mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-04-30 20:00:19 +02:00
reindent
* module/language/elisp/bindings.scm: * module/language/elisp/compile-tree-il.scm: * module/language/elisp/lexer.scm: * module/language/elisp/parser.scm: * module/language/elisp/runtime.scm: * module/language/elisp/runtime/function-slot.scm: * module/language/elisp/runtime/macro-slot.scm: * module/language/elisp/spec.scm: Reindent. Signed-off-by: Andy Wingo <wingo@pobox.com>
This commit is contained in:
parent
c983a199d8
commit
f4e5e4114d
8 changed files with 1030 additions and 808 deletions
|
@ -20,8 +20,10 @@
|
|||
|
||||
(define-module (language elisp bindings)
|
||||
#:export (make-bindings
|
||||
mark-global-needed! map-globals-needed
|
||||
with-lexical-bindings with-dynamic-bindings
|
||||
mark-global-needed!
|
||||
map-globals-needed
|
||||
with-lexical-bindings
|
||||
with-dynamic-bindings
|
||||
get-lexical-binding))
|
||||
|
||||
;;; This module defines routines to handle analysis of symbol bindings
|
||||
|
@ -40,8 +42,7 @@
|
|||
;;; Record type used to hold the data necessary.
|
||||
|
||||
(define bindings-type
|
||||
(make-record-type 'bindings
|
||||
'(needed-globals lexical-bindings)))
|
||||
(make-record-type 'bindings '(needed-globals lexical-bindings)))
|
||||
|
||||
;;; Construct an 'empty' instance of the bindings data structure to be
|
||||
;;; used at the start of a fresh compilation.
|
||||
|
@ -53,45 +54,50 @@
|
|||
;;; slot-module.
|
||||
|
||||
(define (mark-global-needed! bindings sym module)
|
||||
(let* ((old-needed ((record-accessor bindings-type 'needed-globals) bindings))
|
||||
(let* ((old-needed ((record-accessor bindings-type 'needed-globals)
|
||||
bindings))
|
||||
(old-in-module (or (assoc-ref old-needed module) '()))
|
||||
(new-in-module (if (memq sym old-in-module)
|
||||
old-in-module
|
||||
(cons sym old-in-module)))
|
||||
old-in-module
|
||||
(cons sym old-in-module)))
|
||||
(new-needed (assoc-set! old-needed module new-in-module)))
|
||||
((record-modifier bindings-type 'needed-globals) bindings new-needed)))
|
||||
((record-modifier bindings-type 'needed-globals)
|
||||
bindings
|
||||
new-needed)))
|
||||
|
||||
;;; Cycle through all globals needed in order to generate the code for
|
||||
;;; their creation or some other analysis.
|
||||
|
||||
(define (map-globals-needed bindings proc)
|
||||
(let ((needed ((record-accessor bindings-type 'needed-globals) bindings)))
|
||||
(let ((needed ((record-accessor bindings-type 'needed-globals)
|
||||
bindings)))
|
||||
(let iterate-modules ((mod-tail needed)
|
||||
(mod-result '()))
|
||||
(if (null? mod-tail)
|
||||
mod-result
|
||||
(iterate-modules
|
||||
(cdr mod-tail)
|
||||
(let* ((aentry (car mod-tail))
|
||||
(module (car aentry))
|
||||
(symbols (cdr aentry)))
|
||||
(let iterate-symbols ((sym-tail symbols)
|
||||
(sym-result mod-result))
|
||||
(if (null? sym-tail)
|
||||
sym-result
|
||||
(iterate-symbols (cdr sym-tail)
|
||||
(cons (proc module (car sym-tail))
|
||||
sym-result))))))))))
|
||||
mod-result
|
||||
(iterate-modules
|
||||
(cdr mod-tail)
|
||||
(let* ((aentry (car mod-tail))
|
||||
(module (car aentry))
|
||||
(symbols (cdr aentry)))
|
||||
(let iterate-symbols ((sym-tail symbols)
|
||||
(sym-result mod-result))
|
||||
(if (null? sym-tail)
|
||||
sym-result
|
||||
(iterate-symbols (cdr sym-tail)
|
||||
(cons (proc module (car sym-tail))
|
||||
sym-result))))))))))
|
||||
|
||||
;;; Get the current lexical binding (gensym it should refer to in the
|
||||
;;; current scope) for a symbol or #f if it is dynamically bound.
|
||||
|
||||
(define (get-lexical-binding bindings sym)
|
||||
(let* ((lex ((record-accessor bindings-type 'lexical-bindings) bindings))
|
||||
(let* ((lex ((record-accessor bindings-type 'lexical-bindings)
|
||||
bindings))
|
||||
(slot (hash-ref lex sym #f)))
|
||||
(if slot
|
||||
(fluid-ref slot)
|
||||
#f)))
|
||||
(fluid-ref slot)
|
||||
#f)))
|
||||
|
||||
;;; Establish a binding or mark a symbol as dynamically bound for the
|
||||
;;; extent of calling proc.
|
||||
|
@ -99,25 +105,25 @@
|
|||
(define (with-symbol-bindings bindings syms targets proc)
|
||||
(if (or (not (list? syms))
|
||||
(not (and-map symbol? syms)))
|
||||
(error "can't bind non-symbols" syms))
|
||||
(let ((lex ((record-accessor bindings-type 'lexical-bindings) bindings)))
|
||||
(error "can't bind non-symbols" syms))
|
||||
(let ((lex ((record-accessor bindings-type 'lexical-bindings)
|
||||
bindings)))
|
||||
(for-each (lambda (sym)
|
||||
(if (not (hash-ref lex sym))
|
||||
(hash-set! lex sym (make-fluid))))
|
||||
(hash-set! lex sym (make-fluid))))
|
||||
syms)
|
||||
(with-fluids* (map (lambda (sym)
|
||||
(hash-ref lex sym))
|
||||
syms)
|
||||
(with-fluids* (map (lambda (sym) (hash-ref lex sym)) syms)
|
||||
targets
|
||||
proc)))
|
||||
|
||||
(define (with-lexical-bindings bindings syms targets proc)
|
||||
(if (or (not (list? targets))
|
||||
(not (and-map symbol? targets)))
|
||||
(error "invalid targets for lexical binding" targets)
|
||||
(with-symbol-bindings bindings syms targets proc)))
|
||||
(error "invalid targets for lexical binding" targets)
|
||||
(with-symbol-bindings bindings syms targets proc)))
|
||||
|
||||
(define (with-dynamic-bindings bindings syms proc)
|
||||
(with-symbol-bindings bindings
|
||||
syms (map (lambda (el) #f) syms)
|
||||
syms
|
||||
(map (lambda (el) #f) syms)
|
||||
proc))
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -60,8 +60,8 @@
|
|||
|
||||
(define (real-character chr)
|
||||
(if (< chr 256)
|
||||
(integer->char chr)
|
||||
#\nul))
|
||||
(integer->char chr)
|
||||
#\nul))
|
||||
|
||||
;;; Return the control modified version of a character. This is not
|
||||
;;; just setting a modifier bit, because ASCII conrol characters must be
|
||||
|
@ -71,11 +71,11 @@
|
|||
(define (add-control chr)
|
||||
(let ((real (real-character chr)))
|
||||
(if (char-alphabetic? real)
|
||||
(- (char->integer (char-upcase real)) (char->integer #\@))
|
||||
(case real
|
||||
((#\?) 127)
|
||||
((#\@) 0)
|
||||
(else (set-char-bit chr 26))))))
|
||||
(- (char->integer (char-upcase real)) (char->integer #\@))
|
||||
(case real
|
||||
((#\?) 127)
|
||||
((#\@) 0)
|
||||
(else (set-char-bit chr 26))))))
|
||||
|
||||
;;; Parse a charcode given in some base, basically octal or hexadecimal
|
||||
;;; are needed. A requested number of digits can be given (#f means it
|
||||
|
@ -88,26 +88,29 @@
|
|||
(let iterate ((result 0)
|
||||
(procdigs 0))
|
||||
(if (and digits (>= procdigs digits))
|
||||
result
|
||||
(let* ((cur (read-char port))
|
||||
(value (cond
|
||||
((char-numeric? cur)
|
||||
(- (char->integer cur) (char->integer #\0)))
|
||||
((char-alphabetic? cur)
|
||||
(let ((code (- (char->integer (char-upcase cur))
|
||||
(char->integer #\A))))
|
||||
(if (< code 0)
|
||||
#f
|
||||
(+ code 10))))
|
||||
(else #f)))
|
||||
(valid (and value (< value base))))
|
||||
(if (not valid)
|
||||
(if (or (not digits) early-return)
|
||||
(begin
|
||||
(unread-char cur port)
|
||||
result)
|
||||
(lexer-error port "invalid digit in escape-code" base cur))
|
||||
(iterate (+ (* result base) value) (1+ procdigs)))))))
|
||||
result
|
||||
(let* ((cur (read-char port))
|
||||
(value (cond
|
||||
((char-numeric? cur)
|
||||
(- (char->integer cur) (char->integer #\0)))
|
||||
((char-alphabetic? cur)
|
||||
(let ((code (- (char->integer (char-upcase cur))
|
||||
(char->integer #\A))))
|
||||
(if (< code 0)
|
||||
#f
|
||||
(+ code 10))))
|
||||
(else #f)))
|
||||
(valid (and value (< value base))))
|
||||
(if (not valid)
|
||||
(if (or (not digits) early-return)
|
||||
(begin
|
||||
(unread-char cur port)
|
||||
result)
|
||||
(lexer-error port
|
||||
"invalid digit in escape-code"
|
||||
base
|
||||
cur))
|
||||
(iterate (+ (* result base) value) (1+ procdigs)))))))
|
||||
|
||||
;;; Read a character and process escape-sequences when necessary. The
|
||||
;;; special in-string argument defines if this character is part of a
|
||||
|
@ -116,53 +119,63 @@
|
|||
;;; characters.
|
||||
|
||||
(define basic-escape-codes
|
||||
'((#\a . 7) (#\b . 8) (#\t . 9)
|
||||
(#\n . 10) (#\v . 11) (#\f . 12) (#\r . 13)
|
||||
(#\e . 27) (#\s . 32) (#\d . 127)))
|
||||
'((#\a . 7)
|
||||
(#\b . 8)
|
||||
(#\t . 9)
|
||||
(#\n . 10)
|
||||
(#\v . 11)
|
||||
(#\f . 12)
|
||||
(#\r . 13)
|
||||
(#\e . 27)
|
||||
(#\s . 32)
|
||||
(#\d . 127)))
|
||||
|
||||
(define (get-character port in-string)
|
||||
(let ((meta-bits `((#\A . 22) (#\s . 23) (#\H . 24)
|
||||
(#\S . 25) (#\M . ,(if in-string 7 27))))
|
||||
(let ((meta-bits `((#\A . 22)
|
||||
(#\s . 23)
|
||||
(#\H . 24)
|
||||
(#\S . 25)
|
||||
(#\M . ,(if in-string 7 27))))
|
||||
(cur (read-char port)))
|
||||
(if (char=? cur #\\)
|
||||
;; Handle an escape-sequence.
|
||||
(let* ((escaped (read-char port))
|
||||
(esc-code (assq-ref basic-escape-codes escaped))
|
||||
(meta (assq-ref meta-bits escaped)))
|
||||
(cond
|
||||
;; Meta-check must be before esc-code check because \s- must
|
||||
;; be recognized as the super-meta modifier if a - follows.
|
||||
;; If not, it will be caught as \s -> space escape code.
|
||||
((and meta (is-char? (peek-char port) #\-))
|
||||
(if (not (char=? (read-char port) #\-))
|
||||
(error "expected - after control sequence"))
|
||||
(set-char-bit (get-character port in-string) meta))
|
||||
;; One of the basic control character escape names?
|
||||
(esc-code esc-code)
|
||||
;; Handle \ddd octal code if it is one.
|
||||
((and (char>=? escaped #\0) (char<? escaped #\8))
|
||||
(begin
|
||||
(unread-char escaped port)
|
||||
(charcode-escape port 8 3 #t)))
|
||||
;; Check for some escape-codes directly or otherwise use the
|
||||
;; escaped character literally.
|
||||
(else
|
||||
;; Handle an escape-sequence.
|
||||
(let* ((escaped (read-char port))
|
||||
(esc-code (assq-ref basic-escape-codes escaped))
|
||||
(meta (assq-ref meta-bits escaped)))
|
||||
(cond
|
||||
;; Meta-check must be before esc-code check because \s- must
|
||||
;; be recognized as the super-meta modifier if a - follows.
|
||||
;; If not, it will be caught as \s -> space escape code.
|
||||
((and meta (is-char? (peek-char port) #\-))
|
||||
(if (not (char=? (read-char port) #\-))
|
||||
(error "expected - after control sequence"))
|
||||
(set-char-bit (get-character port in-string) meta))
|
||||
;; One of the basic control character escape names?
|
||||
(esc-code esc-code)
|
||||
;; Handle \ddd octal code if it is one.
|
||||
((and (char>=? escaped #\0) (char<? escaped #\8))
|
||||
(begin
|
||||
(unread-char escaped port)
|
||||
(charcode-escape port 8 3 #t)))
|
||||
;; Check for some escape-codes directly or otherwise use the
|
||||
;; escaped character literally.
|
||||
(else
|
||||
(case escaped
|
||||
((#\^) (add-control (get-character port in-string)))
|
||||
((#\C)
|
||||
(if (is-char? (peek-char port) #\-)
|
||||
(begin
|
||||
(if (not (char=? (read-char port) #\-))
|
||||
(error "expected - after control sequence"))
|
||||
(add-control (get-character port in-string)))
|
||||
escaped))
|
||||
(begin
|
||||
(if (not (char=? (read-char port) #\-))
|
||||
(error "expected - after control sequence"))
|
||||
(add-control (get-character port in-string)))
|
||||
escaped))
|
||||
((#\x) (charcode-escape port 16 #f #t))
|
||||
((#\u) (charcode-escape port 16 4 #f))
|
||||
((#\U) (charcode-escape port 16 8 #f))
|
||||
(else (char->integer escaped))))))
|
||||
;; No escape-sequence, just the literal character.
|
||||
;; But remember to get the code instead!
|
||||
(char->integer cur))))
|
||||
;; No escape-sequence, just the literal character. But remember
|
||||
;; to get the code instead!
|
||||
(char->integer cur))))
|
||||
|
||||
;;; Read a symbol or number from a port until something follows that
|
||||
;;; marks the start of a new token (like whitespace or parentheses).
|
||||
|
@ -176,7 +189,8 @@
|
|||
(define integer-regex (make-regexp "^[+-]?[0-9]+\\.?$"))
|
||||
|
||||
(define float-regex
|
||||
(make-regexp "^[+-]?([0-9]+\\.?[0-9]*|[0-9]*\\.?[0-9]+)(e[+-]?[0-9]+)?$"))
|
||||
(make-regexp
|
||||
"^[+-]?([0-9]+\\.?[0-9]*|[0-9]*\\.?[0-9]+)(e[+-]?[0-9]+)?$"))
|
||||
|
||||
;;; A dot is also allowed literally, only a single dort alone is parsed
|
||||
;;; as the 'dot' terminal for dotted lists.
|
||||
|
@ -188,29 +202,31 @@
|
|||
(had-escape #f))
|
||||
(let* ((c (read-char port))
|
||||
(finish (lambda ()
|
||||
(let ((result (list->string (reverse result-chars))))
|
||||
(let ((result (list->string
|
||||
(reverse result-chars))))
|
||||
(values
|
||||
(cond
|
||||
((and (not had-escape)
|
||||
(regexp-exec integer-regex result))
|
||||
'integer)
|
||||
((and (not had-escape)
|
||||
(regexp-exec float-regex result))
|
||||
'float)
|
||||
(else 'symbol))
|
||||
result))))
|
||||
(cond
|
||||
((and (not had-escape)
|
||||
(regexp-exec integer-regex result))
|
||||
'integer)
|
||||
((and (not had-escape)
|
||||
(regexp-exec float-regex result))
|
||||
'float)
|
||||
(else 'symbol))
|
||||
result))))
|
||||
(need-no-escape? (lambda (c)
|
||||
(or (char-numeric? c)
|
||||
(char-alphabetic? c)
|
||||
(char-set-contains? no-escape-punctuation
|
||||
c)))))
|
||||
(char-set-contains?
|
||||
no-escape-punctuation
|
||||
c)))))
|
||||
(cond
|
||||
((eof-object? c) (finish))
|
||||
((need-no-escape? c) (iterate (cons c result-chars) had-escape))
|
||||
((char=? c #\\) (iterate (cons (read-char port) result-chars) #t))
|
||||
(else
|
||||
(unread-char c port)
|
||||
(finish))))))
|
||||
((eof-object? c) (finish))
|
||||
((need-no-escape? c) (iterate (cons c result-chars) had-escape))
|
||||
((char=? c #\\) (iterate (cons (read-char port) result-chars) #t))
|
||||
(else
|
||||
(unread-char c port)
|
||||
(finish))))))
|
||||
|
||||
;;; Parse a circular structure marker without the leading # (which was
|
||||
;;; already read and recognized), that is, a number as identifier and
|
||||
|
@ -218,24 +234,28 @@
|
|||
|
||||
(define (get-circular-marker port)
|
||||
(call-with-values
|
||||
(lambda ()
|
||||
(let iterate ((result 0))
|
||||
(let ((cur (read-char port)))
|
||||
(if (char-numeric? cur)
|
||||
(let ((val (- (char->integer cur) (char->integer #\0))))
|
||||
(iterate (+ (* result 10) val)))
|
||||
(values result cur)))))
|
||||
(lambda ()
|
||||
(let iterate ((result 0))
|
||||
(let ((cur (read-char port)))
|
||||
(if (char-numeric? cur)
|
||||
(let ((val (- (char->integer cur) (char->integer #\0))))
|
||||
(iterate (+ (* result 10) val)))
|
||||
(values result cur)))))
|
||||
(lambda (id type)
|
||||
(case type
|
||||
((#\#) `(circular-ref . ,id))
|
||||
((#\=) `(circular-def . ,id))
|
||||
(else (lexer-error port "invalid circular marker character" type))))))
|
||||
(else (lexer-error port
|
||||
"invalid circular marker character"
|
||||
type))))))
|
||||
|
||||
;;; Main lexer routine, which is given a port and does look for the next
|
||||
;;; token.
|
||||
|
||||
(define (lex port)
|
||||
(let ((return (let ((file (if (file-port? port) (port-filename port) #f))
|
||||
(let ((return (let ((file (if (file-port? port)
|
||||
(port-filename port)
|
||||
#f))
|
||||
(line (1+ (port-line port)))
|
||||
(column (1+ (port-column port))))
|
||||
(lambda (token value)
|
||||
|
@ -248,114 +268,116 @@
|
|||
;; and actually point to the very character to be read.
|
||||
(c (read-char port)))
|
||||
(cond
|
||||
;; End of input must be specially marked to the parser.
|
||||
((eof-object? c) '*eoi*)
|
||||
;; Whitespace, just skip it.
|
||||
((char-whitespace? c) (lex port))
|
||||
;; The dot is only the one for dotted lists if followed by
|
||||
;; whitespace. Otherwise it is considered part of a number of
|
||||
;; symbol.
|
||||
((and (char=? c #\.)
|
||||
(char-whitespace? (peek-char port)))
|
||||
(return 'dot #f))
|
||||
;; Continue checking for literal character values.
|
||||
(else
|
||||
(case c
|
||||
;; A line comment, skip until end-of-line is found.
|
||||
((#\;)
|
||||
(let iterate ()
|
||||
(let ((cur (read-char port)))
|
||||
(if (or (eof-object? cur) (char=? cur #\newline))
|
||||
;; End of input must be specially marked to the parser.
|
||||
((eof-object? c) '*eoi*)
|
||||
;; Whitespace, just skip it.
|
||||
((char-whitespace? c) (lex port))
|
||||
;; The dot is only the one for dotted lists if followed by
|
||||
;; whitespace. Otherwise it is considered part of a number of
|
||||
;; symbol.
|
||||
((and (char=? c #\.)
|
||||
(char-whitespace? (peek-char port)))
|
||||
(return 'dot #f))
|
||||
;; Continue checking for literal character values.
|
||||
(else
|
||||
(case c
|
||||
;; A line comment, skip until end-of-line is found.
|
||||
((#\;)
|
||||
(let iterate ()
|
||||
(let ((cur (read-char port)))
|
||||
(if (or (eof-object? cur) (char=? cur #\newline))
|
||||
(lex port)
|
||||
(iterate)))))
|
||||
;; A character literal.
|
||||
((#\?)
|
||||
(return 'character (get-character port #f)))
|
||||
;; A literal string. This is mainly a sequence of characters
|
||||
;; just as in the character literals, the only difference is
|
||||
;; that escaped newline and space are to be completely ignored
|
||||
;; and that meta-escapes set bit 7 rather than bit 27.
|
||||
((#\")
|
||||
(let iterate ((result-chars '()))
|
||||
(let ((cur (read-char port)))
|
||||
(case cur
|
||||
((#\")
|
||||
(return 'string (list->string (reverse result-chars))))
|
||||
((#\\)
|
||||
(let ((escaped (read-char port)))
|
||||
(case escaped
|
||||
((#\newline #\space)
|
||||
(iterate result-chars))
|
||||
(else
|
||||
(unread-char escaped port)
|
||||
(unread-char cur port)
|
||||
(iterate (cons (integer->char (get-character port #t))
|
||||
result-chars))))))
|
||||
(else (iterate (cons cur result-chars)))))))
|
||||
;; Circular markers (either reference or definition).
|
||||
((#\#)
|
||||
(let ((mark (get-circular-marker port)))
|
||||
(return (car mark) (cdr mark))))
|
||||
;; Parentheses and other special-meaning single characters.
|
||||
((#\() (return 'paren-open #f))
|
||||
((#\)) (return 'paren-close #f))
|
||||
((#\[) (return 'square-open #f))
|
||||
((#\]) (return 'square-close #f))
|
||||
((#\') (return 'quote #f))
|
||||
((#\`) (return 'backquote #f))
|
||||
;; Unquote and unquote-splicing.
|
||||
((#\,)
|
||||
(if (is-char? (peek-char port) #\@)
|
||||
;; A character literal.
|
||||
((#\?)
|
||||
(return 'character (get-character port #f)))
|
||||
;; A literal string. This is mainly a sequence of characters
|
||||
;; just as in the character literals, the only difference is
|
||||
;; that escaped newline and space are to be completely ignored
|
||||
;; and that meta-escapes set bit 7 rather than bit 27.
|
||||
((#\")
|
||||
(let iterate ((result-chars '()))
|
||||
(let ((cur (read-char port)))
|
||||
(case cur
|
||||
((#\")
|
||||
(return 'string (list->string (reverse result-chars))))
|
||||
((#\\)
|
||||
(let ((escaped (read-char port)))
|
||||
(case escaped
|
||||
((#\newline #\space)
|
||||
(iterate result-chars))
|
||||
(else
|
||||
(unread-char escaped port)
|
||||
(unread-char cur port)
|
||||
(iterate
|
||||
(cons (integer->char (get-character port #t))
|
||||
result-chars))))))
|
||||
(else (iterate (cons cur result-chars)))))))
|
||||
;; Circular markers (either reference or definition).
|
||||
((#\#)
|
||||
(let ((mark (get-circular-marker port)))
|
||||
(return (car mark) (cdr mark))))
|
||||
;; Parentheses and other special-meaning single characters.
|
||||
((#\() (return 'paren-open #f))
|
||||
((#\)) (return 'paren-close #f))
|
||||
((#\[) (return 'square-open #f))
|
||||
((#\]) (return 'square-close #f))
|
||||
((#\') (return 'quote #f))
|
||||
((#\`) (return 'backquote #f))
|
||||
;; Unquote and unquote-splicing.
|
||||
((#\,)
|
||||
(if (is-char? (peek-char port) #\@)
|
||||
(if (not (char=? (read-char port) #\@))
|
||||
(error "expected @ in unquote-splicing")
|
||||
(return 'unquote-splicing #f))
|
||||
(error "expected @ in unquote-splicing")
|
||||
(return 'unquote-splicing #f))
|
||||
(return 'unquote #f)))
|
||||
;; Remaining are numbers and symbols. Process input until next
|
||||
;; whitespace is found, and see if it looks like a number
|
||||
;; (float/integer) or symbol and return accordingly.
|
||||
(else
|
||||
(unread-char c port)
|
||||
(call-with-values
|
||||
(lambda ()
|
||||
(get-symbol-or-number port))
|
||||
(lambda (type str)
|
||||
(case type
|
||||
((symbol)
|
||||
;; str could be empty if the first character is
|
||||
;; already something not allowed in a symbol (and not
|
||||
;; escaped)! Take care about that, it is an error
|
||||
;; because that character should have been handled
|
||||
;; elsewhere or is invalid in the input.
|
||||
(if (zero? (string-length str))
|
||||
(begin
|
||||
;; Take it out so the REPL might not get into an
|
||||
;; infinite loop with further reading attempts.
|
||||
(read-char port)
|
||||
(error "invalid character in input" c))
|
||||
(return 'symbol (string->symbol str))))
|
||||
((integer)
|
||||
;; In elisp, something like "1." is an integer, while
|
||||
;; string->number returns an inexact real. Thus we
|
||||
;; need a conversion here, but it should always
|
||||
;; result in an integer!
|
||||
(return 'integer
|
||||
(let ((num (inexact->exact (string->number str))))
|
||||
(if (not (integer? num))
|
||||
(error "expected integer" str num))
|
||||
num)))
|
||||
((float)
|
||||
(return 'float (let ((num (string->number str)))
|
||||
(if (exact? num)
|
||||
(error "expected inexact float" str num))
|
||||
num)))
|
||||
(else (error "wrong number/symbol type" type)))))))))))
|
||||
;; Remaining are numbers and symbols. Process input until next
|
||||
;; whitespace is found, and see if it looks like a number
|
||||
;; (float/integer) or symbol and return accordingly.
|
||||
(else
|
||||
(unread-char c port)
|
||||
(call-with-values
|
||||
(lambda () (get-symbol-or-number port))
|
||||
(lambda (type str)
|
||||
(case type
|
||||
((symbol)
|
||||
;; str could be empty if the first character is already
|
||||
;; something not allowed in a symbol (and not escaped)!
|
||||
;; Take care about that, it is an error because that
|
||||
;; character should have been handled elsewhere or is
|
||||
;; invalid in the input.
|
||||
(if (zero? (string-length str))
|
||||
(begin
|
||||
;; Take it out so the REPL might not get into an
|
||||
;; infinite loop with further reading attempts.
|
||||
(read-char port)
|
||||
(error "invalid character in input" c))
|
||||
(return 'symbol (string->symbol str))))
|
||||
((integer)
|
||||
;; In elisp, something like "1." is an integer, while
|
||||
;; string->number returns an inexact real. Thus we need
|
||||
;; a conversion here, but it should always result in an
|
||||
;; integer!
|
||||
(return
|
||||
'integer
|
||||
(let ((num (inexact->exact (string->number str))))
|
||||
(if (not (integer? num))
|
||||
(error "expected integer" str num))
|
||||
num)))
|
||||
((float)
|
||||
(return 'float (let ((num (string->number str)))
|
||||
(if (exact? num)
|
||||
(error "expected inexact float"
|
||||
str
|
||||
num))
|
||||
num)))
|
||||
(else (error "wrong number/symbol type" type)))))))))))
|
||||
|
||||
;;; Build a lexer thunk for a port. This is the exported routine which
|
||||
;;; can be used to create a lexer for the parser to use.
|
||||
|
||||
(define (get-lexer port)
|
||||
(lambda ()
|
||||
(lex port)))
|
||||
(lambda () (lex port)))
|
||||
|
||||
;;; Build a special lexer that will only read enough for one expression
|
||||
;;; and then always return end-of-input. If we find one of the quotation
|
||||
|
@ -367,16 +389,16 @@
|
|||
(paren-level 0))
|
||||
(lambda ()
|
||||
(if finished
|
||||
'*eoi*
|
||||
(let ((next (lex))
|
||||
(quotation #f))
|
||||
(case (car next)
|
||||
((paren-open square-open)
|
||||
(set! paren-level (1+ paren-level)))
|
||||
((paren-close square-close)
|
||||
(set! paren-level (1- paren-level)))
|
||||
((quote backquote unquote unquote-splicing circular-def)
|
||||
(set! quotation #t)))
|
||||
(if (and (not quotation) (<= paren-level 0))
|
||||
(set! finished #t))
|
||||
next)))))
|
||||
'*eoi*
|
||||
(let ((next (lex))
|
||||
(quotation #f))
|
||||
(case (car next)
|
||||
((paren-open square-open)
|
||||
(set! paren-level (1+ paren-level)))
|
||||
((paren-close square-close)
|
||||
(set! paren-level (1- paren-level)))
|
||||
((quote backquote unquote unquote-splicing circular-def)
|
||||
(set! quotation #t)))
|
||||
(if (and (not quotation) (<= paren-level 0))
|
||||
(set! finished #t))
|
||||
next)))))
|
||||
|
|
|
@ -54,12 +54,12 @@
|
|||
|
||||
(define (circular-ref token)
|
||||
(if (not (eq? (car token) 'circular-ref))
|
||||
(error "invalid token for circular-ref" token))
|
||||
(error "invalid token for circular-ref" token))
|
||||
(let* ((id (cdr token))
|
||||
(value (hashq-ref (fluid-ref circular-definitions) id)))
|
||||
(if value
|
||||
value
|
||||
(parse-error token "undefined circular reference" id))))
|
||||
value
|
||||
(parse-error token "undefined circular reference" id))))
|
||||
|
||||
;;; Returned is a closure that, when invoked, will set the final value.
|
||||
;;; This means both the variable the promise will return and the
|
||||
|
@ -67,7 +67,7 @@
|
|||
|
||||
(define (circular-define! token)
|
||||
(if (not (eq? (car token) 'circular-def))
|
||||
(error "invalid token for circular-define!" token))
|
||||
(error "invalid token for circular-define!" token))
|
||||
(let ((value #f)
|
||||
(table (fluid-ref circular-definitions))
|
||||
(id (cdr token)))
|
||||
|
@ -85,25 +85,25 @@
|
|||
|
||||
(define (force-promises! data)
|
||||
(cond
|
||||
((pair? data)
|
||||
(begin
|
||||
(if (promise? (car data))
|
||||
(set-car! data (force (car data)))
|
||||
(force-promises! (car data)))
|
||||
(if (promise? (cdr data))
|
||||
(set-cdr! data (force (cdr data)))
|
||||
(force-promises! (cdr data)))))
|
||||
((vector? data)
|
||||
(let ((len (vector-length data)))
|
||||
(let iterate ((i 0))
|
||||
(if (< i len)
|
||||
(let ((el (vector-ref data i)))
|
||||
(if (promise? el)
|
||||
(vector-set! data i (force el))
|
||||
(force-promises! el))
|
||||
(iterate (1+ i)))))))
|
||||
;; Else nothing needs to be done.
|
||||
))
|
||||
((pair? data)
|
||||
(begin
|
||||
(if (promise? (car data))
|
||||
(set-car! data (force (car data)))
|
||||
(force-promises! (car data)))
|
||||
(if (promise? (cdr data))
|
||||
(set-cdr! data (force (cdr data)))
|
||||
(force-promises! (cdr data)))))
|
||||
((vector? data)
|
||||
(let ((len (vector-length data)))
|
||||
(let iterate ((i 0))
|
||||
(if (< i len)
|
||||
(let ((el (vector-ref data i)))
|
||||
(if (promise? el)
|
||||
(vector-set! data i (force el))
|
||||
(force-promises! el))
|
||||
(iterate (1+ i)))))))
|
||||
;; Else nothing needs to be done.
|
||||
))
|
||||
|
||||
;;; We need peek-functionality for the next lexer token, this is done
|
||||
;;; with some single token look-ahead storage. This is handled by a
|
||||
|
@ -116,19 +116,19 @@
|
|||
(let ((look-ahead #f))
|
||||
(lambda (action)
|
||||
(if (eq? action 'finish)
|
||||
(if look-ahead
|
||||
(error "lexer-buffer is not empty when finished")
|
||||
#f)
|
||||
(begin
|
||||
(if (not look-ahead)
|
||||
(set! look-ahead (lex)))
|
||||
(case action
|
||||
((peek) look-ahead)
|
||||
((get)
|
||||
(let ((result look-ahead))
|
||||
(set! look-ahead #f)
|
||||
result))
|
||||
(else (error "invalid lexer-buffer action" action))))))))
|
||||
(if look-ahead
|
||||
(error "lexer-buffer is not empty when finished")
|
||||
#f)
|
||||
(begin
|
||||
(if (not look-ahead)
|
||||
(set! look-ahead (lex)))
|
||||
(case action
|
||||
((peek) look-ahead)
|
||||
((get)
|
||||
(let ((result look-ahead))
|
||||
(set! look-ahead #f)
|
||||
result))
|
||||
(else (error "invalid lexer-buffer action" action))))))))
|
||||
|
||||
;;; Get the contents of a list, where the opening parentheses has
|
||||
;;; already been found. The same code is used for vectors and lists,
|
||||
|
@ -141,24 +141,25 @@
|
|||
(let* ((next (lex 'peek))
|
||||
(type (car next)))
|
||||
(cond
|
||||
((eq? type (if close-square 'square-close 'paren-close))
|
||||
(begin
|
||||
(if (not (eq? (car (lex 'get)) type))
|
||||
(error "got different token than peeked"))
|
||||
'()))
|
||||
((and allow-dot (eq? type 'dot))
|
||||
(begin
|
||||
(if (not (eq? (car (lex 'get)) type))
|
||||
(error "got different token than peeked"))
|
||||
(let ((tail (get-list lex #f close-square)))
|
||||
(if (not (= (length tail) 1))
|
||||
(parse-error next "expected exactly one element after dot"))
|
||||
(car tail))))
|
||||
(else
|
||||
;; Do both parses in exactly this sequence!
|
||||
(let* ((head (get-expression lex))
|
||||
(tail (get-list lex allow-dot close-square)))
|
||||
(cons head tail))))))
|
||||
((eq? type (if close-square 'square-close 'paren-close))
|
||||
(begin
|
||||
(if (not (eq? (car (lex 'get)) type))
|
||||
(error "got different token than peeked"))
|
||||
'()))
|
||||
((and allow-dot (eq? type 'dot))
|
||||
(begin
|
||||
(if (not (eq? (car (lex 'get)) type))
|
||||
(error "got different token than peeked"))
|
||||
(let ((tail (get-list lex #f close-square)))
|
||||
(if (not (= (length tail) 1))
|
||||
(parse-error next
|
||||
"expected exactly one element after dot"))
|
||||
(car tail))))
|
||||
(else
|
||||
;; Do both parses in exactly this sequence!
|
||||
(let* ((head (get-expression lex))
|
||||
(tail (get-list lex allow-dot close-square)))
|
||||
(cons head tail))))))
|
||||
|
||||
;;; Parse a single expression from a lexer-buffer. This is the main
|
||||
;;; routine in our recursive-descent parser.
|
||||
|
@ -173,13 +174,16 @@
|
|||
(type (car token))
|
||||
(return (lambda (result)
|
||||
(if (pair? result)
|
||||
(set-source-properties! result (source-properties token)))
|
||||
(set-source-properties!
|
||||
result
|
||||
(source-properties token)))
|
||||
result)))
|
||||
(case type
|
||||
((integer float symbol character string)
|
||||
(return (cdr token)))
|
||||
((quote backquote unquote unquote-splicing)
|
||||
(return (list (assq-ref quotation-symbols type) (get-expression lex))))
|
||||
(return (list (assq-ref quotation-symbols type)
|
||||
(get-expression lex))))
|
||||
((paren-open)
|
||||
(return (get-list lex #t #f)))
|
||||
((square-open)
|
||||
|
@ -194,7 +198,7 @@
|
|||
(force-promises! expr)
|
||||
expr))
|
||||
(else
|
||||
(parse-error token "expected expression, got" token)))))
|
||||
(parse-error token "expected expression, got" token)))))
|
||||
|
||||
;;; Define the reader function based on this; build a lexer, a
|
||||
;;; lexer-buffer, and then parse a single expression to return. We also
|
||||
|
|
|
@ -20,12 +20,17 @@
|
|||
|
||||
(define-module (language elisp runtime)
|
||||
#:export (void
|
||||
nil-value t-value
|
||||
value-slot-module function-slot-module
|
||||
nil-value
|
||||
t-value
|
||||
value-slot-module
|
||||
function-slot-module
|
||||
elisp-bool
|
||||
ensure-fluid! reference-variable reference-variable-with-check
|
||||
ensure-fluid!
|
||||
reference-variable
|
||||
reference-variable-with-check
|
||||
set-variable!
|
||||
runtime-error macro-error)
|
||||
runtime-error
|
||||
macro-error)
|
||||
#:export-syntax (built-in-func built-in-macro prim))
|
||||
|
||||
;;; This module provides runtime support for the Elisp front-end.
|
||||
|
@ -61,8 +66,8 @@
|
|||
|
||||
(define (elisp-bool b)
|
||||
(if b
|
||||
t-value
|
||||
nil-value))
|
||||
t-value
|
||||
nil-value))
|
||||
|
||||
;;; Routines for access to elisp dynamically bound symbols. This is
|
||||
;;; used for runtime access using functions like symbol-value or set,
|
||||
|
@ -74,10 +79,10 @@
|
|||
(let ((intf (resolve-interface module))
|
||||
(resolved (resolve-module module)))
|
||||
(if (not (module-defined? intf sym))
|
||||
(let ((fluid (make-fluid)))
|
||||
(fluid-set! fluid void)
|
||||
(module-define! resolved sym fluid)
|
||||
(module-export! resolved `(,sym))))))
|
||||
(let ((fluid (make-fluid)))
|
||||
(fluid-set! fluid void)
|
||||
(module-define! resolved sym fluid)
|
||||
(module-export! resolved `(,sym))))))
|
||||
|
||||
(define (reference-variable module sym)
|
||||
(ensure-fluid! module sym)
|
||||
|
@ -87,8 +92,8 @@
|
|||
(define (reference-variable-with-check module sym)
|
||||
(let ((value (reference-variable module sym)))
|
||||
(if (eq? value void)
|
||||
(runtime-error "variable is void:" sym)
|
||||
value)))
|
||||
(runtime-error "variable is void:" sym)
|
||||
value)))
|
||||
|
||||
(define (set-variable! module sym value)
|
||||
(ensure-fluid! module sym)
|
||||
|
|
|
@ -28,68 +28,85 @@
|
|||
|
||||
;;; Equivalence and equalness predicates.
|
||||
|
||||
(built-in-func eq (lambda (a b)
|
||||
(elisp-bool (eq? a b))))
|
||||
(built-in-func eq
|
||||
(lambda (a b)
|
||||
(elisp-bool (eq? a b))))
|
||||
|
||||
(built-in-func equal (lambda (a b)
|
||||
(elisp-bool (equal? a b))))
|
||||
(built-in-func equal
|
||||
(lambda (a b)
|
||||
(elisp-bool (equal? a b))))
|
||||
|
||||
;;; Number predicates.
|
||||
|
||||
(built-in-func floatp (lambda (num)
|
||||
(elisp-bool (and (real? num)
|
||||
(or (inexact? num)
|
||||
(prim not (integer? num)))))))
|
||||
(built-in-func floatp
|
||||
(lambda (num)
|
||||
(elisp-bool (and (real? num)
|
||||
(or (inexact? num)
|
||||
(prim not (integer? num)))))))
|
||||
|
||||
(built-in-func integerp (lambda (num)
|
||||
(elisp-bool (and (exact? num)
|
||||
(integer? num)))))
|
||||
(built-in-func integerp
|
||||
(lambda (num)
|
||||
(elisp-bool (and (exact? num)
|
||||
(integer? num)))))
|
||||
|
||||
(built-in-func numberp (lambda (num)
|
||||
(elisp-bool (real? num))))
|
||||
(built-in-func numberp
|
||||
(lambda (num)
|
||||
(elisp-bool (real? num))))
|
||||
|
||||
(built-in-func wholenump (lambda (num)
|
||||
(elisp-bool (and (exact? num)
|
||||
(integer? num)
|
||||
(prim >= num 0)))))
|
||||
(built-in-func wholenump
|
||||
(lambda (num)
|
||||
(elisp-bool (and (exact? num)
|
||||
(integer? num)
|
||||
(prim >= num 0)))))
|
||||
|
||||
(built-in-func zerop (lambda (num)
|
||||
(elisp-bool (prim = num 0))))
|
||||
(built-in-func zerop
|
||||
(lambda (num)
|
||||
(elisp-bool (prim = num 0))))
|
||||
|
||||
;;; Number comparisons.
|
||||
|
||||
(built-in-func = (lambda (num1 num2)
|
||||
(elisp-bool (prim = num1 num2))))
|
||||
(built-in-func =
|
||||
(lambda (num1 num2)
|
||||
(elisp-bool (prim = num1 num2))))
|
||||
|
||||
(built-in-func /= (lambda (num1 num2)
|
||||
(elisp-bool (prim not (prim = num1 num2)))))
|
||||
(built-in-func /=
|
||||
(lambda (num1 num2)
|
||||
(elisp-bool (prim not (prim = num1 num2)))))
|
||||
|
||||
(built-in-func < (lambda (num1 num2)
|
||||
(elisp-bool (prim < num1 num2))))
|
||||
(built-in-func <
|
||||
(lambda (num1 num2)
|
||||
(elisp-bool (prim < num1 num2))))
|
||||
|
||||
(built-in-func <= (lambda (num1 num2)
|
||||
(elisp-bool (prim <= num1 num2))))
|
||||
(built-in-func <=
|
||||
(lambda (num1 num2)
|
||||
(elisp-bool (prim <= num1 num2))))
|
||||
|
||||
(built-in-func > (lambda (num1 num2)
|
||||
(elisp-bool (prim > num1 num2))))
|
||||
(built-in-func >
|
||||
(lambda (num1 num2)
|
||||
(elisp-bool (prim > num1 num2))))
|
||||
|
||||
(built-in-func >= (lambda (num1 num2)
|
||||
(elisp-bool (prim >= num1 num2))))
|
||||
(built-in-func >=
|
||||
(lambda (num1 num2)
|
||||
(elisp-bool (prim >= num1 num2))))
|
||||
|
||||
(built-in-func max (lambda (. nums)
|
||||
(prim apply (@ (guile) max) nums)))
|
||||
(built-in-func max
|
||||
(lambda (. nums)
|
||||
(prim apply (@ (guile) max) nums)))
|
||||
|
||||
(built-in-func min (lambda (. nums)
|
||||
(prim apply (@ (guile) min) nums)))
|
||||
(built-in-func min
|
||||
(lambda (. nums)
|
||||
(prim apply (@ (guile) min) nums)))
|
||||
|
||||
(built-in-func abs (@ (guile) abs))
|
||||
(built-in-func abs
|
||||
(@ (guile) abs))
|
||||
|
||||
;;; Number conversion.
|
||||
|
||||
(built-in-func float (lambda (num)
|
||||
(if (exact? num)
|
||||
(exact->inexact num)
|
||||
num)))
|
||||
(built-in-func float
|
||||
(lambda (num)
|
||||
(if (exact? num)
|
||||
(exact->inexact num)
|
||||
num)))
|
||||
|
||||
;;; TODO: truncate, floor, ceiling, round.
|
||||
|
||||
|
@ -148,48 +165,48 @@
|
|||
(built-in-func car
|
||||
(lambda (el)
|
||||
(if (null? el)
|
||||
nil-value
|
||||
(prim car el))))
|
||||
nil-value
|
||||
(prim car el))))
|
||||
|
||||
(built-in-func cdr
|
||||
(lambda (el)
|
||||
(if (null? el)
|
||||
nil-value
|
||||
(prim cdr el))))
|
||||
nil-value
|
||||
(prim cdr el))))
|
||||
|
||||
(built-in-func car-safe
|
||||
(lambda (el)
|
||||
(if (pair? el)
|
||||
(prim car el)
|
||||
nil-value)))
|
||||
(prim car el)
|
||||
nil-value)))
|
||||
|
||||
(built-in-func cdr-safe
|
||||
(lambda (el)
|
||||
(if (pair? el)
|
||||
(prim cdr el)
|
||||
nil-value)))
|
||||
(prim cdr el)
|
||||
nil-value)))
|
||||
|
||||
(built-in-func nth
|
||||
(lambda (n lst)
|
||||
(if (negative? n)
|
||||
(prim car lst)
|
||||
(let iterate ((i n)
|
||||
(tail lst))
|
||||
(cond
|
||||
((null? tail) nil-value)
|
||||
((zero? i) (prim car tail))
|
||||
(else (iterate (prim 1- i) (prim cdr tail))))))))
|
||||
(prim car lst)
|
||||
(let iterate ((i n)
|
||||
(tail lst))
|
||||
(cond
|
||||
((null? tail) nil-value)
|
||||
((zero? i) (prim car tail))
|
||||
(else (iterate (prim 1- i) (prim cdr tail))))))))
|
||||
|
||||
(built-in-func nthcdr
|
||||
(lambda (n lst)
|
||||
(if (negative? n)
|
||||
lst
|
||||
(let iterate ((i n)
|
||||
(tail lst))
|
||||
(cond
|
||||
((null? tail) nil-value)
|
||||
((zero? i) tail)
|
||||
(else (iterate (prim 1- i) (prim cdr tail))))))))
|
||||
lst
|
||||
(let iterate ((i n)
|
||||
(tail lst))
|
||||
(cond
|
||||
((null? tail) nil-value)
|
||||
((zero? i) tail)
|
||||
(else (iterate (prim 1- i) (prim cdr tail))))))))
|
||||
|
||||
(built-in-func length (@ (guile) length))
|
||||
|
||||
|
@ -212,31 +229,36 @@
|
|||
(built-in-func number-sequence
|
||||
(lambda (from . rest)
|
||||
(if (prim > (prim length rest) 2)
|
||||
(runtime-error "too many arguments for number-sequence"
|
||||
(prim cdddr rest))
|
||||
(if (null? rest)
|
||||
`(,from)
|
||||
(let ((to (prim car rest))
|
||||
(sep (if (or (null? (prim cdr rest))
|
||||
(eq? nil-value (prim cadr rest)))
|
||||
1
|
||||
(prim cadr rest))))
|
||||
(cond
|
||||
((or (eq? nil-value to) (prim = to from)) `(,from))
|
||||
((and (zero? sep) (prim not (prim = from to)))
|
||||
(runtime-error "infinite list in number-sequence"))
|
||||
((prim < (prim * to sep) (prim * from sep)) '())
|
||||
(else
|
||||
(let iterate ((i (prim +
|
||||
from
|
||||
(prim * sep
|
||||
(prim quotient
|
||||
(prim abs (prim - to from))
|
||||
(prim abs sep)))))
|
||||
(result '()))
|
||||
(if (prim = i from)
|
||||
(prim cons i result)
|
||||
(iterate (prim - i sep) (prim cons i result)))))))))))
|
||||
(runtime-error "too many arguments for number-sequence"
|
||||
(prim cdddr rest))
|
||||
(if (null? rest)
|
||||
`(,from)
|
||||
(let ((to (prim car rest))
|
||||
(sep (if (or (null? (prim cdr rest))
|
||||
(eq? nil-value (prim cadr rest)))
|
||||
1
|
||||
(prim cadr rest))))
|
||||
(cond
|
||||
((or (eq? nil-value to) (prim = to from)) `(,from))
|
||||
((and (zero? sep) (prim not (prim = from to)))
|
||||
(runtime-error "infinite list in number-sequence"))
|
||||
((prim < (prim * to sep) (prim * from sep)) '())
|
||||
(else
|
||||
(let iterate ((i (prim +
|
||||
from
|
||||
(prim *
|
||||
sep
|
||||
(prim quotient
|
||||
(prim abs
|
||||
(prim -
|
||||
to
|
||||
from))
|
||||
(prim abs sep)))))
|
||||
(result '()))
|
||||
(if (prim = i from)
|
||||
(prim cons i result)
|
||||
(iterate (prim - i sep)
|
||||
(prim cons i result)))))))))))
|
||||
|
||||
;;; Changing lists.
|
||||
|
||||
|
@ -281,12 +303,16 @@
|
|||
(built-in-func boundp
|
||||
(lambda (sym)
|
||||
(elisp-bool (prim not
|
||||
(eq? void (reference-variable value-slot-module sym))))))
|
||||
(eq? void
|
||||
(reference-variable value-slot-module
|
||||
sym))))))
|
||||
|
||||
(built-in-func fboundp
|
||||
(lambda (sym)
|
||||
(elisp-bool (prim not
|
||||
(eq? void (reference-variable function-slot-module sym))))))
|
||||
(eq? void
|
||||
(reference-variable function-slot-module
|
||||
sym))))))
|
||||
|
||||
;;; Function calls. These must take care of special cases, like using
|
||||
;;; symbols or raw lambda-lists as functions!
|
||||
|
@ -294,15 +320,17 @@
|
|||
(built-in-func apply
|
||||
(lambda (func . args)
|
||||
(let ((real-func (cond
|
||||
((symbol? func)
|
||||
(reference-variable-with-check function-slot-module
|
||||
func))
|
||||
((list? func)
|
||||
(if (and (prim not (null? func))
|
||||
(eq? (prim car func) 'lambda))
|
||||
(compile func #:from 'elisp #:to 'value)
|
||||
(runtime-error "list is not a function" func)))
|
||||
(else func))))
|
||||
((symbol? func)
|
||||
(reference-variable-with-check
|
||||
function-slot-module
|
||||
func))
|
||||
((list? func)
|
||||
(if (and (prim not (null? func))
|
||||
(eq? (prim car func) 'lambda))
|
||||
(compile func #:from 'elisp #:to 'value)
|
||||
(runtime-error "list is not a function"
|
||||
func)))
|
||||
(else func))))
|
||||
(prim apply (@ (guile) apply) real-func args))))
|
||||
|
||||
(built-in-func funcall
|
||||
|
|
|
@ -61,23 +61,23 @@
|
|||
(lambda (. clauses)
|
||||
(let iterate ((tail clauses))
|
||||
(if (null? tail)
|
||||
'nil
|
||||
(let ((cur (car tail))
|
||||
(rest (iterate (cdr tail))))
|
||||
(prim cond
|
||||
((prim or (not (list? cur)) (null? cur))
|
||||
(macro-error "invalid clause in cond" cur))
|
||||
((null? (cdr cur))
|
||||
(let ((var (gensym)))
|
||||
`(without-void-checks (,var)
|
||||
(lexical-let ((,var ,(car cur)))
|
||||
(if ,var
|
||||
,var
|
||||
,rest)))))
|
||||
(else
|
||||
`(if ,(car cur)
|
||||
(progn ,@(cdr cur))
|
||||
,rest))))))))
|
||||
'nil
|
||||
(let ((cur (car tail))
|
||||
(rest (iterate (cdr tail))))
|
||||
(prim cond
|
||||
((prim or (not (list? cur)) (null? cur))
|
||||
(macro-error "invalid clause in cond" cur))
|
||||
((null? (cdr cur))
|
||||
(let ((var (gensym)))
|
||||
`(without-void-checks (,var)
|
||||
(lexical-let ((,var ,(car cur)))
|
||||
(if ,var
|
||||
,var
|
||||
,rest)))))
|
||||
(else
|
||||
`(if ,(car cur)
|
||||
(progn ,@(cdr cur))
|
||||
,rest))))))))
|
||||
|
||||
;;; The and and or forms can also be easily defined with macros.
|
||||
|
||||
|
@ -103,54 +103,56 @@
|
|||
x
|
||||
(let ((var (gensym)))
|
||||
`(without-void-checks
|
||||
(,var)
|
||||
(lexical-let ((,var ,x))
|
||||
(if ,var
|
||||
,var
|
||||
,(iterate (car tail) (cdr tail)))))))))))
|
||||
(,var)
|
||||
(lexical-let ((,var ,x))
|
||||
(if ,var
|
||||
,var
|
||||
,(iterate (car tail) (cdr tail)))))))))))
|
||||
|
||||
;;; Define the dotimes and dolist iteration macros.
|
||||
|
||||
(built-in-macro dotimes
|
||||
(lambda (args . body)
|
||||
(if (prim or (not (list? args))
|
||||
(< (length args) 2)
|
||||
(> (length args) 3))
|
||||
(macro-error "invalid dotimes arguments" args)
|
||||
(let ((var (car args))
|
||||
(count (cadr args)))
|
||||
(if (not (symbol? var))
|
||||
(macro-error "expected symbol as dotimes variable"))
|
||||
`(let ((,var 0))
|
||||
(while ((guile-primitive <) ,var ,count)
|
||||
,@body
|
||||
(setq ,var ((guile-primitive 1+) ,var)))
|
||||
,@(if (= (length args) 3)
|
||||
(list (caddr args))
|
||||
'()))))))
|
||||
(if (prim or
|
||||
(not (list? args))
|
||||
(< (length args) 2)
|
||||
(> (length args) 3))
|
||||
(macro-error "invalid dotimes arguments" args)
|
||||
(let ((var (car args))
|
||||
(count (cadr args)))
|
||||
(if (not (symbol? var))
|
||||
(macro-error "expected symbol as dotimes variable"))
|
||||
`(let ((,var 0))
|
||||
(while ((guile-primitive <) ,var ,count)
|
||||
,@body
|
||||
(setq ,var ((guile-primitive 1+) ,var)))
|
||||
,@(if (= (length args) 3)
|
||||
(list (caddr args))
|
||||
'()))))))
|
||||
|
||||
(built-in-macro dolist
|
||||
(lambda (args . body)
|
||||
(if (prim or (not (list? args))
|
||||
(< (length args) 2)
|
||||
(> (length args) 3))
|
||||
(macro-error "invalid dolist arguments" args)
|
||||
(let ((var (car args))
|
||||
(iter-list (cadr args))
|
||||
(tailvar (gensym)))
|
||||
(if (not (symbol? var))
|
||||
(macro-error "expected symbol as dolist variable")
|
||||
`(let (,var)
|
||||
(without-void-checks (,tailvar)
|
||||
(lexical-let ((,tailvar ,iter-list))
|
||||
(while ((guile-primitive not)
|
||||
((guile-primitive null?) ,tailvar))
|
||||
(setq ,var ((guile-primitive car) ,tailvar))
|
||||
,@body
|
||||
(setq ,tailvar ((guile-primitive cdr) ,tailvar)))
|
||||
,@(if (= (length args) 3)
|
||||
(list (caddr args))
|
||||
'())))))))))
|
||||
(if (prim or
|
||||
(not (list? args))
|
||||
(< (length args) 2)
|
||||
(> (length args) 3))
|
||||
(macro-error "invalid dolist arguments" args)
|
||||
(let ((var (car args))
|
||||
(iter-list (cadr args))
|
||||
(tailvar (gensym)))
|
||||
(if (not (symbol? var))
|
||||
(macro-error "expected symbol as dolist variable")
|
||||
`(let (,var)
|
||||
(without-void-checks (,tailvar)
|
||||
(lexical-let ((,tailvar ,iter-list))
|
||||
(while ((guile-primitive not)
|
||||
((guile-primitive null?) ,tailvar))
|
||||
(setq ,var ((guile-primitive car) ,tailvar))
|
||||
,@body
|
||||
(setq ,tailvar ((guile-primitive cdr) ,tailvar)))
|
||||
,@(if (= (length args) 3)
|
||||
(list (caddr args))
|
||||
'())))))))))
|
||||
|
||||
;;; Exception handling. unwind-protect and catch are implemented as
|
||||
;;; macros (throw is a built-in function).
|
||||
|
@ -165,22 +167,23 @@
|
|||
(built-in-macro catch
|
||||
(lambda (tag . body)
|
||||
(if (null? body)
|
||||
(macro-error "catch with empty body"))
|
||||
(macro-error "catch with empty body"))
|
||||
(let ((tagsym (gensym)))
|
||||
`(lexical-let ((,tagsym ,tag))
|
||||
((guile-primitive catch)
|
||||
#t
|
||||
(lambda () ,@body)
|
||||
,(let* ((dummy-key (gensym))
|
||||
(elisp-key (gensym))
|
||||
(value (gensym))
|
||||
(arglist `(,dummy-key ,elisp-key ,value)))
|
||||
`(with-always-lexical ,arglist
|
||||
(lambda ,arglist
|
||||
(if (eq ,elisp-key ,tagsym)
|
||||
#t
|
||||
(lambda () ,@body)
|
||||
,(let* ((dummy-key (gensym))
|
||||
(elisp-key (gensym))
|
||||
(value (gensym))
|
||||
(arglist `(,dummy-key ,elisp-key ,value)))
|
||||
`(with-always-lexical
|
||||
,arglist
|
||||
(lambda ,arglist
|
||||
(if (eq ,elisp-key ,tagsym)
|
||||
,value
|
||||
((guile-primitive throw) ,dummy-key ,elisp-key
|
||||
,value))))))))))
|
||||
,value))))))))))
|
||||
|
||||
;;; unwind-protect is just some weaker construct as dynamic-wind, so
|
||||
;;; straight-forward to implement.
|
||||
|
@ -188,11 +191,11 @@
|
|||
(built-in-macro unwind-protect
|
||||
(lambda (body . clean-ups)
|
||||
(if (null? clean-ups)
|
||||
(macro-error "unwind-protect without cleanup code"))
|
||||
(macro-error "unwind-protect without cleanup code"))
|
||||
`((guile-primitive dynamic-wind)
|
||||
(lambda () nil)
|
||||
(lambda () ,body)
|
||||
(lambda () ,@clean-ups))))
|
||||
(lambda () nil)
|
||||
(lambda () ,body)
|
||||
(lambda () ,@clean-ups))))
|
||||
|
||||
;;; Pop off the first element from a list or push one to it.
|
||||
|
||||
|
|
|
@ -25,7 +25,7 @@
|
|||
#:export (elisp))
|
||||
|
||||
(define-language elisp
|
||||
#:title "Emacs Lisp"
|
||||
#:reader (lambda (port env) (read-elisp port))
|
||||
#:printer write
|
||||
#:compilers `((tree-il . ,compile-tree-il)))
|
||||
#:title "Emacs Lisp"
|
||||
#:reader (lambda (port env) (read-elisp port))
|
||||
#:printer write
|
||||
#:compilers `((tree-il . ,compile-tree-il)))
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue