* module/system/vm/program.scm:
* libguile/programs.h:
* libguile/programs.c (scm_program_bindings, scm_program_bindings)
(scm_program_properties, scm_program_name): Unfortunately, implement
more procs in C, so that C can use them more easily.
* libguile/debug.c (scm_procedure_name): Dispatch to scm_program_name as
appropriate.
* libguile/vm-i-system.c (call): Tick in a call.
* libguile/objcodes.c (scm_bytecode_to_objcode): Check that the length of
the vector matches the length embedded in the bytecode.
* libguile/programs.c (scm_program_meta): Call through to
scm_objcode_meta, instead of looking in the object table. Avoids
consing up a program+objcode slice for the meta until the meta is
actually called.
* libguile/vm-i-loader.c (load-program): Step past the metadata too.
* module/language/glil/compile-assembly.scm (make-meta): Just return the
load-program form, or #f.
(assoc-ref-or-acons, object-index-and-alist, make-object-table): Don't
write the meta into the object table.
(glil->assembly): Instead write the meta into the load-program form.
* libguile/objcodes.c (make_objcode_by_mmap, scm_c_make_objcode_slice):
Verify the lengths with the meta-length.
(scm_objcode_meta): New procedure, for getting at the meta-info of an
objcode.
(scm_objcode_to_bytecode):
(scm_write_objcode): Write bytecode with the metadata too.
* module/system/vm/objcode.scm: Export object-meta.
* module/language/assembly.scm (byte-length):
* module/language/assembly/compile-bytecode.scm (write-bytecode):
* module/language/assembly/decompile-bytecode.scm (decode-load-program):
* module/language/assembly/disassemble.scm (disassemble-load-program):
* module/language/glil/compile-assembly.scm (glil->assembly):
* test-suite/tests/asm-to-bytecode.test ("compiler"): Change to
load-program format to have meta-or-#f instead of meta-length, so that
we can serialize the meta as objcode without a load-program byte. Add a
test for writing out the meta.
* module/system/vm/Makefile.am:
* module/system/vm/conv.scm:
* module/system/vm/disasm.scm: Remove these modules, as their
functionality is now in (language ...).
* libguile/objcodes.h:
* libguile/objcodes.c:
* module/system/vm/objcode.scm: Rename objcode->u8vector to
objcode->bytecode.
* module/system/vm/frame.scm:
* module/language/bytecode/spec.scm: Fix for objcode->bytecode.
* scripts/disassemble:
* testsuite/run-vm-tests.scm: Fix for (system vm disasm) removal.
* module/system/repl/command.scm: Use the right disassembler.
* module/language/assembly/Makefile.am:
* module/language/assembly/disassemble.scm: Add a disassembler, based on
the old one but fitting in with the decompiler tower.
* module/language/objcode/spec.scm (decompile-value): When decompiling
programs, shove all the metadata that we know about into the "env".
* module/system/base/compile.scm (decompile-fold, decompile): Return the
env from `decompile' as a second value. Not sure if `compile' should do
this too.
* module/language/assembly/Makefile.am:
* module/language/assembly/spec.scm:
* module/language/assembly/decompile-bytecode.scm: Add a bytecode
decompiler. Neat!
* module/language/bytecode/spec.scm (decompile-objcode):
* module/language/objcode/spec.scm (decompile-value): Add some
"decompilers" here too.
* module/system/base/compile.scm (current-language): Since we can refer
to languages by name, do so here -- removes the previous
anti-circularity hack.
(compile-file, compile): Refer to target languages by name.
(decompile): New public function. Neat!
* module/system/base/language.scm (lookup-decompilation-order): Fix so we
look for decompilers with the high-level language definition.
* module/system/base/language.scm (lookup-decompilation-order): New
function, like its compiling cousin, but backwards.
(compute-translation-order): Rework so that languages can be specified
either by name or by identity. Return a list of language - procedure
pairs, without the "to" language in the list, instead of a list of
languages.
(invalidate-compilation-cache!): Invalidate the decompilation cache
too.
(<language>): Add a decompiler field.
* module/system/base/compile.scm (compile-passes): Much simpler now that
lookup-compilation-order gives us the procedures directly.
* module/language/*/spec.scm: Specify compilers by name, so that we can
avoid unnecessary module loads, and so that when we specify
decompilers, we can avoid cycles.
* module/language/assembly.scm: Refactor a bit; remove the name "code"
from the API, as it's too generic, and replace with "assembly".
* module/language/assembly/compile-bytecode.scm: Get byte lengths via,
well, byte-length.
* module/language/glil/Makefile.am:
* module/language/glil/spec.scm:
* module/language/glil/compile-objcode.scm: Remove compile-objcode, as we
just go through bytecode now.
* module/language/glil/compile-assembly.scm (glil->assembly)
(dump-object): s/object->code/object->assembly/.
* module/language/bytecode/Makefile.am:
* module/language/bytecode/spec.scm: Add another language to the stack,
bytecode. Bytecode is the u8vector form of object code..
* configure.in:
* module/language/Makefile.am:
* module/language/assembly/Makefile.am:
* test-suite/tests/asm-to-bytecode.test:
* module/language/assembly/spec.scm:
* module/language/assembly/compile-bytecode.scm: Update to include the
new pass.
* gdbinit: Untested attempts to get the stack fondling macros to deal
with the new program representation.
* libguile/frames.c (scm_vm_frame_arguments, scm_vm_frame_source)
(scm_vm_frame_local_ref, scm_vm_frame_local_set_x): SCM_PROGRAM_DATA is
a struct scm_objcode*.
* libguile/instructions.h:
* libguile/instructions.c: Hide the instruction table and the struct
scm_instruction structure; all access to instructions now goes through
procedures. This is because instructions are no longer in a packed
array indexed by opcode. Also, declare a mask that all instructions
should fit in.
* libguile/objcodes.h:
* libguile/objcodes.c: Rewrite so that object code directly maps its
arity and length from its bytecode. This makes it unnecessary to keep
this information in programs, allowing programs to be simple conses
between the code (objcodes) and data (the object table and the closure
variables).
* libguile/programs.c (scm_make_program): Rework so that make-program
takes objcode, an object table, and externals as arguments. It's much
clearer this way, and we avoid malloc().
* libguile/stacks.c (is_vm_bootstrap_frame): Update for program/objcode
changes.
* libguile/vm-engine.c (vm_run): Initialize the jump table on the first
run, with the opcodes declared in the instruction sources, and with bad
instructions raising an error instead of wandering off into the
Unknown.
* libguile/vm-engine.h (FETCH_LENGTH): Always represent lengths as 3
bytes. The old code was too error-prone.
(NEXT_JUMP): Mask the instruction with SCM_VM_INSTRUCTION_MASK.
(NEW_FRAME): Update for program/objcode changes.
* libguile/vm-expand.h (VM_DEFINE_FUNCTION, VM_DEFINE_INSTRUCTION)
(VM_DEFINE_LOADER): Update so that we explicitly specify opcodes, so
that we have a stable bytecode API.
* libguile/vm-i-loader.c: Update license to LGPLv2+. Explicitly declare
opcodes.
(load-integer): Use an int instead of a long as the accumulator; still
need to revisit this code at some point, I think.
(load-program): Simplify, thankfully!! Just creates the objcode slice
and rolls with it.
* libguile/vm-i-scheme.c: Number the opcodes explicitly.
* libguile/vm-i-system.c: Update license to LGPLv2+. Explicitly declare
opcodes.
(make-closure): Update for new program API.
* libguile/vm.c (vm_make_boot_program): Update for new program/objcode
API. Still a bit ugly.
(scm_load_compiled_with_vm): Update for new program/objcode API.
* module/language/assembly.scm (byte-length): Fix byte-length calculation
for loaders, and load-program.
(code-pack, code-unpack): Start to move things from (system vm conv)
here.
(object->code, code->object): More things from conv.scm.
* module/language/glil.scm (<glil-program>): Add a new field,
closure-level.
(make-glil-program, compute-closure-level): Calculate the "closure
level" when making a glil program. This is the maximum depth of
external binding refs in this closure.
(unparse-glil): Fix label serialization.
* module/language/glil/compile-assembly.scm (make-meta): Prepend #f for
the meta's object table, though maybe in the future we can avoid
creating assembly in the first place.
(assoc-ref-or-acons, object-index-and-alist): GRRR! Caught again by the
different sets of arguments to assoc and assoc-ref!
(glil->assembly): Attempt to make the <glil-program> case more
readable, and fix the bugs. Sorry I don't know how to comment this
change any more than this.
(glil->assembly): For <glil-module> serialize the whole key, not just
the name.
(dump-object): subprogram-code is already a list. Serialize integers as
strings, not u8vectors. Fix the order of lists and vectors.
* module/language/glil/spec.scm (glil): Switch orders, so we prefer glil
-> assembly -> objcode. Actually glil->objcode doesn't work any more,
needs to be removed I think.
* module/language/objcode/spec.scm (objcode->value):
s/objcode->program/make-program/.
* module/language/scheme/inline.scm: Add acons inline.
* module/system/vm/conv.scm (make-byte-decoder): Skip the first 8 bytes,
they are header. Handle subprograms properly. Still needs help though.
(decode-length): Lengths are always 3 bytes now.
* module/system/vm/disasm.scm: Superficial changes to keep things
working. I'd like to fix this better in the future.
* module/system/vm/frame.scm (bootstrap-frame?): Fixes for
program-bytecode.
* module/system/vm/program.scm: Export make-program. It's program-objcode
now, no more program-bytecode.
* module/system/vm/vm.scm (vm-load): Use make-program.
* test-suite/tests/asm-to-bytecode.test: New test, very minimal.
* module/system/vm/objcode.scm: Export word-size, byte-order, and
write-objcode.
* configure.in:
* module/language/Makefile.am:
* module/language/assembly/Makefile.am: Automakery.
* module/language/assembly.scm:
* module/language/assembly/spec.scm: Add a new language, which is oddly
even lower than GLIL. I got tired of GLIL's terrible
compile-objcode.scm, and wanted a cleaner intermediate format.
* module/language/glil/compile-assembly.scm: A purely-functional
assembler, that produces "assembly". Will document later.
* module/language/glil/spec.scm: Declare the compiler to assembly.
* libguile/programs.h (struct scm_program): Remove the module and meta
fields.
* libguile/programs.c (scm_c_make_program): Add a new argument, `objs'.
If it's a vector, we'll look for the module and the metadata in there,
instead of having them in the scm_program structure.
(scm_c_make_closure, program_mark, scm_program_meta)
(scm_c_program_source, scm_program_module): Adapt to the new program
representation.
* libguile/objcodes.c (scm_objcode_to_program): Pass #f as the object
table when making the program.
* libguile/vm-engine.h (CACHE_PROGRAM):
* libguile/vm-engine.c (vm_run): Rework to use the simple vector API for
getting the current object table. Call the helper,
vm_make_boot_program, to make the boot program.
* libguile/vm-i-loader.c (load-program): Set the current module and the
meta in the object vector, which we pass to scm_c_make_program.
* libguile/vm-i-system.c (toplevel-ref, toplevel-set): Adapt to the new
program representation.
* module/language/glil/compile-objcode.scm (codegen): Clarify.
* module/language/glil/compile-objcode.scm (codegen): If the generated
objcode will have a meta or it has objects, prepend two cells to the
object table: one for the meta, and one for the module. This is a
placeholder for future work.
* module/language/ghil.scm (parse-ghil, unparse-ghil): Rework to make the
parse format correspond more closely with the object representation, so
that I only have to document it once in the manual. The salient change
is that no expression is self-quoting, and that variable references
should go through `(ref FOO)'. Rename `set!' to `set'.
* module/language/ghil/compile-glil.scm: Add a couple of compilers for
unquote and unquote-splicing, that just raise an error. This way I can
document unquote and unquote-splicing as normal ghil expressions,
except that it's the compiler that catches them if they're outside a
quasiquote.
(codegen): Adapt to change in <glil-asm>.
* module/language/ghil/spec.scm (parse): Fix parser typo bug.
* module/language/glil.scm (<glil-asm>): Remove useless <glil-vars>
structure, which also had a confusing name. Just put the nargs, nrest,
nlocs, and nexts in the <glil-asm> directly.
(parse-glil, unparse-glil): Serialize `asm' more straightforwardly.
* module/language/glil/compile-objcode.scm (<bytespec>): Remove
<glil-vars>, as with <glil-asm>.
(preprocess, make-meta, codegen, dump-object!): Adapt to change in
<glil-asm>.
* doc/ref/api-evaluation.texi: Fix some typos and xrefs.
* doc/ref/compiler.texi (The Scheme Compiler): Document the scheme
compiler, and start documenting the GHIL language.
* doc/ref/guile.texi (Guile Implementation): Whoops, put autoconf after
the implementation foo. Unless we want it before?
* doc/ref/history.texi (The Emacs Thesis): Fix typo.
* doc/ref/vm.texi (Environment Control Instructions): Rename offset to
index.
* module/language/ghil.scm (parse-ghil): Fix what I think was a bug --
the consumer in a mv-call shouldn't be a rest arg.
* module/language/scheme/Makefile.am (SOURCES):
* module/language/scheme/compile-ghil.scm: Rename this file from
translate.scm.
* module/oop/goops.scm:
* module/language/scheme/spec.scm: Deal with renaming.
* doc/ref/vm.texi (Stack Layout): Update to remove references to the
"heap link".
* gdbinit: Update for "heap link" removal.
* libguile/frames.c:
* libguile/frames.h: Update macros and diagram for removal of "heap
link". As part of this, we also remove "heap frames", replacing them
with "vm frames", which are much like the interpreter's debug objects,
but for VM stacks. That is to say, they don't actually hold the stack
themselves, just the pointers into stack that's held by a continuation
(either captured or current).
* libguile/stacks.c (stack_depth, read_frames): Since a "stack" object is
really a copy of information that comes from somewhere else, it makes
sense to copy over info from the VM, just as `make-stack' does from the
evaluator. The tricky bit is to figure out how to interleave VM and
interpreter frames. We do that by starting in the interpreter, and
whenever the current frame's procedure is actually a program, we switch
to the VM stack, switching back when we reach a "bootstrap frame". The
last bit is hacky, but it does work...
(is_vm_bootstrap_frame): Hacky predicate to see if a VM frame is a
bootstrap frame.
(scm_make_stack): Accept a VM frame in addition to debug frames.
Probably has some bugs in this case. But in the case that the arg is
#t (a common case), do the right thing, capturing the top VM frame as
well, and interleaving those frames appropriately on the stack.
As an accident, we lost the ability to limit the number of frames in
the backtrace. We could add that back, but personally I always want
*all* frames in the trace... Narrowing still works fine, though there
are some hiccups sometimes -- e.g. an outer cut to a procedure that
does a tail-call in VM code will never find the cut, as it no longer
exists in the continuation.
* libguile/vm.h (struct scm_vm): So! Now that we have switched to save
stacks in the normal make-stack, there's no more need for `this_frame'
or `last_frame'. On the other hand, we can take this opportunity to fix
tracing: when we're in a trace hook, we set `trace_frame' on the VM,
so we know not to fire hooks when we're already in a hook.
(struct scm_vm_cont): Expose this, as make-stack needs it to make VM
frames from VM continuations.
* libguile/vm.c (scm_vm_trace_frame): New function, gets the current
trace frame.
(vm_mark, make_vm): Hook up the trace frame.
(vm_dispatch_hook): New hook dispatcher, with a dynwind so it does the
right thing if the hook exits nonlocally.
* libguile/vm-engine.c (vm_run): No more this_frame in the wind data.
* libguile/vm-engine.h (RUN_HOOK): Run hooks through the dispatcher.
(ALIGN_AS_NON_IMMEDIATE, POP_LIST_ON_STACK): Remove unused code.
(NEW_FRAME): Adapt for no HL in the frame.
* libguile/vm-i-system.c (goto/args, mv-call, return, return/values):
Adapt for no HL in the frame.
* module/system/vm/frame.scm:
* module/system/vm/vm.scm: Beginnings of some reworkings, needs more
thought.
* module/ice-9/boot-9.scm (default-pre-unwind-handler): Rename from
default-lazy-handler.
(pre-unwind-handler-dispatch): Rename from lazy-hadler-dispatch.
(error-catching-loop): Adjust caller.
* module/system/repl/repl.scm (default-pre-unwind-handler): Remove this
definition, in favor of the default one in boot-9.
(default-catch-handler): Don't do a vm-backtrace, as we will soon be
relying on core machinery to do that for us.
(call-with-backtrace): Start a new stack for the thunk.
(with-backtrace): Macro version of call-with-backtrace.
(start-repl): Use with-backtrace for brevity. Start a stack with #t as
the tag instead of repl-eval, because all traces of repl-eval are gone
after it does a tail-call.
* module/ice-9/debugger.scm:
* module/ice-9/debugging/traps.scm:
* module/ice-9/stack-catch.scm: Adapt to s/lazy/pre-unwind/ in
boot-9.scm.
* module/system/base/language.scm (<language>): Rework so that instead of
hardcoding passes in the language, we define compilers that translate
from one language to another. Add `parser' to the language fields, a
bit of a hack but useful for languages with s-expression external
representations but with record internal representations.
(define-language, *compilation-cache*, invalidate-compilation-cache!)
(compute-compilation-order, lookup-compilation-order): Add an algorithm
that does a depth-first search for a translation path from a source
language to a target language, caching the result in a lookup table.
* module/language/scheme/spec.scm:
* module/language/ghil/spec.scm: Update to the new language format.
* module/language/glil/spec.scm: Add a language specification for GLIL,
with a compiler to objcode. Also there are parsers and printers, for
repl usage, but for some reason this doesn't work yet.
* module/language/objcode/spec.scm: Define a language specification for
object code. There is some sleight of hand here, in the "compiler" to
values; but there is method behind the madness, because this way we
higher levels can pass environments (a module + externals pair) to
objcode->program.
* module/language/value/spec.scm: Define a language specification for
values. There is something intellectually dishonest about this, but it
does serve its purpose as a foundation for the language hierarchy.
* configure.in:
* module/language/Makefile.am
* module/language/ghil/Makefile.am
* module/language/glil/Makefile.am
* module/language/objcode/Makefile.am
* module/language/value/Makefile.am:
Autotomfoolery for the ghil, glil, objcode, and value languages.
* module/language/scheme/translate.scm (translate): Import the bits that
understand `compile-time-environment' here, and pass on the relevant
portions of the environment to the next compiler pass.
* module/system/base/compile.scm (current-language): New procedure, refs
the current language fluid, or lazily sets it to scheme.
(call-once, call-with-output-file/atomic): Refactor these bits to use
with-throw-handler. No functional change.
(compile-file, compile-and-load, compile-passes, compile-fold)
(compile): Refactor the public interface of the compiler to be generic
and simple. Uses `lookup-compilation-order' to find a path from the
source language to the target language.
* module/system/base/syntax.scm (define-type): Adapt to changes in
define-record.
(define-record): Instead of expecting all slots in the first form,
expect them in the body, and let the first form hold the options.
* module/system/il/compile.scm (compile): Adapt to the compilation pass
API (three in and two out).
* module/system/il/ghil.scm (<ghil-var>, <ghil-env>)
(<ghil-toplevel-env>): Adapt to define-record changes.
* module/system/il/glil.scm (<glil-vars>): Adapt to define-record
changes.
(<glil>, print-glil): Add a GLIL record printer that uses unparse.
(parse-glil, unparse-glil): Update unparse (formerly known as pprint),
and write a parse function.
* module/system/repl/common.scm (<repl>): Adapt to define-record changes.
(repl-parse): New function, parses the read form using the current
language. Something of a hack.
(repl-compile): Adapt to changes in `compile'.
(repl-eval): Fix up the does-the-language-have-a-compiler check for
changes in <language>.
* module/system/repl/repl.scm (start-repl): Parse the form before eval.
* module/system/repl/command.scm (describe): Parse.
(compile): Be more generic.
(compile-file): Adapt to changes in compile-file.
(disassemble, time, profile, trace): Parse.
* module/system/vm/debug.scm:
* module/system/vm/assemble.scm: Adapt to define-record changes.
* module/language/scheme/translate.scm (receive): Fix an important bug
that gave `receive' letrec semantics instead of let semantics. Whoops!
* module/system/il/ghil.scm (parse-ghil): Fix a typo for values*
(unparse-ghil): Only output (quote foo) if the object is a symbol.
(unparse-ghil): Fix some missing ,@.
* module/system/repl/common.scm (repl-print): Slightly refine the meaning
of "language-printer": a language printer prints an expression of a
language, not the result of evaluation. `write' prints values.
* module/language/ghil/spec.scm (ghil): Define a language printer, and a
translator for turning s-expressions (not scheme, mind you) into GHIL.
* module/language/scheme/translate.scm (quote, quasiquote): Add some
#:keyword action, so that we can (quote #:keywords).
* module/system/base/language.scm (<language>):
* module/system/base/compile.scm (read-file-in): Don't require that a
language have a read-file; instead error when read-file is called.
(compile-passes, compile-in): Refactor to call a helper method to turn
the language + set of options into a set of compiler passes.
* module/system/base/syntax.scm (define-type): Allow the type to be a
list, with the car being the name and the cdr being keyword options.
Interpret #:printer as a printer, and pass it down to...
(define-record): Here.
* module/system/il/ghil.scm (print-ghil, <ghil>): New printer for GHIL,
yay!
(parse-ghil, unparse-ghil): New lovely functions. Will document them in
the manual.
* module/system/vm/disasm.scm (disassemble-program): Don't print the
nargs= nrest= etc line, it's redundant.
* module/system/vm/program.scm (program-bindings-as-lambda-list): If the
program bindings is null, then that's that.
* module/srfi/srfi-69.scm: Move the macros up before the functions that
use them, so that the compiler can do its job.
(hash-table-walk): While it is true about what I said about R5RS
before, it seems that for R6 this will have to change. Anyway. In the
meantime, since the test suite checks that hash-table-walk procedures'
return values and number of return values are ignored, call that
procedure within a call-with-values.
* module/srfi/srfi-19.scm: Some parts of this code used a strange idiom,
`(values)', to indicate that a procedure did nothing. However, quoth
R5RS:
Except for continuations created by the `call-with-values'
procedure, all continuations take exactly one value.
Indeed the VM indicated this error. I reworked the code to avoid these
cases.
Moved ice-9/ and oop/ under module/, with the idea being that we have
only scheme under module/. Adjusted configure.in and Makefile.am
appropriately. Put oop/ at the end of the compilation order.
* module/system/base/compile.scm (call-with-nonlocal-exit-protect): New
helper, like unwind-protect but only for nonlocal exits.
(call-with-output-file/atomic): Use call-with-nonlocal-exit-protect so
that we don't mess up backtraces by catching all and then rethrowing.
Should fix this more comprehensively somewhere, though.
* module/system/il/inline.scm (define-inline): Use @ when accessing
module vars so that other modules don't need to import all of our
modules. However case-lambda is still needed.
* module/language/scheme/translate.scm (*translate-table*)
(define-scheme-translator): Rework the translator to have the clauses
defined separately via the define-scheme-translator macro, so that
external modules can define their own translators. Should be no
functional change in this commit, though.
* ice-9/boot-9.scm (compile-time-environment): Remove definition from
boot-9 -- instead, autoload it and `compile' from (system base
compile).
* libguile/objcodes.h:
* libguile/objcodes.c (scm_objcode_to_program): Add an optional argument,
`external', the external list to set on the returned program.
* libguile/vm-i-system.c (externals): New instruction, returns the
external list. Only used by (compile-time-environment).
* libguile/vm.c (scm_load_compiled_with_vm): Adapt to
scm_objcode_to_program change.
* module/language/scheme/translate.scm (translate): Actually pay
attention to the environment passed as an argument.
(custom-transformer-table): Expand out (compile-time-environment) to
something that can be passed to `compile'.
* module/system/base/compile.scm (*current-language*): Instead of
hard-coding `scheme' in various places, use a current language fluid,
initialized to `scheme'.
(compile-file, load-source-file): Adapt to *current-language*.
(load-source-file): Ada
(scheme-eval): Removed, no one used this.
(compiled-file-name): Don't hard-code "scm" and "go"; instead use the
%load-extensions and %load-compiled-extensions.
(cenv-module, cenv-ghil-env, cenv-externals): Some accessors for
compile-time environments.
(compile-time-environment): Here we define (compile-time-environment)
to something that will return #f; the compiler however produces
different code as noted above.
(compile): New function, compiles an expression into a thunk, then runs
the thunk to get the value. Useful for procedures. The optional second
argument can be either a module or a compile-time-environment; in the
latter case, we can recompile even with lexical bindings.
(compile-in): If the env specifies a module, set that module for the
duration of the compilation.
* module/system/base/syntax.scm (%compute-initargs): Fix a bug where the
default value for a field would always replace a user-supplied value.
Whoops.
* module/system/il/ghil.scm (ghil-env-dereify): New function, takes the
result of ghil-env-reify and turns it back into a GHIL environment.
* scripts/compile (compile): Remove some of the tricky error handling, as
the library procedures handle this for us.
* test-suite/tests/compiler.test: Add a test for the dynamic compilation
bits.
* ice-9/boot-9.scm (compile-time-environment): New function, with
documentation. The trick is that the compiler recognizes calls to
(compile-time-environment) and replaces it with a representation of the
*available* lexicals. Note that this might not be all the lexicals;
only the heap-allocated ones are returned.
* module/language/scheme/translate.scm (custom-transformer-table):
Compile `compile-time-environment' to <ghil-reified-env>.
* module/system/il/compile.scm (codegen): Add <ghil-reified-env> clause,
which calls ghil-env-reify.
* module/system/il/ghil.scm (ghil-env-reify): New procedure, returns a
list of (NAME . EXTERNAL-INDEX).
(<ghil>): Add <ghil-reified-env> object.
* module/system/base/syntax.scm (define-type): Rework to not require the
`|', which confuses Emacs.
* module/system/il/ghil.scm (<ghil>):
* module/system/il/glil.scm (<glil>): Adapt to define-type changes.
* gdbinit (pp, inst): New commands.
* libguile/vm-engine.c (vm_error_not_a_pair): New error case.
* libguile/vm-i-scheme.c (VM_VALIDATE_CONS): New macro -- use this
instead of SCM_VALIDATE_* because SCM_VALIDATE will exit nonlocally
before we have a chance to sync the regs.
(car, cdr, set-car, set-cdr): Use VM_VALIDATE_CONS.
* libguile/vm-i-system.c (goto/args): Bugfix: when doing a
self-tail-recursion, allocate fresh externals. Fixes use of match.go.
* module/system/vm/assemble.scm (dump-object!): Add some checks that we
aren't dumping out values that the VM can't handle.
* module/system/vm/disasm.scm (disassemble-externals): Fix rotten call to
`print-info'.
* oop/goops/dispatch.scm: Add a FIXME.
* testsuite/Makefile.am (vm_test_files):
* testsuite/t-closure4.scm (extract-symbols): New test, distilled with
much effort out of match.scm.
* ice-9/Makefile.am (NOCOMP_SOURCES): Re-enable compilation of match.scm.
Yay!