1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-05-14 17:50:22 +02:00

Remove tiny objects from mark-sweep

This commit is contained in:
Andy Wingo 2022-03-11 11:18:05 +01:00
parent f57a1b8a55
commit df9edfdff2

View file

@ -25,7 +25,7 @@ STATIC_ASSERT_EQ(LARGE_OBJECT_THRESHOLD,
// There are small object pages for allocations of these sizes.
#define FOR_EACH_SMALL_OBJECT_GRANULES(M) \
M(2) M(3) M(4) M(5) M(6) M(8) M(10) M(16) M(32)
M(1) M(2) M(3) M(4) M(5) M(6) M(8) M(10) M(16) M(32)
enum small_object_size {
#define SMALL_OBJECT_GRANULE_SIZE(i) SMALL_OBJECT_##i,
@ -43,7 +43,7 @@ static const uint8_t small_object_granule_sizes[] =
};
static const enum small_object_size small_object_sizes_for_granules[LARGE_OBJECT_GRANULE_THRESHOLD + 2] = {
NOT_SMALL_OBJECT, NOT_SMALL_OBJECT, SMALL_OBJECT_2, SMALL_OBJECT_3,
SMALL_OBJECT_1, SMALL_OBJECT_1, SMALL_OBJECT_2, SMALL_OBJECT_3,
SMALL_OBJECT_4, SMALL_OBJECT_5, SMALL_OBJECT_6, SMALL_OBJECT_8,
SMALL_OBJECT_8, SMALL_OBJECT_10, SMALL_OBJECT_10, SMALL_OBJECT_16,
SMALL_OBJECT_16, SMALL_OBJECT_16, SMALL_OBJECT_16, SMALL_OBJECT_16,
@ -67,80 +67,41 @@ static inline size_t size_to_granules(size_t size) {
return (size + GRANULE_SIZE - 1) >> GRANULE_SIZE_LOG_2;
}
// Object kind is stored in low bits of first word of all heap objects
// (allocated or free).
enum gcobj_kind { GCOBJ_TINY, GCOBJ };
// gcobj_kind is in the low bit of tag.
static const uintptr_t gcobj_kind_bit = (1 << 0);
static inline enum gcobj_kind tag_gcobj_kind(uintptr_t tag) {
return tag & gcobj_kind_bit;
}
// Alloc kind is in bits 1-8, for live objects.
// Alloc kind is in bits 0-7, for live objects.
static const uintptr_t gcobj_alloc_kind_mask = 0xff;
static const uintptr_t gcobj_alloc_kind_shift = 1;
static const uintptr_t gcobj_alloc_kind_shift = 0;
static inline uint8_t tag_live_alloc_kind(uintptr_t tag) {
return (tag >> gcobj_alloc_kind_shift) & gcobj_alloc_kind_mask;
}
// For free objects, bits 1 and up are free. Non-tiny objects store the
// object size in granules there.
static const uintptr_t gcobj_free_granules_shift = 1;
static inline uintptr_t tag_free_granules(uintptr_t tag) {
return tag >> gcobj_free_granules_shift;
static inline uintptr_t tag_live(uint8_t alloc_kind) {
return ((uintptr_t)alloc_kind << gcobj_alloc_kind_shift);
}
static inline uintptr_t tag_free(enum gcobj_kind kind, size_t granules) {
return kind | (granules << gcobj_free_granules_shift);
}
static inline uintptr_t tag_live(enum gcobj_kind kind, uint8_t alloc_kind) {
return kind | ((uintptr_t)alloc_kind << gcobj_alloc_kind_shift);
}
static inline uintptr_t tag_free_tiny(void) {
return tag_free(GCOBJ_TINY, 0);
}
// The gcobj_free_tiny and gcobj_free structs define the fields in free
// tiny (1-granule), and non-tiny (2 granules and up) objects.
struct gcobj_free_tiny {
// Low 2 bits of tag are GCOBJ_TINY, which is 0. Bit 2 is live bit;
// never set for free objects. Therefore for free objects, the
// 8-byte-aligned next pointer can alias the tag.
union {
uintptr_t tag;
struct gcobj_free_tiny *next;
};
};
// Objects from 2 granules and up.
struct gcobj_free {
// For free objects, we store the granule size in the tag's payload.
// Next pointer only valid for objects on small freelist.
uintptr_t tag;
struct gcobj_free *next;
};
// Objects larger than LARGE_OBJECT_GRANULE_THRESHOLD.
struct gcobj_free_large {
struct gcobj_free_large *next;
size_t granules;
};
struct gcobj {
union {
uintptr_t tag;
struct gcobj_free_tiny free_tiny;
struct gcobj_free free;
struct gcobj_free_large free_large;
uintptr_t words[0];
void *pointers[0];
};
};
static inline enum gcobj_kind gcobj_kind(struct gcobj *obj) {
return tag_gcobj_kind (obj->tag);
}
struct context {
// Segregated freelists of tiny and small objects.
struct gcobj_free_tiny *tiny_objects;
// Segregated freelists of small objects.
struct gcobj_free *small_objects[SMALL_OBJECT_SIZES];
// Unordered list of large objects.
struct gcobj_free *large_objects;
struct gcobj_free_large *large_objects;
uintptr_t base;
uint8_t *mark_bytes;
uintptr_t heap_base;
@ -197,7 +158,6 @@ static void process(struct context *cx, struct gcobj *obj) {
}
static void clear_freelists(struct context *cx) {
cx->tiny_objects = NULL;
for (int i = 0; i < SMALL_OBJECT_SIZES; i++)
cx->small_objects[i] = NULL;
cx->large_objects = NULL;
@ -216,25 +176,11 @@ static void collect(struct context *cx) {
cx->count++;
}
static void push_free_tiny(struct gcobj_free_tiny **loc,
struct gcobj_free_tiny *obj) {
// Rely on obj->next having low bits being 0, indicating a non-live
// tiny object.
static void push_free(struct gcobj_free **loc, struct gcobj_free *obj) {
obj->next = *loc;
*loc = obj;
}
static void push_free(struct gcobj_free **loc, struct gcobj_free *obj,
size_t granules) {
obj->tag = tag_free(GCOBJ, granules);
obj->next = *loc;
*loc = obj;
}
static void push_tiny(struct context *cx, void *obj) {
push_free_tiny(&cx->tiny_objects, obj);
}
static void push_small(struct context *cx, void *region,
enum small_object_size kind, size_t region_granules) {
uintptr_t addr = (uintptr_t) region;
@ -242,39 +188,41 @@ static void push_small(struct context *cx, void *region,
size_t granules = small_object_granule_sizes[kind];
struct gcobj_free **loc = get_small_object_freelist(cx, kind);
while (granules <= region_granules) {
push_free(loc, (struct gcobj_free*) addr, granules);
push_free(loc, (struct gcobj_free*) addr);
region_granules -= granules;
addr += granules * GRANULE_SIZE;
}
if (region_granules == 1) {
// Region is actually a tiny object.
push_free_tiny(&cx->tiny_objects, (struct gcobj_free_tiny *)addr);
return;
}
// Fit any remaining granules into smaller freelists.
kind--;
}
}
static void push_large(struct context *cx, void *region, size_t granules) {
push_free(&cx->large_objects, region, granules);
struct gcobj_free_large *large = region;
large->next = cx->large_objects;
large->granules = granules;
cx->large_objects = large;
}
static void reclaim(struct context *cx, void *obj, size_t granules) {
if (granules == 1) {
push_tiny(cx, obj);
} else if (granules <= LARGE_OBJECT_GRANULE_THRESHOLD) {
if (granules <= LARGE_OBJECT_GRANULE_THRESHOLD)
push_small(cx, obj, SMALL_OBJECT_SIZES - 1, granules);
} else {
else
push_large(cx, obj, granules);
}
}
static void split_large_object(struct context *cx,
struct gcobj_free *large,
struct gcobj_free_large *large,
size_t granules) {
size_t large_granules = tag_free_granules(large->tag);
size_t large_granules = large->granules;
ASSERT(large_granules >= granules);
ASSERT(granules >= LARGE_OBJECT_GRANULE_THRESHOLD);
// Invariant: all words in LARGE are 0 except the two header words.
// LARGE is off the freelist. We return a block of cleared memory, so
// clear those fields now.
large->next = NULL;
large->granules = 0;
if (large_granules == granules)
return;
@ -282,15 +230,12 @@ static void split_large_object(struct context *cx,
reclaim(cx, tail, large_granules - granules);
}
static void unlink_large_object(struct gcobj_free **prev,
struct gcobj_free *large) {
static void unlink_large_object(struct gcobj_free_large **prev,
struct gcobj_free_large *large) {
*prev = large->next;
}
static size_t live_object_granules(struct gcobj *obj) {
enum gcobj_kind size_kind = tag_gcobj_kind(obj->tag);
if (size_kind == GCOBJ_TINY)
return 1;
size_t bytes;
switch (tag_live_alloc_kind (obj->tag)) {
#define COMPUTE_SIZE(name, Name, NAME) \
@ -369,18 +314,18 @@ static int sweep(struct context *cx) {
static void* allocate_large(struct context *cx, enum alloc_kind kind,
size_t granules) {
int swept_from_beginning = 0;
struct gcobj_free *already_scanned = NULL;
struct gcobj_free_large *already_scanned = NULL;
while (1) {
do {
struct gcobj_free **prev = &cx->large_objects;
for (struct gcobj_free *large = cx->large_objects;
struct gcobj_free_large **prev = &cx->large_objects;
for (struct gcobj_free_large *large = cx->large_objects;
large != already_scanned;
prev = &large->next, large = large->next) {
if (tag_free_granules(large->tag) >= granules) {
if (large->granules >= granules) {
unlink_large_object(prev, large);
split_large_object(cx, large, granules);
large->tag = tag_live(GCOBJ, kind);
large->next = NULL;
struct gcobj *obj = (struct gcobj *)large;
obj->tag = tag_live(kind);
return large;
}
}
@ -419,7 +364,7 @@ static void fill_small(struct context *cx, enum small_object_size kind) {
}
// Otherwise if there is a large object, take and split it.
struct gcobj_free *large = cx->large_objects;
struct gcobj_free_large *large = cx->large_objects;
if (large) {
unlink_large_object(&cx->large_objects, large);
split_large_object(cx, large, LARGE_OBJECT_GRANULE_THRESHOLD);
@ -447,38 +392,14 @@ static inline void* allocate_small(struct context *cx,
fill_small(cx, small_kind);
struct gcobj_free *ret = *loc;
*loc = ret->next;
ret->tag = tag_live(GCOBJ, alloc_kind);
ret->next = NULL;
return (void *) ret;
}
static inline void fill_tiny(struct context *cx) {
struct gcobj_free **loc = get_small_object_freelist(cx, SMALL_OBJECT_2);
if (!*loc)
fill_small(cx, SMALL_OBJECT_2);
struct gcobj_free *small = *loc;
*loc = small->next;
struct gcobj_free_tiny *ret = (struct gcobj_free_tiny *)small;
reclaim(cx, ret, 1);
reclaim(cx, ret + 1, 1);
}
static inline void* allocate_tiny(struct context *cx,
enum alloc_kind alloc_kind) {
if (!cx->tiny_objects)
fill_tiny(cx);
struct gcobj_free_tiny *ret = cx->tiny_objects;
cx->tiny_objects = ret->next;
ret->tag = tag_live(GCOBJ_TINY, alloc_kind);
return ret;
struct gcobj *obj = (struct gcobj *)ret;
obj->tag = tag_live(alloc_kind);
return obj;
}
static inline void* allocate(struct context *cx, enum alloc_kind kind,
size_t size) {
size_t granules = size_to_granules(size);
if (granules <= 1)
return allocate_tiny(cx, kind);
if (granules <= LARGE_OBJECT_GRANULE_THRESHOLD)
return allocate_small(cx, kind, granules_to_small_object_size(granules));
return allocate_large(cx, kind, granules);