* libguile/vm-engine.c (bv-s8-ref, bv-s16-ref, bv-s32-ref, bv-s64-ref):
Unbox index and return unboxed S32 value.
(bv-s8-set!, bv-s16-set!, bv-s32-set!, bv-s64-set!): Unbox index and
take unboxed S32 value.
(bv-u8-ref, bv-u16-ref, bv-u32-ref, bv-u64-ref)
(bv-s8-set!, bv-s16-set!, bv-s32-set!, bv-s64-set!): Likewise, but
with unsigned values.
(bv-f32-ref, bv-f32-set!, bv-f64-ref, bv-f64-set!): Use memcpy to
access the value so we don't have to think about alignment. GCC will
inline this to a single instruction on architectures that support
unaligned access.
* libguile/vm.c (vm_error_out_of_range_uint64)
(vm_error_out_of_range_int64): New helpers.
* module/language/cps/slot-allocation.scm (compute-var-representations):
All bytevector ref operations produce untagged values.
* module/language/cps/types.scm (define-bytevector-accessors): Update
for bytevector untagged indices and values.
* module/language/cps/utils.scm (compute-constant-values): Fix s64
case.
* module/language/tree-il/compile-cps.scm (convert): Box results of all
bytevector accesses, and unbox incoming indices and values.
* libguile/instructions.c (FOR_EACH_INSTRUCTION_WORD_TYPE): Add word
types for immediate f64 and u64 values.
(TYPE_WIDTH): Bump up by a bit, now that we have 32 word types.
(NOP, parse_instruction): Use 64-bit meta type.
* libguile/vm-engine.c (load-f64, load-u64): New instructions.
* module/language/bytecode.scm (compute-instruction-arity): Add parser
for new instruction word types.
* module/language/cps/compile-bytecode.scm (compile-function): Add
special-cased assemblers for new instructions, and also for scm->u64
and u64->scm which I missed before.
* module/language/cps/effects-analysis.scm (load-f64, load-u64): New
instructions.
* module/language/cps/slot-allocation.scm (compute-needs-slot): load-f64
and load-u64 don't need slots.
(compute-var-representations): Update for new instructions.
* module/language/cps/specialize-primcalls.scm (specialize-primcalls):
Specialize scm->f64 and scm->u64 to make-f64 and make-u64.
* module/language/cps/types.scm (load-f64, load-u64): Wire up to type
inference, though currently type inference only runs before
specialization.
* module/language/cps/utils.scm (compute-defining-expressions): For some
reason I don't understand, it's possible to see two definitions that
are equal but not equal? here. Allow for now.
(compute-constant-values): Punch through type conversions to get
constant u64/f64 values.
* module/system/vm/assembler.scm (assembler): Support for new word
types. Export the new assemblers.
* libguile/vm-engine.c: Renumber opcodes, and take the opportunity to
fold recent additions into more logical places. Be more precise when
describing the encoding of operands, to shuffle local references only
and not constants, immediates, or other such values.
(SP_REF, SP_SET): New helpers.
(BR_BINARY, BR_ARITHMETIC): Take full 24-bit operands. Our shuffle
strategy is to emit push when needed to bring far locals near, then
pop afterwards, shuffling away far destination values as needed; but
that doesn't work for conditionals, unless we introduce a trampoline.
Let's just do the simple thing for now. Native compilation will use
condition codes.
(push, pop, drop): Back from the dead! We'll only use these for
temporary shuffling though, when an opcode can't address the full
24-bit range.
(long-fmov): New instruction, like long-mov but relative to the frame
pointer.
(load-typed-array, make-array): Don't use a compressed encoding so
that we can avoid the shuffling case. It would be a pain, given that
they have so many operands already.
* module/language/bytecode.scm (compute-instruction-arity): Update for
new instrution word encodings.
* module/system/vm/assembler.scm: Update to expose some opcodes
directly, without the need for shuffling wrappers. Adapt to
instruction word encodings change.
* module/system/vm/disassembler.scm (disassembler): Adapt to instruction
coding change.