This is needed on glibc 2.11 (see
glibc bug <https://sourceware.org/bugzilla/show_bug.cgi?id=13198>)
and Mac OS X 10.5. */
#include <sys/types.h>
#ifdef __KLIBC__
/* On OS/2 kLIBC, struct sched_param is in spawn.h. */
# include <spawn.h>
#endif
#ifdef __VMS
/* On OpenVMS, struct sched_param is in <pthread.h>. */
# include <pthread.h>
#endif
/* The definitions of _GL_FUNCDECL_RPL etc. are copied here. */
/* C++ compatible function declaration macros.
Copyright (C) 2010-2022 Free Software Foundation, Inc.
This program is free software: you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
#ifndef _GL_CXXDEFS_H
#define _GL_CXXDEFS_H
/* Begin/end the GNULIB_NAMESPACE namespace. */
#if defined __cplusplus && defined GNULIB_NAMESPACE
# define _GL_BEGIN_NAMESPACE namespace GNULIB_NAMESPACE {
# define _GL_END_NAMESPACE }
#else
# define _GL_BEGIN_NAMESPACE
# define _GL_END_NAMESPACE
#endif
/* The three most frequent use cases of these macros are:
* For providing a substitute for a function that is missing on some
platforms, but is declared and works fine on the platforms on which
it exists:
#if @GNULIB_FOO@
# if !@HAVE_FOO@
_GL_FUNCDECL_SYS (foo, ...);
# endif
_GL_CXXALIAS_SYS (foo, ...);
_GL_CXXALIASWARN (foo);
#elif defined GNULIB_POSIXCHECK
...
#endif
* For providing a replacement for a function that exists on all platforms,
but is broken/insufficient and needs to be replaced on some platforms:
#if @GNULIB_FOO@
# if @REPLACE_FOO@
# if !(defined __cplusplus && defined GNULIB_NAMESPACE)
# undef foo
# define foo rpl_foo
# endif
_GL_FUNCDECL_RPL (foo, ...);
_GL_CXXALIAS_RPL (foo, ...);
# else
_GL_CXXALIAS_SYS (foo, ...);
# endif
_GL_CXXALIASWARN (foo);
#elif defined GNULIB_POSIXCHECK
...
#endif
* For providing a replacement for a function that exists on some platforms
but is broken/insufficient and needs to be replaced on some of them and
is additionally either missing or undeclared on some other platforms:
#if @GNULIB_FOO@
# if @REPLACE_FOO@
# if !(defined __cplusplus && defined GNULIB_NAMESPACE)
# undef foo
# define foo rpl_foo
# endif
_GL_FUNCDECL_RPL (foo, ...);
_GL_CXXALIAS_RPL (foo, ...);
# else
# if !@HAVE_FOO@ or if !@HAVE_DECL_FOO@
_GL_FUNCDECL_SYS (foo, ...);
# endif
_GL_CXXALIAS_SYS (foo, ...);
# endif
_GL_CXXALIASWARN (foo);
#elif defined GNULIB_POSIXCHECK
...
#endif
*/
/* _GL_EXTERN_C declaration;
performs the declaration with C linkage. */
#if defined __cplusplus
# define _GL_EXTERN_C extern "C"
#else
# define _GL_EXTERN_C extern
#endif
/* _GL_FUNCDECL_RPL (func, rettype, parameters_and_attributes);
declares a replacement function, named rpl_func, with the given prototype,
consisting of return type, parameters, and attributes.
Example:
_GL_FUNCDECL_RPL (open, int, (const char *filename, int flags, ...)
_GL_ARG_NONNULL ((1)));
*/
#define _GL_FUNCDECL_RPL(func,rettype,parameters_and_attributes) \
_GL_FUNCDECL_RPL_1 (rpl_##func, rettype, parameters_and_attributes)
#define _GL_FUNCDECL_RPL_1(rpl_func,rettype,parameters_and_attributes) \
_GL_EXTERN_C rettype rpl_func parameters_and_attributes
/* _GL_FUNCDECL_SYS (func, rettype, parameters_and_attributes);
declares the system function, named func, with the given prototype,
consisting of return type, parameters, and attributes.
Example:
_GL_FUNCDECL_SYS (open, int, (const char *filename, int flags, ...)
_GL_ARG_NONNULL ((1)));
*/
#define _GL_FUNCDECL_SYS(func,rettype,parameters_and_attributes) \
_GL_EXTERN_C rettype func parameters_and_attributes
/* _GL_CXXALIAS_RPL (func, rettype, parameters);
declares a C++ alias called GNULIB_NAMESPACE::func
that redirects to rpl_func, if GNULIB_NAMESPACE is defined.
Example:
_GL_CXXALIAS_RPL (open, int, (const char *filename, int flags, ...));
Wrapping rpl_func in an object with an inline conversion operator
avoids a reference to rpl_func unless GNULIB_NAMESPACE::func is
actually used in the program. */
#define _GL_CXXALIAS_RPL(func,rettype,parameters) \
_GL_CXXALIAS_RPL_1 (func, rpl_##func, rettype, parameters)
#if defined __cplusplus && defined GNULIB_NAMESPACE
# define _GL_CXXALIAS_RPL_1(func,rpl_func,rettype,parameters) \
namespace GNULIB_NAMESPACE \
{ \
static const struct _gl_ ## func ## _wrapper \
{ \
typedef rettype (*type) parameters; \
\
inline operator type () const \
{ \
return ::rpl_func; \
} \
} func = {}; \
} \
_GL_EXTERN_C int _gl_cxxalias_dummy
#else
# define _GL_CXXALIAS_RPL_1(func,rpl_func,rettype,parameters) \
_GL_EXTERN_C int _gl_cxxalias_dummy
#endif
/* _GL_CXXALIAS_MDA (func, rettype, parameters);
is to be used when func is a Microsoft deprecated alias, on native Windows.
It declares a C++ alias called GNULIB_NAMESPACE::func
that redirects to _func, if GNULIB_NAMESPACE is defined.
Example:
_GL_CXXALIAS_MDA (open, int, (const char *filename, int flags, ...));
*/
#define _GL_CXXALIAS_MDA(func,rettype,parameters) \
_GL_CXXALIAS_RPL_1 (func, _##func, rettype, parameters)
/* _GL_CXXALIAS_RPL_CAST_1 (func, rpl_func, rettype, parameters);
is like _GL_CXXALIAS_RPL_1 (func, rpl_func, rettype, parameters);
except that the C function rpl_func may have a slightly different
declaration. A cast is used to silence the "invalid conversion" error
that would otherwise occur. */
#if defined __cplusplus && defined GNULIB_NAMESPACE
# define _GL_CXXALIAS_RPL_CAST_1(func,rpl_func,rettype,parameters) \
namespace GNULIB_NAMESPACE \
{ \
static const struct _gl_ ## func ## _wrapper \
{ \
typedef rettype (*type) parameters; \
\
inline operator type () const \
{ \
return reinterpret_cast<type>(::rpl_func); \
} \
} func = {}; \
} \
_GL_EXTERN_C int _gl_cxxalias_dummy
#else
# define _GL_CXXALIAS_RPL_CAST_1(func,rpl_func,rettype,parameters) \
_GL_EXTERN_C int _gl_cxxalias_dummy
#endif
/* _GL_CXXALIAS_MDA_CAST (func, rettype, parameters);
is like _GL_CXXALIAS_MDA (func, rettype, parameters);
except that the C function func may have a slightly different declaration.
A cast is used to silence the "invalid conversion" error that would
otherwise occur. */
#define _GL_CXXALIAS_MDA_CAST(func,rettype,parameters) \
_GL_CXXALIAS_RPL_CAST_1 (func, _##func, rettype, parameters)
/* _GL_CXXALIAS_SYS (func, rettype, parameters);
declares a C++ alias called GNULIB_NAMESPACE::func
that redirects to the system provided function func, if GNULIB_NAMESPACE
is defined.
Example:
_GL_CXXALIAS_SYS (open, int, (const char *filename, int flags, ...));
Wrapping func in an object with an inline conversion operator
avoids a reference to func unless GNULIB_NAMESPACE::func is
actually used in the program. */
#if defined __cplusplus && defined GNULIB_NAMESPACE
# define _GL_CXXALIAS_SYS(func,rettype,parameters) \
namespace GNULIB_NAMESPACE \
{ \
static const struct _gl_ ## func ## _wrapper \
{ \
typedef rettype (*type) parameters; \
\
inline operator type () const \
{ \
return ::func; \
} \
} func = {}; \
} \
_GL_EXTERN_C int _gl_cxxalias_dummy
#else
# define _GL_CXXALIAS_SYS(func,rettype,parameters) \
_GL_EXTERN_C int _gl_cxxalias_dummy
#endif
/* _GL_CXXALIAS_SYS_CAST (func, rettype, parameters);
is like _GL_CXXALIAS_SYS (func, rettype, parameters);
except that the C function func may have a slightly different declaration.
A cast is used to silence the "invalid conversion" error that would
otherwise occur. */
#if defined __cplusplus && defined GNULIB_NAMESPACE
# define _GL_CXXALIAS_SYS_CAST(func,rettype,parameters) \
namespace GNULIB_NAMESPACE \
{ \
static const struct _gl_ ## func ## _wrapper \
{ \
typedef rettype (*type) parameters; \
\
inline operator type () const \
{ \
return reinterpret_cast<type>(::func); \
} \
} func = {}; \
} \
_GL_EXTERN_C int _gl_cxxalias_dummy
#else
# define _GL_CXXALIAS_SYS_CAST(func,rettype,parameters) \
_GL_EXTERN_C int _gl_cxxalias_dummy
#endif
/* _GL_CXXALIAS_SYS_CAST2 (func, rettype, parameters, rettype2, parameters2);
is like _GL_CXXALIAS_SYS (func, rettype, parameters);
except that the C function is picked among a set of overloaded functions,
namely the one with rettype2 and parameters2. Two consecutive casts
are used to silence the "cannot find a match" and "invalid conversion"
errors that would otherwise occur. */
#if defined __cplusplus && defined GNULIB_NAMESPACE
/* The outer cast must be a reinterpret_cast.
The inner cast: When the function is defined as a set of overloaded
functions, it works as a static_cast<>, choosing the designated variant.
When the function is defined as a single variant, it works as a
reinterpret_cast<>. The parenthesized cast syntax works both ways. */
# define _GL_CXXALIAS_SYS_CAST2(func,rettype,parameters,rettype2,parameters2) \
namespace GNULIB_NAMESPACE \
{ \
static const struct _gl_ ## func ## _wrapper \
{ \
typedef rettype (*type) parameters; \
\
inline operator type () const \
{ \
return reinterpret_cast<type>((rettype2 (*) parameters2)(::func)); \
} \
} func = {}; \
} \
_GL_EXTERN_C int _gl_cxxalias_dummy
#else
# define _GL_CXXALIAS_SYS_CAST2(func,rettype,parameters,rettype2,parameters2) \
_GL_EXTERN_C int _gl_cxxalias_dummy
#endif
/* _GL_CXXALIASWARN (func);
causes a warning to be emitted when ::func is used but not when
GNULIB_NAMESPACE::func is used. func must be defined without overloaded
variants. */
#if defined __cplusplus && defined GNULIB_NAMESPACE
# define _GL_CXXALIASWARN(func) \
_GL_CXXALIASWARN_1 (func, GNULIB_NAMESPACE)
# define _GL_CXXALIASWARN_1(func,namespace) \
_GL_CXXALIASWARN_2 (func, namespace)
/* To work around GCC bug <https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43881>,
we enable the warning only when not optimizing. */
# if !(defined __GNUC__ && !defined __clang__ && __OPTIMIZE__)
# define _GL_CXXALIASWARN_2(func,namespace) \
_GL_WARN_ON_USE (func, \
"The symbol ::" #func " refers to the system function. " \
"Use " #namespace "::" #func " instead.")
# elif __GNUC__ >= 3 && GNULIB_STRICT_CHECKING
# define _GL_CXXALIASWARN_2(func,namespace) \
extern __typeof__ (func) func
# else
# define _GL_CXXALIASWARN_2(func,namespace) \
_GL_EXTERN_C int _gl_cxxalias_dummy
# endif
#else
# define _GL_CXXALIASWARN(func) \
_GL_EXTERN_C int _gl_cxxalias_dummy
#endif
/* _GL_CXXALIASWARN1 (func, rettype, parameters_and_attributes);
causes a warning to be emitted when the given overloaded variant of ::func
is used but not when GNULIB_NAMESPACE::func is used. */
#if defined __cplusplus && defined GNULIB_NAMESPACE
# define _GL_CXXALIASWARN1(func,rettype,parameters_and_attributes) \
_GL_CXXALIASWARN1_1 (func, rettype, parameters_and_attributes, \
GNULIB_NAMESPACE)
# define _GL_CXXALIASWARN1_1(func,rettype,parameters_and_attributes,namespace) \
_GL_CXXALIASWARN1_2 (func, rettype, parameters_and_attributes, namespace)
/* To work around GCC bug <https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43881>,
we enable the warning only when not optimizing. */
# if !(defined __GNUC__ && !defined __clang__ && __OPTIMIZE__)
# define _GL_CXXALIASWARN1_2(func,rettype,parameters_and_attributes,namespace) \
_GL_WARN_ON_USE_CXX (func, rettype, rettype, parameters_and_attributes, \
"The symbol ::" #func " refers to the system function. " \
"Use " #namespace "::" #func " instead.")
# else
# define _GL_CXXALIASWARN1_2(func,rettype,parameters_and_attributes,namespace) \
_GL_EXTERN_C int _gl_cxxalias_dummy
# endif
#else
# define _GL_CXXALIASWARN1(func,rettype,parameters_and_attributes) \
_GL_EXTERN_C int _gl_cxxalias_dummy
#endif
#endif /* _GL_CXXDEFS_H */
/* The definition of _GL_WARN_ON_USE is copied here. */
/* A C macro for emitting warnings if a function is used.
Copyright (C) 2010-2022 Free Software Foundation, Inc.
This program is free software: you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
/* _GL_WARN_ON_USE (function, "literal string") issues a declaration
for FUNCTION which will then trigger a compiler warning containing
the text of "literal string" anywhere that function is called, if
supported by the compiler. If the compiler does not support this
feature, the macro expands to an unused extern declaration.
_GL_WARN_ON_USE_ATTRIBUTE ("literal string") expands to the
attribute used in _GL_WARN_ON_USE. If the compiler does not support
this feature, it expands to empty.
These macros are useful for marking a function as a potential
portability trap, with the intent that "literal string" include
instructions on the replacement function that should be used
instead.
_GL_WARN_ON_USE is for functions with 'extern' linkage.
_GL_WARN_ON_USE_ATTRIBUTE is for functions with 'static' or 'inline'
linkage.
However, one of the reasons that a function is a portability trap is
if it has the wrong signature. Declaring FUNCTION with a different
signature in C is a compilation error, so this macro must use the
same type as any existing declaration so that programs that avoid
the problematic FUNCTION do not fail to compile merely because they
included a header that poisoned the function. But this implies that
_GL_WARN_ON_USE is only safe to use if FUNCTION is known to already
have a declaration. Use of this macro implies that there must not
be any other macro hiding the declaration of FUNCTION; but
undefining FUNCTION first is part of the poisoning process anyway
(although for symbols that are provided only via a macro, the result
is a compilation error rather than a warning containing
"literal string"). Also note that in C++, it is only safe to use if
FUNCTION has no overloads.
For an example, it is possible to poison 'getline' by:
- adding a call to gl_WARN_ON_USE_PREPARE([[#include <stdio.h>]],
[getline]) in configure.ac, which potentially defines
HAVE_RAW_DECL_GETLINE
- adding this code to a header that wraps the system <stdio.h>:
#undef getline
#if HAVE_RAW_DECL_GETLINE
_GL_WARN_ON_USE (getline, "getline is required by POSIX 2008, but"
"not universally present; use the gnulib module getline");
#endif
It is not possible to directly poison global variables. But it is
possible to write a wrapper accessor function, and poison that
(less common usage, like &environ, will cause a compilation error
rather than issue the nice warning, but the end result of informing
the developer about their portability problem is still achieved):
#if HAVE_RAW_DECL_ENVIRON
static char ***
rpl_environ (void) { return &environ; }
_GL_WARN_ON_USE (rpl_environ, "environ is not always properly declared");
# undef environ
# define environ (*rpl_environ ())
#endif
or better (avoiding contradictory use of 'static' and 'extern'):
#if HAVE_RAW_DECL_ENVIRON
static char ***
_GL_WARN_ON_USE_ATTRIBUTE ("environ is not always properly declared")
rpl_environ (void) { return &environ; }
# undef environ
# define environ (*rpl_environ ())
#endif
*/
#ifndef _GL_WARN_ON_USE
# if 4 < __GNUC__ || (__GNUC__ == 4 && 3 <= __GNUC_MINOR__)
/* A compiler attribute is available in gcc versions 4.3.0 and later. */
# define _GL_WARN_ON_USE(function, message) \
_GL_WARN_EXTERN_C __typeof__ (function) function __attribute__ ((__warning__ (message)))
# define _GL_WARN_ON_USE_ATTRIBUTE(message) \
__attribute__ ((__warning__ (message)))
# elif __clang_major__ >= 4
/* Another compiler attribute is available in clang. */
# define _GL_WARN_ON_USE(function, message) \
_GL_WARN_EXTERN_C __typeof__ (function) function \
__attribute__ ((__diagnose_if__ (1, message, "warning")))
# define _GL_WARN_ON_USE_ATTRIBUTE(message) \
__attribute__ ((__diagnose_if__ (1, message, "warning")))
# elif __GNUC__ >= 3 && GNULIB_STRICT_CHECKING
/* Verify the existence of the function. */
# define _GL_WARN_ON_USE(function, message) \
_GL_WARN_EXTERN_C __typeof__ (function) function
# define _GL_WARN_ON_USE_ATTRIBUTE(message)
# else /* Unsupported. */
# define _GL_WARN_ON_USE(function, message) \
_GL_WARN_EXTERN_C int _gl_warn_on_use
# define _GL_WARN_ON_USE_ATTRIBUTE(message)
# endif
#endif
/* _GL_WARN_ON_USE_CXX (function, rettype_gcc, rettype_clang, parameters_and_attributes, "message")
is like _GL_WARN_ON_USE (function, "message"), except that in C++ mode the
function is declared with the given prototype, consisting of return type,
parameters, and attributes.
This variant is useful for overloaded functions in C++. _GL_WARN_ON_USE does
not work in this case. */
#ifndef _GL_WARN_ON_USE_CXX
# if !defined __cplusplus
# define _GL_WARN_ON_USE_CXX(function,rettype_gcc,rettype_clang,parameters_and_attributes,msg) \
_GL_WARN_ON_USE (function, msg)
# else
# if 4 < __GNUC__ || (__GNUC__ == 4 && 3 <= __GNUC_MINOR__)
/* A compiler attribute is available in gcc versions 4.3.0 and later. */
# define _GL_WARN_ON_USE_CXX(function,rettype_gcc,rettype_clang,parameters_and_attributes,msg) \
extern rettype_gcc function parameters_and_attributes \
__attribute__ ((__warning__ (msg)))
# elif __clang_major__ >= 4
/* Another compiler attribute is available in clang. */
# define _GL_WARN_ON_USE_CXX(function,rettype_gcc,rettype_clang,parameters_and_attributes,msg) \
extern rettype_clang function parameters_and_attributes \
__attribute__ ((__diagnose_if__ (1, msg, "warning")))
# elif __GNUC__ >= 3 && GNULIB_STRICT_CHECKING
/* Verify the existence of the function. */
# define _GL_WARN_ON_USE_CXX(function,rettype_gcc,rettype_clang,parameters_and_attributes,msg) \
extern rettype_gcc function parameters_and_attributes
# else /* Unsupported. */
# define _GL_WARN_ON_USE_CXX(function,rettype_gcc,rettype_clang,parameters_and_attributes,msg) \
_GL_WARN_EXTERN_C int _gl_warn_on_use
# endif
# endif
#endif
/* _GL_WARN_EXTERN_C declaration;
performs the declaration with C linkage. */
#ifndef _GL_WARN_EXTERN_C
# if defined __cplusplus
# define _GL_WARN_EXTERN_C extern "C"
# else
# define _GL_WARN_EXTERN_C extern
# endif
#endif
#if !1
# if !GNULIB_defined_struct_sched_param
struct sched_param
{
int sched_priority;
};
# define GNULIB_defined_struct_sched_param 1
# endif
#endif
#if !(defined SCHED_FIFO && defined SCHED_RR && defined SCHED_OTHER)
# define SCHED_FIFO 1
# define SCHED_RR 2
# define SCHED_OTHER 0
#endif
#if 0
# if 0
# if !(defined __cplusplus && defined GNULIB_NAMESPACE)
# undef sched_yield
# define sched_yield rpl_sched_yield
# endif
_GL_FUNCDECL_RPL (sched_yield, int, (void));
_GL_CXXALIAS_RPL (sched_yield, int, (void));
# else
# if !1
_GL_FUNCDECL_SYS (sched_yield, int, (void));
# endif
_GL_CXXALIAS_SYS (sched_yield, int, (void));
# endif
# if __GLIBC__ >= 2
_GL_CXXALIASWARN (sched_yield);
# endif
#elif defined GNULIB_POSIXCHECK
# undef sched_yield
# if HAVE_RAW_DECL_SCHED_YIELD
_GL_WARN_ON_USE (sched_yield, "sched_yield is not portable - "
"use gnulib module sched_yield for portability");
# endif
#endif
#endif /* _GL_SCHED_H */
#endif /* _GL_SCHED_H */

File diff suppressed because it is too large Load diff

View file

@ -1,38 +0,0 @@
/* DO NOT EDIT! GENERATED AUTOMATICALLY! */
/* stdckdint.h -- checked integer arithmetic
Copyright 2022 Free Software Foundation, Inc.
This program is free software: you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
#ifndef _GL_STDCKDINT_H
#define _GL_STDCKDINT_H
#include "intprops-internal.h"
#include <stdbool.h>
/* Store into *R the low-order bits of A + B, A - B, A * B, respectively.
Return 1 if the result overflows, 0 otherwise.
A, B, and *R can have any integer type other than char, bool, a
bit-precise integer type, or an enumeration type.
These are like the standard macros introduced in C23, except that
arguments should not have side effects. */
#define ckd_add(r, a, b) ((bool) _GL_INT_ADD_WRAPV (a, b, r))
#define ckd_sub(r, a, b) ((bool) _GL_INT_SUBTRACT_WRAPV (a, b, r))
#define ckd_mul(r, a, b) ((bool) _GL_INT_MULTIPLY_WRAPV (a, b, r))
#endif /* _GL_STDCKDINT_H */