1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-05-20 11:40:18 +02:00

peval tests into separate file

* test-suite/tests/tree-il.test ("partial evaluation"):
* test-suite/tests/peval.test ("partial evaluation"): Separate peval
* tests.

* test-suite/Makefile.am: Adapt.
This commit is contained in:
Andy Wingo 2012-04-11 11:43:00 -07:00
parent 5deea34d0e
commit de1eb420a5
3 changed files with 989 additions and 965 deletions

View file

@ -75,6 +75,7 @@ SCM_TESTS = tests/00-initial-env.test \
tests/optargs.test \
tests/options.test \
tests/parameters.test \
tests/peval.test \
tests/print.test \
tests/procprop.test \
tests/procs.test \

988
test-suite/tests/peval.test Normal file
View file

@ -0,0 +1,988 @@
;;;; tree-il.test --- test suite for compiling tree-il -*- scheme -*-
;;;; Andy Wingo <wingo@pobox.com> --- May 2009
;;;;
;;;; Copyright (C) 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
;;;;
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
(define-module (test-suite tree-il)
#:use-module (test-suite lib)
#:use-module (system base compile)
#:use-module (system base pmatch)
#:use-module (system base message)
#:use-module (language tree-il)
#:use-module (language tree-il primitives)
#:use-module (language glil)
#:use-module (srfi srfi-13))
(define peval
;; The partial evaluator.
(@@ (language tree-il optimize) peval))
(define-syntax pass-if-peval
(syntax-rules (resolve-primitives)
((_ in pat)
(pass-if-peval in pat
(compile 'in #:from 'scheme #:to 'tree-il)))
((_ resolve-primitives in pat)
(pass-if-peval in pat
(expand-primitives!
(resolve-primitives!
(compile 'in #:from 'scheme #:to 'tree-il)
(current-module)))))
((_ in pat code)
(pass-if 'in
(let ((evaled (unparse-tree-il (peval code))))
(pmatch evaled
(pat #t)
(_ (pk 'peval-mismatch)
((@ (ice-9 pretty-print) pretty-print)
'in)
(newline)
((@ (ice-9 pretty-print) pretty-print)
evaled)
(newline)
((@ (ice-9 pretty-print) pretty-print)
'pat)
(newline)
#f)))))))
(with-test-prefix "partial evaluation"
(pass-if-peval
;; First order, primitive.
(let ((x 1) (y 2)) (+ x y))
(const 3))
(pass-if-peval
;; First order, thunk.
(let ((x 1) (y 2))
(let ((f (lambda () (+ x y))))
(f)))
(const 3))
(pass-if-peval resolve-primitives
;; First order, let-values (requires primitive expansion for
;; `call-with-values'.)
(let ((x 0))
(call-with-values
(lambda () (if (zero? x) (values 1 2) (values 3 4)))
(lambda (a b)
(+ a b))))
(const 3))
(pass-if-peval resolve-primitives
;; First order, multiple values.
(let ((x 1) (y 2))
(values x y))
(apply (primitive values) (const 1) (const 2)))
(pass-if-peval resolve-primitives
;; First order, multiple values truncated.
(let ((x (values 1 'a)) (y 2))
(values x y))
(apply (primitive values) (const 1) (const 2)))
(pass-if-peval resolve-primitives
;; First order, multiple values truncated.
(or (values 1 2) 3)
(const 1))
(pass-if-peval
;; First order, coalesced, mutability preserved.
(cons 0 (cons 1 (cons 2 (list 3 4 5))))
(apply (primitive list)
(const 0) (const 1) (const 2) (const 3) (const 4) (const 5)))
(pass-if-peval
;; First order, coalesced, immutability preserved.
(cons 0 (cons 1 (cons 2 '(3 4 5))))
(apply (primitive cons) (const 0)
(apply (primitive cons) (const 1)
(apply (primitive cons) (const 2)
(const (3 4 5))))))
;; These two tests doesn't work any more because we changed the way we
;; deal with constants -- now the algorithm will see a construction as
;; being bound to the lexical, so it won't propagate it. It can't
;; even propagate it in the case that it is only referenced once,
;; because:
;;
;; (let ((x (cons 1 2))) (lambda () x))
;;
;; is not the same as
;;
;; (lambda () (cons 1 2))
;;
;; Perhaps if we determined that not only was it only referenced once,
;; it was not closed over by a lambda, then we could propagate it, and
;; re-enable these two tests.
;;
#;
(pass-if-peval
;; First order, mutability preserved.
(let loop ((i 3) (r '()))
(if (zero? i)
r
(loop (1- i) (cons (cons i i) r))))
(apply (primitive list)
(apply (primitive cons) (const 1) (const 1))
(apply (primitive cons) (const 2) (const 2))
(apply (primitive cons) (const 3) (const 3))))
;;
;; See above.
#;
(pass-if-peval
;; First order, evaluated.
(let loop ((i 7)
(r '()))
(if (<= i 0)
(car r)
(loop (1- i) (cons i r))))
(const 1))
;; Instead here are tests for what happens for the above cases: they
;; unroll but they don't fold.
(pass-if-peval
(let loop ((i 3) (r '()))
(if (zero? i)
r
(loop (1- i) (cons (cons i i) r))))
(let (r) (_)
((apply (primitive list)
(apply (primitive cons) (const 3) (const 3))))
(let (r) (_)
((apply (primitive cons)
(apply (primitive cons) (const 2) (const 2))
(lexical r _)))
(apply (primitive cons)
(apply (primitive cons) (const 1) (const 1))
(lexical r _)))))
;; See above.
(pass-if-peval
(let loop ((i 4)
(r '()))
(if (<= i 0)
(car r)
(loop (1- i) (cons i r))))
(let (r) (_)
((apply (primitive list) (const 4)))
(let (r) (_)
((apply (primitive cons)
(const 3)
(lexical r _)))
(let (r) (_)
((apply (primitive cons)
(const 2)
(lexical r _)))
(let (r) (_)
((apply (primitive cons)
(const 1)
(lexical r _)))
(apply (primitive car)
(lexical r _)))))))
;; Static sums.
(pass-if-peval
(let loop ((l '(1 2 3 4)) (sum 0))
(if (null? l)
sum
(loop (cdr l) (+ sum (car l)))))
(const 10))
(pass-if-peval resolve-primitives
(let ((string->chars
(lambda (s)
(define (char-at n)
(string-ref s n))
(define (len)
(string-length s))
(let loop ((i 0))
(if (< i (len))
(cons (char-at i)
(loop (1+ i)))
'())))))
(string->chars "yo"))
(apply (primitive list) (const #\y) (const #\o)))
(pass-if-peval
;; Primitives in module-refs are resolved (the expansion of `pmatch'
;; below leads to calls to (@@ (system base pmatch) car) and
;; similar, which is what we want to be inlined.)
(begin
(use-modules (system base pmatch))
(pmatch '(a b c d)
((a b . _)
#t)))
(begin
(apply . _)
(const #t)))
(pass-if-peval
;; Mutability preserved.
((lambda (x y z) (list x y z)) 1 2 3)
(apply (primitive list) (const 1) (const 2) (const 3)))
(pass-if-peval
;; Don't propagate effect-free expressions that operate on mutable
;; objects.
(let* ((x (list 1))
(y (car x)))
(set-car! x 0)
y)
(let (x) (_) ((apply (primitive list) (const 1)))
(let (y) (_) ((apply (primitive car) (lexical x _)))
(begin
(apply (toplevel set-car!) (lexical x _) (const 0))
(lexical y _)))))
(pass-if-peval
;; Don't propagate effect-free expressions that operate on objects we
;; don't know about.
(let ((y (car x)))
(set-car! x 0)
y)
(let (y) (_) ((apply (primitive car) (toplevel x)))
(begin
(apply (toplevel set-car!) (toplevel x) (const 0))
(lexical y _))))
(pass-if-peval
;; Infinite recursion
((lambda (x) (x x)) (lambda (x) (x x)))
(let (x) (_)
((lambda _
(lambda-case
(((x) _ _ _ _ _)
(apply (lexical x _) (lexical x _))))))
(apply (lexical x _) (lexical x _))))
(pass-if-peval
;; First order, aliased primitive.
(let* ((x *) (y (x 1 2))) y)
(const 2))
(pass-if-peval
;; First order, shadowed primitive.
(begin
(define (+ x y) (pk x y))
(+ 1 2))
(begin
(define +
(lambda (_)
(lambda-case
(((x y) #f #f #f () (_ _))
(apply (toplevel pk) (lexical x _) (lexical y _))))))
(apply (toplevel +) (const 1) (const 2))))
(pass-if-peval
;; First-order, effects preserved.
(let ((x 2))
(do-something!)
x)
(begin
(apply (toplevel do-something!))
(const 2)))
(pass-if-peval
;; First order, residual bindings removed.
(let ((x 2) (y 3))
(* (+ x y) z))
(apply (primitive *) (const 5) (toplevel z)))
(pass-if-peval
;; First order, with lambda.
(define (foo x)
(define (bar z) (* z z))
(+ x (bar 3)))
(define foo
(lambda (_)
(lambda-case
(((x) #f #f #f () (_))
(apply (primitive +) (lexical x _) (const 9)))))))
(pass-if-peval
;; First order, with lambda inlined & specialized twice.
(let ((f (lambda (x y)
(+ (* x top) y)))
(x 2)
(y 3))
(+ (* x (f x y))
(f something x)))
(apply (primitive +)
(apply (primitive *)
(const 2)
(apply (primitive +) ; (f 2 3)
(apply (primitive *)
(const 2)
(toplevel top))
(const 3)))
(let (x) (_) ((toplevel something)) ; (f something 2)
;; `something' is not const, so preserve order of
;; effects with a lexical binding.
(apply (primitive +)
(apply (primitive *)
(lexical x _)
(toplevel top))
(const 2)))))
(pass-if-peval
;; First order, with lambda inlined & specialized 3 times.
(let ((f (lambda (x y) (if (> x 0) y x))))
(+ (f -1 0)
(f 1 0)
(f -1 y)
(f 2 y)
(f z y)))
(apply (primitive +)
(const -1) ; (f -1 0)
(const 0) ; (f 1 0)
(begin (toplevel y) (const -1)) ; (f -1 y)
(toplevel y) ; (f 2 y)
(let (x y) (_ _) ((toplevel z) (toplevel y)) ; (f z y)
(if (apply (primitive >) (lexical x _) (const 0))
(lexical y _)
(lexical x _)))))
(pass-if-peval
;; First order, conditional.
(let ((y 2))
(lambda (x)
(if (> y 0)
(display x)
'never-reached)))
(lambda ()
(lambda-case
(((x) #f #f #f () (_))
(apply (toplevel display) (lexical x _))))))
(pass-if-peval
;; First order, recursive procedure.
(letrec ((fibo (lambda (n)
(if (<= n 1)
n
(+ (fibo (- n 1))
(fibo (- n 2)))))))
(fibo 4))
(const 3))
(pass-if-peval
;; Don't propagate toplevel references, as intervening expressions
;; could alter their bindings.
(let ((x top))
(foo)
x)
(let (x) (_) ((toplevel top))
(begin
(apply (toplevel foo))
(lexical x _))))
(pass-if-peval
;; Higher order.
((lambda (f x)
(f (* (car x) (cadr x))))
(lambda (x)
(+ x 1))
'(2 3))
(const 7))
(pass-if-peval
;; Higher order with optional argument (default value).
((lambda* (f x #:optional (y 0))
(+ y (f (* (car x) (cadr x)))))
(lambda (x)
(+ x 1))
'(2 3))
(const 7))
(pass-if-peval
;; Higher order with optional argument (caller-supplied value).
((lambda* (f x #:optional (y 0))
(+ y (f (* (car x) (cadr x)))))
(lambda (x)
(+ x 1))
'(2 3)
35)
(const 42))
(pass-if-peval
;; Higher order with optional argument (side-effecting default
;; value).
((lambda* (f x #:optional (y (foo)))
(+ y (f (* (car x) (cadr x)))))
(lambda (x)
(+ x 1))
'(2 3))
(let (y) (_) ((apply (toplevel foo)))
(apply (primitive +) (lexical y _) (const 7))))
(pass-if-peval
;; Higher order with optional argument (caller-supplied value).
((lambda* (f x #:optional (y (foo)))
(+ y (f (* (car x) (cadr x)))))
(lambda (x)
(+ x 1))
'(2 3)
35)
(const 42))
(pass-if-peval
;; Higher order.
((lambda (f) (f x)) (lambda (x) x))
(toplevel x))
(pass-if-peval
;; Bug reported at
;; <https://lists.gnu.org/archive/html/bug-guile/2011-09/msg00019.html>.
(let ((fold (lambda (f g) (f (g top)))))
(fold 1+ (lambda (x) x)))
(apply (primitive 1+) (toplevel top)))
(pass-if-peval
;; Procedure not inlined when residual code contains recursive calls.
;; <http://debbugs.gnu.org/9542>
(letrec ((fold (lambda (f x3 b null? car cdr)
(if (null? x3)
b
(f (car x3) (fold f (cdr x3) b null? car cdr))))))
(fold * x 1 zero? (lambda (x1) x1) (lambda (x2) (- x2 1))))
(letrec (fold) (_) (_)
(apply (lexical fold _)
(primitive *)
(toplevel x)
(const 1)
(primitive zero?)
(lambda ()
(lambda-case
(((x1) #f #f #f () (_))
(lexical x1 _))))
(lambda ()
(lambda-case
(((x2) #f #f #f () (_))
(apply (primitive -) (lexical x2 _) (const 1))))))))
(pass-if "inlined lambdas are alpha-renamed"
;; In this example, `make-adder' is inlined more than once; thus,
;; they should use different gensyms for their arguments, because
;; the various optimization passes assume uniquely-named variables.
;;
;; Bug reported at
;; <https://lists.gnu.org/archive/html/bug-guile/2011-09/msg00019.html> and
;; <https://lists.gnu.org/archive/html/bug-guile/2011-09/msg00029.html>.
(pmatch (unparse-tree-il
(peval (compile
'(let ((make-adder
(lambda (x) (lambda (y) (+ x y)))))
(cons (make-adder 1) (make-adder 2)))
#:to 'tree-il)))
((apply (primitive cons)
(lambda ()
(lambda-case
(((y) #f #f #f () (,gensym1))
(apply (primitive +)
(const 1)
(lexical y ,ref1)))))
(lambda ()
(lambda-case
(((y) #f #f #f () (,gensym2))
(apply (primitive +)
(const 2)
(lexical y ,ref2))))))
(and (eq? gensym1 ref1)
(eq? gensym2 ref2)
(not (eq? gensym1 gensym2))))
(_ #f)))
(pass-if-peval
;; Unused letrec bindings are pruned.
(letrec ((a (lambda () (b)))
(b (lambda () (a)))
(c (lambda (x) x)))
(c 10))
(const 10))
(pass-if-peval
;; Unused letrec bindings are pruned.
(letrec ((a (foo!))
(b (lambda () (a)))
(c (lambda (x) x)))
(c 10))
(begin (apply (toplevel foo!))
(const 10)))
(pass-if-peval
;; Higher order, mutually recursive procedures.
(letrec ((even? (lambda (x)
(or (= 0 x)
(odd? (- x 1)))))
(odd? (lambda (x)
(not (even? x)))))
(and (even? 4) (odd? 7)))
(const #t))
(pass-if-peval
;; Memv with constants.
(memv 1 '(3 2 1))
(const '(1)))
(pass-if-peval
;; Memv with non-constant list. It could fold but doesn't
;; currently.
(memv 1 (list 3 2 1))
(apply (primitive memv)
(const 1)
(apply (primitive list) (const 3) (const 2) (const 1))))
(pass-if-peval
;; Memv with non-constant key, constant list, test context
(case foo
((3 2 1) 'a)
(else 'b))
(let (key) (_) ((toplevel foo))
(if (if (apply (primitive eqv?) (lexical key _) (const 3))
(const #t)
(if (apply (primitive eqv?) (lexical key _) (const 2))
(const #t)
(apply (primitive eqv?) (lexical key _) (const 1))))
(const a)
(const b))))
(pass-if-peval
;; Memv with non-constant key, empty list, test context. Currently
;; doesn't fold entirely.
(case foo
(() 'a)
(else 'b))
(begin (toplevel foo) (const b)))
;;
;; Below are cases where constant propagation should bail out.
;;
(pass-if-peval
;; Non-constant lexical is not propagated.
(let ((v (make-vector 6 #f)))
(lambda (n)
(vector-set! v n n)))
(let (v) (_)
((apply (toplevel make-vector) (const 6) (const #f)))
(lambda ()
(lambda-case
(((n) #f #f #f () (_))
(apply (toplevel vector-set!)
(lexical v _) (lexical n _) (lexical n _)))))))
(pass-if-peval
;; Mutable lexical is not propagated.
(let ((v (vector 1 2 3)))
(lambda ()
v))
(let (v) (_)
((apply (primitive vector) (const 1) (const 2) (const 3)))
(lambda ()
(lambda-case
((() #f #f #f () ())
(lexical v _))))))
(pass-if-peval
;; Lexical that is not provably pure is not inlined nor propagated.
(let* ((x (if (> p q) (frob!) (display 'chbouib)))
(y (* x 2)))
(+ x x y))
(let (x) (_) ((if (apply (primitive >) (toplevel p) (toplevel q))
(apply (toplevel frob!))
(apply (toplevel display) (const chbouib))))
(let (y) (_) ((apply (primitive *) (lexical x _) (const 2)))
(apply (primitive +)
(lexical x _) (lexical x _) (lexical y _)))))
(pass-if-peval
;; Non-constant arguments not propagated to lambdas.
((lambda (x y z)
(vector-set! x 0 0)
(set-car! y 0)
(set-cdr! z '()))
(vector 1 2 3)
(make-list 10)
(list 1 2 3))
(let (x y z) (_ _ _)
((apply (primitive vector) (const 1) (const 2) (const 3))
(apply (toplevel make-list) (const 10))
(apply (primitive list) (const 1) (const 2) (const 3)))
(begin
(apply (toplevel vector-set!)
(lexical x _) (const 0) (const 0))
(apply (toplevel set-car!)
(lexical y _) (const 0))
(apply (toplevel set-cdr!)
(lexical z _) (const ())))))
(pass-if-peval
(let ((foo top-foo) (bar top-bar))
(let* ((g (lambda (x y) (+ x y)))
(f (lambda (g x) (g x x))))
(+ (f g foo) (f g bar))))
(let (foo bar) (_ _) ((toplevel top-foo) (toplevel top-bar))
(apply (primitive +)
(apply (primitive +) (lexical foo _) (lexical foo _))
(apply (primitive +) (lexical bar _) (lexical bar _)))))
(pass-if-peval
;; Fresh objects are not turned into constants, nor are constants
;; turned into fresh objects.
(let* ((c '(2 3))
(x (cons 1 c))
(y (cons 0 x)))
y)
(let (x) (_) ((apply (primitive cons) (const 1) (const (2 3))))
(apply (primitive cons) (const 0) (lexical x _))))
(pass-if-peval
;; Bindings mutated.
(let ((x 2))
(set! x 3)
x)
(let (x) (_) ((const 2))
(begin
(set! (lexical x _) (const 3))
(lexical x _))))
(pass-if-peval
;; Bindings mutated.
(letrec ((x 0)
(f (lambda ()
(set! x (+ 1 x))
x)))
(frob f) ; may mutate `x'
x)
(letrec (x) (_) ((const 0))
(begin
(apply (toplevel frob) (lambda _ _))
(lexical x _))))
(pass-if-peval
;; Bindings mutated.
(letrec ((f (lambda (x)
(set! f (lambda (_) x))
x)))
(f 2))
(letrec _ . _))
(pass-if-peval
;; Bindings possibly mutated.
(let ((x (make-foo)))
(frob! x) ; may mutate `x'
x)
(let (x) (_) ((apply (toplevel make-foo)))
(begin
(apply (toplevel frob!) (lexical x _))
(lexical x _))))
(pass-if-peval
;; Inlining stops at recursive calls with dynamic arguments.
(let loop ((x x))
(if (< x 0) x (loop (1- x))))
(letrec (loop) (_) ((lambda (_)
(lambda-case
(((x) #f #f #f () (_))
(if _ _
(apply (lexical loop _)
(apply (primitive 1-)
(lexical x _))))))))
(apply (lexical loop _) (toplevel x))))
(pass-if-peval
;; Recursion on the 2nd argument is fully evaluated.
(let ((x (top)))
(let loop ((x x) (y 10))
(if (> y 0)
(loop x (1- y))
(foo x y))))
(let (x) (_) ((apply (toplevel top)))
(apply (toplevel foo) (lexical x _) (const 0))))
(pass-if-peval
;; Inlining aborted when residual code contains recursive calls.
;;
;; <http://debbugs.gnu.org/9542>
(let loop ((x x) (y 0))
(if (> y 0)
(loop (1- x) (1- y))
(if (< x 0)
x
(loop (1+ x) (1+ y)))))
(letrec (loop) (_) ((lambda (_)
(lambda-case
(((x y) #f #f #f () (_ _))
(if (apply (primitive >)
(lexical y _) (const 0))
_ _)))))
(apply (lexical loop _) (toplevel x) (const 0))))
(pass-if-peval
;; Infinite recursion: `peval' gives up and leaves it as is.
(letrec ((f (lambda (x) (g (1- x))))
(g (lambda (x) (h (1+ x))))
(h (lambda (x) (f x))))
(f 0))
(letrec _ . _))
(pass-if-peval
;; Infinite recursion: all the arguments to `loop' are static, but
;; unrolling it would lead `peval' to enter an infinite loop.
(let loop ((x 0))
(and (< x top)
(loop (1+ x))))
(letrec (loop) (_) ((lambda . _))
(apply (lexical loop _) (const 0))))
(pass-if-peval
;; This test checks that the `start' binding is indeed residualized.
;; See the `referenced?' procedure in peval's `prune-bindings'.
(let ((pos 0))
(set! pos 1) ;; Cause references to `pos' to residualize.
(let ((here (let ((start pos)) (lambda () start))))
(here)))
(let (pos) (_) ((const 0))
(begin
(set! (lexical pos _) (const 1))
(let (here) (_) (_)
(apply (lexical here _))))))
(pass-if-peval
;; FIXME: should this one residualize the binding?
(letrec ((a a))
1)
(const 1))
(pass-if-peval
;; This is a fun one for peval to handle.
(letrec ((a a))
a)
(letrec (a) (_) ((lexical a _))
(lexical a _)))
(pass-if-peval
;; Another interesting recursive case.
(letrec ((a b) (b a))
a)
(letrec (a) (_) ((lexical a _))
(lexical a _)))
(pass-if-peval
;; Another pruning case, that `a' is residualized.
(letrec ((a (lambda () (a)))
(b (lambda () (a)))
(c (lambda (x) x)))
(let ((d (foo b)))
(c d)))
;; "b c a" is the current order that we get with unordered letrec,
;; but it's not important to this test, so if it changes, just adapt
;; the test.
(letrec (b c a) (_ _ _)
((lambda _
(lambda-case
((() #f #f #f () ())
(apply (lexical a _)))))
(lambda _
(lambda-case
(((x) #f #f #f () (_))
(lexical x _))))
(lambda _
(lambda-case
((() #f #f #f () ())
(apply (lexical a _))))))
(let (d)
(_)
((apply (toplevel foo) (lexical b _)))
(apply (lexical c _)
(lexical d _)))))
(pass-if-peval
;; In this case, we can prune the bindings. `a' ends up being copied
;; because it is only referenced once in the source program. Oh
;; well.
(letrec* ((a (lambda (x) (top x)))
(b (lambda () a)))
(foo (b) (b)))
(apply (toplevel foo)
(lambda _
(lambda-case
(((x) #f #f #f () (_))
(apply (toplevel top) (lexical x _)))))
(lambda _
(lambda-case
(((x) #f #f #f () (_))
(apply (toplevel top) (lexical x _)))))))
(pass-if-peval
;; Constant folding: cons of #nil does not make list
(cons 1 #nil)
(apply (primitive cons) (const 1) (const '#nil)))
(pass-if-peval
;; Constant folding: cons
(begin (cons 1 2) #f)
(const #f))
(pass-if-peval
;; Constant folding: cons
(begin (cons (foo) 2) #f)
(begin (apply (toplevel foo)) (const #f)))
(pass-if-peval
;; Constant folding: cons
(if (cons 0 0) 1 2)
(const 1))
(pass-if-peval
;; Constant folding: car+cons
(car (cons 1 0))
(const 1))
(pass-if-peval
;; Constant folding: cdr+cons
(cdr (cons 1 0))
(const 0))
(pass-if-peval
;; Constant folding: car+cons, impure
(car (cons 1 (bar)))
(begin (apply (toplevel bar)) (const 1)))
(pass-if-peval
;; Constant folding: cdr+cons, impure
(cdr (cons (bar) 0))
(begin (apply (toplevel bar)) (const 0)))
(pass-if-peval
;; Constant folding: car+list
(car (list 1 0))
(const 1))
(pass-if-peval
;; Constant folding: cdr+list
(cdr (list 1 0))
(apply (primitive list) (const 0)))
(pass-if-peval
;; Constant folding: car+list, impure
(car (list 1 (bar)))
(begin (apply (toplevel bar)) (const 1)))
(pass-if-peval
;; Constant folding: cdr+list, impure
(cdr (list (bar) 0))
(begin (apply (toplevel bar)) (apply (primitive list) (const 0))))
(pass-if-peval
resolve-primitives
;; Non-constant guards get lexical bindings.
(dynamic-wind foo (lambda () bar) baz)
(let (pre post) (_ _) ((toplevel foo) (toplevel baz))
(dynwind (lexical pre _) (toplevel bar) (lexical post _))))
(pass-if-peval
resolve-primitives
;; Constant guards don't need lexical bindings.
(dynamic-wind (lambda () foo) (lambda () bar) (lambda () baz))
(dynwind
(lambda ()
(lambda-case
((() #f #f #f () ()) (toplevel foo))))
(toplevel bar)
(lambda ()
(lambda-case
((() #f #f #f () ()) (toplevel baz))))))
(pass-if-peval
resolve-primitives
;; Prompt is removed if tag is unreferenced
(let ((tag (make-prompt-tag)))
(call-with-prompt tag
(lambda () 1)
(lambda args args)))
(const 1))
(pass-if-peval
resolve-primitives
;; Prompt is removed if tag is unreferenced, with explicit stem
(let ((tag (make-prompt-tag "foo")))
(call-with-prompt tag
(lambda () 1)
(lambda args args)))
(const 1))
;; Handler lambda inlined
(pass-if-peval
resolve-primitives
(call-with-prompt tag
(lambda () 1)
(lambda (k x) x))
(prompt (toplevel tag)
(const 1)
(lambda-case
(((k x) #f #f #f () (_ _))
(lexical x _)))))
;; Handler toplevel not inlined
(pass-if-peval
resolve-primitives
(call-with-prompt tag
(lambda () 1)
handler)
(let (handler) (_) ((toplevel handler))
(prompt (toplevel tag)
(const 1)
(lambda-case
((() #f args #f () (_))
(apply (primitive @apply)
(lexical handler _)
(lexical args _)))))))
(pass-if-peval
resolve-primitives
;; `while' without `break' or `continue' has no prompts and gets its
;; condition folded. Unfortunately the outer `lp' does not yet get
;; elided.
(while #t #t)
(letrec (lp) (_)
((lambda _
(lambda-case
((() #f #f #f () ())
(letrec (loop) (_)
((lambda _
(lambda-case
((() #f #f #f () ())
(apply (lexical loop _))))))
(apply (lexical loop _)))))))
(apply (lexical lp _))))
(pass-if-peval
resolve-primitives
(lambda (a . rest)
(apply (lambda (x y) (+ x y))
a rest))
(lambda _
(lambda-case
(((x y) #f #f #f () (_ _))
_))))
(pass-if-peval resolve-primitives
(car '(1 2))
(const 1)))

View file

@ -69,38 +69,6 @@
(pat (guard guard-exp) #t)
(_ #f))))))
(define peval
;; The partial evaluator.
(@@ (language tree-il optimize) peval))
(define-syntax pass-if-peval
(syntax-rules (resolve-primitives)
((_ in pat)
(pass-if-peval in pat
(compile 'in #:from 'scheme #:to 'tree-il)))
((_ resolve-primitives in pat)
(pass-if-peval in pat
(expand-primitives!
(resolve-primitives!
(compile 'in #:from 'scheme #:to 'tree-il)
(current-module)))))
((_ in pat code)
(pass-if 'in
(let ((evaled (unparse-tree-il (peval code))))
(pmatch evaled
(pat #t)
(_ (pk 'peval-mismatch)
((@ (ice-9 pretty-print) pretty-print)
'in)
(newline)
((@ (ice-9 pretty-print) pretty-print)
evaled)
(newline)
((@ (ice-9 pretty-print) pretty-print)
'pat)
(newline)
#f)))))))
(with-test-prefix "tree-il->scheme"
(pass-if-tree-il->scheme
@ -656,939 +624,6 @@
;; reduce the entire thing to #t.
#:opts '(#:partial-eval? #f)))))
(with-test-prefix "partial evaluation"
(pass-if-peval
;; First order, primitive.
(let ((x 1) (y 2)) (+ x y))
(const 3))
(pass-if-peval
;; First order, thunk.
(let ((x 1) (y 2))
(let ((f (lambda () (+ x y))))
(f)))
(const 3))
(pass-if-peval resolve-primitives
;; First order, let-values (requires primitive expansion for
;; `call-with-values'.)
(let ((x 0))
(call-with-values
(lambda () (if (zero? x) (values 1 2) (values 3 4)))
(lambda (a b)
(+ a b))))
(const 3))
(pass-if-peval resolve-primitives
;; First order, multiple values.
(let ((x 1) (y 2))
(values x y))
(apply (primitive values) (const 1) (const 2)))
(pass-if-peval resolve-primitives
;; First order, multiple values truncated.
(let ((x (values 1 'a)) (y 2))
(values x y))
(apply (primitive values) (const 1) (const 2)))
(pass-if-peval resolve-primitives
;; First order, multiple values truncated.
(or (values 1 2) 3)
(const 1))
(pass-if-peval
;; First order, coalesced, mutability preserved.
(cons 0 (cons 1 (cons 2 (list 3 4 5))))
(apply (primitive list)
(const 0) (const 1) (const 2) (const 3) (const 4) (const 5)))
(pass-if-peval
;; First order, coalesced, immutability preserved.
(cons 0 (cons 1 (cons 2 '(3 4 5))))
(apply (primitive cons) (const 0)
(apply (primitive cons) (const 1)
(apply (primitive cons) (const 2)
(const (3 4 5))))))
;; These two tests doesn't work any more because we changed the way we
;; deal with constants -- now the algorithm will see a construction as
;; being bound to the lexical, so it won't propagate it. It can't
;; even propagate it in the case that it is only referenced once,
;; because:
;;
;; (let ((x (cons 1 2))) (lambda () x))
;;
;; is not the same as
;;
;; (lambda () (cons 1 2))
;;
;; Perhaps if we determined that not only was it only referenced once,
;; it was not closed over by a lambda, then we could propagate it, and
;; re-enable these two tests.
;;
#;
(pass-if-peval
;; First order, mutability preserved.
(let loop ((i 3) (r '()))
(if (zero? i)
r
(loop (1- i) (cons (cons i i) r))))
(apply (primitive list)
(apply (primitive cons) (const 1) (const 1))
(apply (primitive cons) (const 2) (const 2))
(apply (primitive cons) (const 3) (const 3))))
;;
;; See above.
#;
(pass-if-peval
;; First order, evaluated.
(let loop ((i 7)
(r '()))
(if (<= i 0)
(car r)
(loop (1- i) (cons i r))))
(const 1))
;; Instead here are tests for what happens for the above cases: they
;; unroll but they don't fold.
(pass-if-peval
(let loop ((i 3) (r '()))
(if (zero? i)
r
(loop (1- i) (cons (cons i i) r))))
(let (r) (_)
((apply (primitive list)
(apply (primitive cons) (const 3) (const 3))))
(let (r) (_)
((apply (primitive cons)
(apply (primitive cons) (const 2) (const 2))
(lexical r _)))
(apply (primitive cons)
(apply (primitive cons) (const 1) (const 1))
(lexical r _)))))
;; See above.
(pass-if-peval
(let loop ((i 4)
(r '()))
(if (<= i 0)
(car r)
(loop (1- i) (cons i r))))
(let (r) (_)
((apply (primitive list) (const 4)))
(let (r) (_)
((apply (primitive cons)
(const 3)
(lexical r _)))
(let (r) (_)
((apply (primitive cons)
(const 2)
(lexical r _)))
(let (r) (_)
((apply (primitive cons)
(const 1)
(lexical r _)))
(apply (primitive car)
(lexical r _)))))))
;; Static sums.
(pass-if-peval
(let loop ((l '(1 2 3 4)) (sum 0))
(if (null? l)
sum
(loop (cdr l) (+ sum (car l)))))
(const 10))
(pass-if-peval resolve-primitives
(let ((string->chars
(lambda (s)
(define (char-at n)
(string-ref s n))
(define (len)
(string-length s))
(let loop ((i 0))
(if (< i (len))
(cons (char-at i)
(loop (1+ i)))
'())))))
(string->chars "yo"))
(apply (primitive list) (const #\y) (const #\o)))
(pass-if-peval
;; Primitives in module-refs are resolved (the expansion of `pmatch'
;; below leads to calls to (@@ (system base pmatch) car) and
;; similar, which is what we want to be inlined.)
(begin
(use-modules (system base pmatch))
(pmatch '(a b c d)
((a b . _)
#t)))
(begin
(apply . _)
(const #t)))
(pass-if-peval
;; Mutability preserved.
((lambda (x y z) (list x y z)) 1 2 3)
(apply (primitive list) (const 1) (const 2) (const 3)))
(pass-if-peval
;; Don't propagate effect-free expressions that operate on mutable
;; objects.
(let* ((x (list 1))
(y (car x)))
(set-car! x 0)
y)
(let (x) (_) ((apply (primitive list) (const 1)))
(let (y) (_) ((apply (primitive car) (lexical x _)))
(begin
(apply (toplevel set-car!) (lexical x _) (const 0))
(lexical y _)))))
(pass-if-peval
;; Don't propagate effect-free expressions that operate on objects we
;; don't know about.
(let ((y (car x)))
(set-car! x 0)
y)
(let (y) (_) ((apply (primitive car) (toplevel x)))
(begin
(apply (toplevel set-car!) (toplevel x) (const 0))
(lexical y _))))
(pass-if-peval
;; Infinite recursion
((lambda (x) (x x)) (lambda (x) (x x)))
(let (x) (_)
((lambda _
(lambda-case
(((x) _ _ _ _ _)
(apply (lexical x _) (lexical x _))))))
(apply (lexical x _) (lexical x _))))
(pass-if-peval
;; First order, aliased primitive.
(let* ((x *) (y (x 1 2))) y)
(const 2))
(pass-if-peval
;; First order, shadowed primitive.
(begin
(define (+ x y) (pk x y))
(+ 1 2))
(begin
(define +
(lambda (_)
(lambda-case
(((x y) #f #f #f () (_ _))
(apply (toplevel pk) (lexical x _) (lexical y _))))))
(apply (toplevel +) (const 1) (const 2))))
(pass-if-peval
;; First-order, effects preserved.
(let ((x 2))
(do-something!)
x)
(begin
(apply (toplevel do-something!))
(const 2)))
(pass-if-peval
;; First order, residual bindings removed.
(let ((x 2) (y 3))
(* (+ x y) z))
(apply (primitive *) (const 5) (toplevel z)))
(pass-if-peval
;; First order, with lambda.
(define (foo x)
(define (bar z) (* z z))
(+ x (bar 3)))
(define foo
(lambda (_)
(lambda-case
(((x) #f #f #f () (_))
(apply (primitive +) (lexical x _) (const 9)))))))
(pass-if-peval
;; First order, with lambda inlined & specialized twice.
(let ((f (lambda (x y)
(+ (* x top) y)))
(x 2)
(y 3))
(+ (* x (f x y))
(f something x)))
(apply (primitive +)
(apply (primitive *)
(const 2)
(apply (primitive +) ; (f 2 3)
(apply (primitive *)
(const 2)
(toplevel top))
(const 3)))
(let (x) (_) ((toplevel something)) ; (f something 2)
;; `something' is not const, so preserve order of
;; effects with a lexical binding.
(apply (primitive +)
(apply (primitive *)
(lexical x _)
(toplevel top))
(const 2)))))
(pass-if-peval
;; First order, with lambda inlined & specialized 3 times.
(let ((f (lambda (x y) (if (> x 0) y x))))
(+ (f -1 0)
(f 1 0)
(f -1 y)
(f 2 y)
(f z y)))
(apply (primitive +)
(const -1) ; (f -1 0)
(const 0) ; (f 1 0)
(begin (toplevel y) (const -1)) ; (f -1 y)
(toplevel y) ; (f 2 y)
(let (x y) (_ _) ((toplevel z) (toplevel y)) ; (f z y)
(if (apply (primitive >) (lexical x _) (const 0))
(lexical y _)
(lexical x _)))))
(pass-if-peval
;; First order, conditional.
(let ((y 2))
(lambda (x)
(if (> y 0)
(display x)
'never-reached)))
(lambda ()
(lambda-case
(((x) #f #f #f () (_))
(apply (toplevel display) (lexical x _))))))
(pass-if-peval
;; First order, recursive procedure.
(letrec ((fibo (lambda (n)
(if (<= n 1)
n
(+ (fibo (- n 1))
(fibo (- n 2)))))))
(fibo 4))
(const 3))
(pass-if-peval
;; Don't propagate toplevel references, as intervening expressions
;; could alter their bindings.
(let ((x top))
(foo)
x)
(let (x) (_) ((toplevel top))
(begin
(apply (toplevel foo))
(lexical x _))))
(pass-if-peval
;; Higher order.
((lambda (f x)
(f (* (car x) (cadr x))))
(lambda (x)
(+ x 1))
'(2 3))
(const 7))
(pass-if-peval
;; Higher order with optional argument (default value).
((lambda* (f x #:optional (y 0))
(+ y (f (* (car x) (cadr x)))))
(lambda (x)
(+ x 1))
'(2 3))
(const 7))
(pass-if-peval
;; Higher order with optional argument (caller-supplied value).
((lambda* (f x #:optional (y 0))
(+ y (f (* (car x) (cadr x)))))
(lambda (x)
(+ x 1))
'(2 3)
35)
(const 42))
(pass-if-peval
;; Higher order with optional argument (side-effecting default
;; value).
((lambda* (f x #:optional (y (foo)))
(+ y (f (* (car x) (cadr x)))))
(lambda (x)
(+ x 1))
'(2 3))
(let (y) (_) ((apply (toplevel foo)))
(apply (primitive +) (lexical y _) (const 7))))
(pass-if-peval
;; Higher order with optional argument (caller-supplied value).
((lambda* (f x #:optional (y (foo)))
(+ y (f (* (car x) (cadr x)))))
(lambda (x)
(+ x 1))
'(2 3)
35)
(const 42))
(pass-if-peval
;; Higher order.
((lambda (f) (f x)) (lambda (x) x))
(toplevel x))
(pass-if-peval
;; Bug reported at
;; <https://lists.gnu.org/archive/html/bug-guile/2011-09/msg00019.html>.
(let ((fold (lambda (f g) (f (g top)))))
(fold 1+ (lambda (x) x)))
(apply (primitive 1+) (toplevel top)))
(pass-if-peval
;; Procedure not inlined when residual code contains recursive calls.
;; <http://debbugs.gnu.org/9542>
(letrec ((fold (lambda (f x3 b null? car cdr)
(if (null? x3)
b
(f (car x3) (fold f (cdr x3) b null? car cdr))))))
(fold * x 1 zero? (lambda (x1) x1) (lambda (x2) (- x2 1))))
(letrec (fold) (_) (_)
(apply (lexical fold _)
(primitive *)
(toplevel x)
(const 1)
(primitive zero?)
(lambda ()
(lambda-case
(((x1) #f #f #f () (_))
(lexical x1 _))))
(lambda ()
(lambda-case
(((x2) #f #f #f () (_))
(apply (primitive -) (lexical x2 _) (const 1))))))))
(pass-if "inlined lambdas are alpha-renamed"
;; In this example, `make-adder' is inlined more than once; thus,
;; they should use different gensyms for their arguments, because
;; the various optimization passes assume uniquely-named variables.
;;
;; Bug reported at
;; <https://lists.gnu.org/archive/html/bug-guile/2011-09/msg00019.html> and
;; <https://lists.gnu.org/archive/html/bug-guile/2011-09/msg00029.html>.
(pmatch (unparse-tree-il
(peval (compile
'(let ((make-adder
(lambda (x) (lambda (y) (+ x y)))))
(cons (make-adder 1) (make-adder 2)))
#:to 'tree-il)))
((apply (primitive cons)
(lambda ()
(lambda-case
(((y) #f #f #f () (,gensym1))
(apply (primitive +)
(const 1)
(lexical y ,ref1)))))
(lambda ()
(lambda-case
(((y) #f #f #f () (,gensym2))
(apply (primitive +)
(const 2)
(lexical y ,ref2))))))
(and (eq? gensym1 ref1)
(eq? gensym2 ref2)
(not (eq? gensym1 gensym2))))
(_ #f)))
(pass-if-peval
;; Unused letrec bindings are pruned.
(letrec ((a (lambda () (b)))
(b (lambda () (a)))
(c (lambda (x) x)))
(c 10))
(const 10))
(pass-if-peval
;; Unused letrec bindings are pruned.
(letrec ((a (foo!))
(b (lambda () (a)))
(c (lambda (x) x)))
(c 10))
(begin (apply (toplevel foo!))
(const 10)))
(pass-if-peval
;; Higher order, mutually recursive procedures.
(letrec ((even? (lambda (x)
(or (= 0 x)
(odd? (- x 1)))))
(odd? (lambda (x)
(not (even? x)))))
(and (even? 4) (odd? 7)))
(const #t))
(pass-if-peval
;; Memv with constants.
(memv 1 '(3 2 1))
(const '(1)))
(pass-if-peval
;; Memv with non-constant list. It could fold but doesn't
;; currently.
(memv 1 (list 3 2 1))
(apply (primitive memv)
(const 1)
(apply (primitive list) (const 3) (const 2) (const 1))))
(pass-if-peval
;; Memv with non-constant key, constant list, test context
(case foo
((3 2 1) 'a)
(else 'b))
(let (key) (_) ((toplevel foo))
(if (if (apply (primitive eqv?) (lexical key _) (const 3))
(const #t)
(if (apply (primitive eqv?) (lexical key _) (const 2))
(const #t)
(apply (primitive eqv?) (lexical key _) (const 1))))
(const a)
(const b))))
(pass-if-peval
;; Memv with non-constant key, empty list, test context. Currently
;; doesn't fold entirely.
(case foo
(() 'a)
(else 'b))
(begin (toplevel foo) (const b)))
;;
;; Below are cases where constant propagation should bail out.
;;
(pass-if-peval
;; Non-constant lexical is not propagated.
(let ((v (make-vector 6 #f)))
(lambda (n)
(vector-set! v n n)))
(let (v) (_)
((apply (toplevel make-vector) (const 6) (const #f)))
(lambda ()
(lambda-case
(((n) #f #f #f () (_))
(apply (toplevel vector-set!)
(lexical v _) (lexical n _) (lexical n _)))))))
(pass-if-peval
;; Mutable lexical is not propagated.
(let ((v (vector 1 2 3)))
(lambda ()
v))
(let (v) (_)
((apply (primitive vector) (const 1) (const 2) (const 3)))
(lambda ()
(lambda-case
((() #f #f #f () ())
(lexical v _))))))
(pass-if-peval
;; Lexical that is not provably pure is not inlined nor propagated.
(let* ((x (if (> p q) (frob!) (display 'chbouib)))
(y (* x 2)))
(+ x x y))
(let (x) (_) ((if (apply (primitive >) (toplevel p) (toplevel q))
(apply (toplevel frob!))
(apply (toplevel display) (const chbouib))))
(let (y) (_) ((apply (primitive *) (lexical x _) (const 2)))
(apply (primitive +)
(lexical x _) (lexical x _) (lexical y _)))))
(pass-if-peval
;; Non-constant arguments not propagated to lambdas.
((lambda (x y z)
(vector-set! x 0 0)
(set-car! y 0)
(set-cdr! z '()))
(vector 1 2 3)
(make-list 10)
(list 1 2 3))
(let (x y z) (_ _ _)
((apply (primitive vector) (const 1) (const 2) (const 3))
(apply (toplevel make-list) (const 10))
(apply (primitive list) (const 1) (const 2) (const 3)))
(begin
(apply (toplevel vector-set!)
(lexical x _) (const 0) (const 0))
(apply (toplevel set-car!)
(lexical y _) (const 0))
(apply (toplevel set-cdr!)
(lexical z _) (const ())))))
(pass-if-peval
(let ((foo top-foo) (bar top-bar))
(let* ((g (lambda (x y) (+ x y)))
(f (lambda (g x) (g x x))))
(+ (f g foo) (f g bar))))
(let (foo bar) (_ _) ((toplevel top-foo) (toplevel top-bar))
(apply (primitive +)
(apply (primitive +) (lexical foo _) (lexical foo _))
(apply (primitive +) (lexical bar _) (lexical bar _)))))
(pass-if-peval
;; Fresh objects are not turned into constants, nor are constants
;; turned into fresh objects.
(let* ((c '(2 3))
(x (cons 1 c))
(y (cons 0 x)))
y)
(let (x) (_) ((apply (primitive cons) (const 1) (const (2 3))))
(apply (primitive cons) (const 0) (lexical x _))))
(pass-if-peval
;; Bindings mutated.
(let ((x 2))
(set! x 3)
x)
(let (x) (_) ((const 2))
(begin
(set! (lexical x _) (const 3))
(lexical x _))))
(pass-if-peval
;; Bindings mutated.
(letrec ((x 0)
(f (lambda ()
(set! x (+ 1 x))
x)))
(frob f) ; may mutate `x'
x)
(letrec (x) (_) ((const 0))
(begin
(apply (toplevel frob) (lambda _ _))
(lexical x _))))
(pass-if-peval
;; Bindings mutated.
(letrec ((f (lambda (x)
(set! f (lambda (_) x))
x)))
(f 2))
(letrec _ . _))
(pass-if-peval
;; Bindings possibly mutated.
(let ((x (make-foo)))
(frob! x) ; may mutate `x'
x)
(let (x) (_) ((apply (toplevel make-foo)))
(begin
(apply (toplevel frob!) (lexical x _))
(lexical x _))))
(pass-if-peval
;; Inlining stops at recursive calls with dynamic arguments.
(let loop ((x x))
(if (< x 0) x (loop (1- x))))
(letrec (loop) (_) ((lambda (_)
(lambda-case
(((x) #f #f #f () (_))
(if _ _
(apply (lexical loop _)
(apply (primitive 1-)
(lexical x _))))))))
(apply (lexical loop _) (toplevel x))))
(pass-if-peval
;; Recursion on the 2nd argument is fully evaluated.
(let ((x (top)))
(let loop ((x x) (y 10))
(if (> y 0)
(loop x (1- y))
(foo x y))))
(let (x) (_) ((apply (toplevel top)))
(apply (toplevel foo) (lexical x _) (const 0))))
(pass-if-peval
;; Inlining aborted when residual code contains recursive calls.
;;
;; <http://debbugs.gnu.org/9542>
(let loop ((x x) (y 0))
(if (> y 0)
(loop (1- x) (1- y))
(if (< x 0)
x
(loop (1+ x) (1+ y)))))
(letrec (loop) (_) ((lambda (_)
(lambda-case
(((x y) #f #f #f () (_ _))
(if (apply (primitive >)
(lexical y _) (const 0))
_ _)))))
(apply (lexical loop _) (toplevel x) (const 0))))
(pass-if-peval
;; Infinite recursion: `peval' gives up and leaves it as is.
(letrec ((f (lambda (x) (g (1- x))))
(g (lambda (x) (h (1+ x))))
(h (lambda (x) (f x))))
(f 0))
(letrec _ . _))
(pass-if-peval
;; Infinite recursion: all the arguments to `loop' are static, but
;; unrolling it would lead `peval' to enter an infinite loop.
(let loop ((x 0))
(and (< x top)
(loop (1+ x))))
(letrec (loop) (_) ((lambda . _))
(apply (lexical loop _) (const 0))))
(pass-if-peval
;; This test checks that the `start' binding is indeed residualized.
;; See the `referenced?' procedure in peval's `prune-bindings'.
(let ((pos 0))
(set! pos 1) ;; Cause references to `pos' to residualize.
(let ((here (let ((start pos)) (lambda () start))))
(here)))
(let (pos) (_) ((const 0))
(begin
(set! (lexical pos _) (const 1))
(let (here) (_) (_)
(apply (lexical here _))))))
(pass-if-peval
;; FIXME: should this one residualize the binding?
(letrec ((a a))
1)
(const 1))
(pass-if-peval
;; This is a fun one for peval to handle.
(letrec ((a a))
a)
(letrec (a) (_) ((lexical a _))
(lexical a _)))
(pass-if-peval
;; Another interesting recursive case.
(letrec ((a b) (b a))
a)
(letrec (a) (_) ((lexical a _))
(lexical a _)))
(pass-if-peval
;; Another pruning case, that `a' is residualized.
(letrec ((a (lambda () (a)))
(b (lambda () (a)))
(c (lambda (x) x)))
(let ((d (foo b)))
(c d)))
;; "b c a" is the current order that we get with unordered letrec,
;; but it's not important to this test, so if it changes, just adapt
;; the test.
(letrec (b c a) (_ _ _)
((lambda _
(lambda-case
((() #f #f #f () ())
(apply (lexical a _)))))
(lambda _
(lambda-case
(((x) #f #f #f () (_))
(lexical x _))))
(lambda _
(lambda-case
((() #f #f #f () ())
(apply (lexical a _))))))
(let (d)
(_)
((apply (toplevel foo) (lexical b _)))
(apply (lexical c _)
(lexical d _)))))
(pass-if-peval
;; In this case, we can prune the bindings. `a' ends up being copied
;; because it is only referenced once in the source program. Oh
;; well.
(letrec* ((a (lambda (x) (top x)))
(b (lambda () a)))
(foo (b) (b)))
(apply (toplevel foo)
(lambda _
(lambda-case
(((x) #f #f #f () (_))
(apply (toplevel top) (lexical x _)))))
(lambda _
(lambda-case
(((x) #f #f #f () (_))
(apply (toplevel top) (lexical x _)))))))
(pass-if-peval
;; Constant folding: cons of #nil does not make list
(cons 1 #nil)
(apply (primitive cons) (const 1) (const '#nil)))
(pass-if-peval
;; Constant folding: cons
(begin (cons 1 2) #f)
(const #f))
(pass-if-peval
;; Constant folding: cons
(begin (cons (foo) 2) #f)
(begin (apply (toplevel foo)) (const #f)))
(pass-if-peval
;; Constant folding: cons
(if (cons 0 0) 1 2)
(const 1))
(pass-if-peval
;; Constant folding: car+cons
(car (cons 1 0))
(const 1))
(pass-if-peval
;; Constant folding: cdr+cons
(cdr (cons 1 0))
(const 0))
(pass-if-peval
;; Constant folding: car+cons, impure
(car (cons 1 (bar)))
(begin (apply (toplevel bar)) (const 1)))
(pass-if-peval
;; Constant folding: cdr+cons, impure
(cdr (cons (bar) 0))
(begin (apply (toplevel bar)) (const 0)))
(pass-if-peval
;; Constant folding: car+list
(car (list 1 0))
(const 1))
(pass-if-peval
;; Constant folding: cdr+list
(cdr (list 1 0))
(apply (primitive list) (const 0)))
(pass-if-peval
;; Constant folding: car+list, impure
(car (list 1 (bar)))
(begin (apply (toplevel bar)) (const 1)))
(pass-if-peval
;; Constant folding: cdr+list, impure
(cdr (list (bar) 0))
(begin (apply (toplevel bar)) (apply (primitive list) (const 0))))
(pass-if-peval
resolve-primitives
;; Non-constant guards get lexical bindings.
(dynamic-wind foo (lambda () bar) baz)
(let (pre post) (_ _) ((toplevel foo) (toplevel baz))
(dynwind (lexical pre _) (toplevel bar) (lexical post _))))
(pass-if-peval
resolve-primitives
;; Constant guards don't need lexical bindings.
(dynamic-wind (lambda () foo) (lambda () bar) (lambda () baz))
(dynwind
(lambda ()
(lambda-case
((() #f #f #f () ()) (toplevel foo))))
(toplevel bar)
(lambda ()
(lambda-case
((() #f #f #f () ()) (toplevel baz))))))
(pass-if-peval
resolve-primitives
;; Prompt is removed if tag is unreferenced
(let ((tag (make-prompt-tag)))
(call-with-prompt tag
(lambda () 1)
(lambda args args)))
(const 1))
(pass-if-peval
resolve-primitives
;; Prompt is removed if tag is unreferenced, with explicit stem
(let ((tag (make-prompt-tag "foo")))
(call-with-prompt tag
(lambda () 1)
(lambda args args)))
(const 1))
;; Handler lambda inlined
(pass-if-peval
resolve-primitives
(call-with-prompt tag
(lambda () 1)
(lambda (k x) x))
(prompt (toplevel tag)
(const 1)
(lambda-case
(((k x) #f #f #f () (_ _))
(lexical x _)))))
;; Handler toplevel not inlined
(pass-if-peval
resolve-primitives
(call-with-prompt tag
(lambda () 1)
handler)
(let (handler) (_) ((toplevel handler))
(prompt (toplevel tag)
(const 1)
(lambda-case
((() #f args #f () (_))
(apply (primitive @apply)
(lexical handler _)
(lexical args _)))))))
(pass-if-peval
resolve-primitives
;; `while' without `break' or `continue' has no prompts and gets its
;; condition folded. Unfortunately the outer `lp' does not yet get
;; elided.
(while #t #t)
(letrec (lp) (_)
((lambda _
(lambda-case
((() #f #f #f () ())
(letrec (loop) (_)
((lambda _
(lambda-case
((() #f #f #f () ())
(apply (lexical loop _))))))
(apply (lexical loop _)))))))
(apply (lexical lp _))))
(pass-if-peval
resolve-primitives
(lambda (a . rest)
(apply (lambda (x y) (+ x y))
a rest))
(lambda _
(lambda-case
(((x y) #f #f #f () (_ _))
_))))
(pass-if-peval resolve-primitives
((@ (guile) car) '(1 2))
(const 1))
(pass-if-peval resolve-primitives
((@@ (guile) car) '(1 2))
(const 1)))
(with-test-prefix "tree-il-fold"