* module/language/cps/primitives.scm (*macro-instruction-arities*):
Declare new u64->s64, s64->u64, sadd, ssub, smul, sadd/immediate,
ssub/immediate, smul/immediate, slsh, and slsh/immediate primcalls
that don't have corresponding VM instructions.
* module/language/cps/effects-analysis.scm: The new instructions are
effect-free.
* module/language/cps/reify-primitives.scm (wrap-unary, wrap-binary):
(wrap-binary/exp, reify-primitives): Add horrible code that turns
e.g. sadd into a series of s64->u64, uadd, and then u64->s64. This
way we keep our ability to do range inference on unboxed signed
arithmetic, but we still bottom out to the same instructions for both
unboxed signed and unboxed unsigned arithmetic.
* module/language/cps/types.scm: Add type inferrers for new
instructions. Remove type checkers for some effect-free primitives.
* module/language/cps/compile-bytecode.scm (compile-function): Add
pseudo-emitter for u64->s64 and s64->u64 no-ops.
* libguile/vm-engine.c (s64-imm=?, u64-imm<?, imm-u64<?, s64-imm<?)
(imm-s64<?): New instructions.
* libguile/instructions.c (FOR_EACH_INSTRUCTION_WORD_TYPE): Add new
X8_S12_Z12 word type used by the new S64/immediate instructions. A
Z12 is a 12-bit signed integer immediate.
* module/system/vm/assembler.scm: Export new instructions, and add
X8_S12_Z12 support. Also, add missing shufflers for X8_S12_C12.
* module/language/bytecode.scm (compute-instruction-arity):
* module/system/vm/disassembler.scm (unpack-s12, disassembler): Add
support for X8_S12_Z12.
* module/language/cps/types.scm (define-predicate-inferrer/param): New
helper.
(u64-=, u64-<, s64-<): Remove type checkers; this procedure does not
cause &type-check.
(u64-imm=?, s64-imm=?, u64-imm<?, imm-u64<?, s64-imm<?, imm-s64<?):
New type inferrers.
* module/language/cps/type-fold.scm (define-unary-branch-folder*): New
helper.
(u64-imm=?, s64-imm=?, u64-imm<?, imm-u64<?, s64-imm<?, imm-s64<?):
New branch folders.
* module/language/cps/reify-primitives.scm (reify-primitives): Reify
constants for new immediate branching primcalls if values out of
range.
* module/language/cps/effects-analysis.scm: Add support for new
primcalls.
* module/language/cps/compile-bytecode.scm (compile-function): Add
support for new primcalls and instructions. Compile u64-imm-= to
s64-imm=?.
* module/language/cps/compile-bytecode.scm (compile-function): Add
support for tag-fixnum/unlikely.
* module/language/cps/cse.scm (compute-equivalent-subexpressions): Add
equivalent subexpressions for tag-fixnum.
* module/language/cps/effects-analysis.scm:
* module/language/cps/primitives.scm (*macro-instruction-arities*): Add
tag-fixnum/unlikely.
* module/language/cps/specialize-numbers.scm (specialize-u64-unop)
(specialize-u64-binop, specialize-u64-shift)
(specialize-u64-comparison): Make the arg unboxers and result boxers
into keyword arguments.
(specialize-s64-unop): New helper.
(specialize-fixnum-comparison, specialize-fixnum-scm-comparison)
(specialize-scm-fixnum-comparison): Rename from
specialize-s64-comparison et al. Perhaps this should be expanded
again to include the whole s64 range, once we start to expand scm->s64
et al.
(specialize-operations): Specialize arithmetic, etc on signed
operands and results. Use less powerful unboxing/boxing ops if
possible -- e.g. tag-fixnum instead of u64->scm. Prefer fixnum
comparisons over u64 comparisons.
(compute-specializable-fixnum-vars): New helper.
(compute-specializable-phis): Specialize fixnum phis as well.
(specialize-primcalls): Specialize untag-fixnum of a constant to
load-s64.
* module/language/cps/type-fold.scm (u64->scm, s64->scm):
(scm->s64, scm->u64): Reduce to fixnum ops where possible.
* module/language/cps/types.scm: Remove type checkers for ops that don't
throw type errors. Alias tag-fixnum/unlikely to tag-fixnum.
* module/language/tree-il/compile-cps.scm (canonicalize): Convert <=,
>=, and > primcalls to <.
* module/language/cps/primitives.scm (*comparisons*):
* module/language/cps/effects-analysis.scm: Remove superfluous
primcalls.
* module/language/cps/specialize-numbers.scm
(specialize-u64-scm-comparison): Only emit < primcalls for ordered
comparisons.
(specialize-scm-u64-comparison): New helper.
* module/language/cps/specialize-numbers.scm (specialize-operations):
Remove support for >=, <=, and the like.
* module/language/cps/type-fold.scm: Remove folders for <= and so on.
* module/language/cps/types.scm (define-=-inferrer, define-<-inferrer):
New helpers; use them for all = and < variants. Remove checkers and
inferrers for <= and the like.
* module/language/cps/compile-bytecode.scm (compile-function): Remove
unnecessary cases.
* module/language/cps/compile-bytecode.scm (compile-function): Rename
the binary* helper back to binary, update uses, and remove logtest
branch as we no longer put logtest in test context.
* module/language/cps/primitives.scm (*comparisons*): Remove logtest.
* module/language/cps/type-fold.scm: Remove logtest folder.
(logbit?): Fold to logand.
* module/language/cps/types.scm (logtest): Update to be a type inferrer
and not a predicate inferrer.
* module/language/tree-il/peval.scm (peval): Transform logtest and
logbit? to (zero? (logand _ _)).
* module/language/cps/compile-bytecode.scm (compile-function):
* module/language/cps/effects-analysis.scm:
* module/language/cps/primitives.scm (*comparisons*):
* module/language/cps/type-fold.scm:
* module/language/cps/types.scm: Remove compiler support for u64-scm
comparisons, as this is now inlined.
* module/language/cps/compile-bytecode.scm (compile-function):
* module/language/cps/cse.scm (compute-equivalent-subexpressions):
* module/language/cps/effects-analysis.scm:
* module/language/cps/primitives.scm (*macro-instruction-arities*):
* module/language/cps/specialize-numbers.scm (compute-specializable-vars):
* module/language/cps/types.scm: Add new variants of u64->scm and
s64->scm that can't be replaced by CSE's auxiliary definitions, so we
can sink unlikely allocations to side branches. This is a hack until
we can get allocation sinking working
* module/language/cps/compile-bytecode.scm (compile-function): Add
support for heap-object? in test context.
* module/language/cps/primitives.scm (*immediate-predicates*):
(*heap-type-predicates*, *comparisons*): New sets of predicates for
which the VM has branching operations.
(heap-type-predicate?): New predicate.
(*branching-primcall-arities*): Make a hash table.
(branching-primitive?, prim-arity): Adapt
to *branching-primcall-arities* being a hash table.
* module/language/cps/type-fold.scm (heap-object?): Add folder.
* module/language/tree-il/compile-cps.scm (convert): Precede heap type
checks with a heap-object? guard.
* libguile/vm-engine.c (BR_U64_SCM_COMPARISON): New helper.
(br-if-u64-<=-scm, br-if-u64-<-scm, br-if-u64-=-scm)
(br-if-u64->-scm, br-if-u64->=-scm): New instructions, to compare an
untagged u64 with a tagged SCM. Avoids many u64->scm operations.
* module/language/cps/compile-bytecode.scm (compile-function):
* module/language/cps/effects-analysis.scm:
* module/language/cps/type-fold.scm:
* module/system/vm/assembler.scm:
* module/system/vm/disassembler.scm (code-annotation, compute-labels):
* module/language/cps/primitives.scm (*branching-primcall-arities*): Add
support for new opcodes.
* module/language/cps/specialize-numbers.scm
(specialize-u64-scm-comparison): New helper.
* module/language/cps/specialize-numbers.scm (specialize-operations):
Specialize u64 comparisons.
* module/language/cps/types.scm (true-comparison-restrictions): New helper.
(define-comparison-inferrer): Use the new helper. Add support for
u64-<-scm et al.
* libguile/vm-engine.c: Remove add1 and sub1 instructions. Will replace
with add/immediate and sub/immediate.
* module/language/tree-il/peval.scm (peval): If we reify a new
<primcall>, expand it. Removes 1- and similar primcalls.
* module/language/tree-il/primitives.scm: Don't specialize (+ x 1) to 1+.
(expand-primcall): New export, does a single primcall expansion.
(expand-primitives): Use the new helper.
* module/language/cps/effects-analysis.scm:
* module/language/cps/primitives.scm:
* module/language/cps/types.scm:
* module/system/vm/assembler.scm: Remove support for add1 and sub1 CPS
primitives.
* test-suite/tests/peval.test ("partial evaluation"): Adapt tests that
expect 1+/1- to expect +/-.
* module/language/cps/compile-bytecode.scm (compile-function):
* module/language/cps/primitives.scm (*branching-primcall-arities*):
* module/language/cps/type-fold.scm (equal?):
* module/language/cps/types.scm (equal?):
* module/language/tree-il/compile-cps.scm (convert): `equal?' is no
longer a branching primcall, because it isn't inline. The
implementation could lead to bad backtraces also, as it didn't save
the IP, and actually could lead to segfaults as it didn't reload the
SP after the return. There is an eqv? fast-path, though.
* module/system/vm/assembler.scm (br-if-equal): Remove interface.
* module/system/vm/disassembler.scm (code-annotation):
(compute-labels): No need to handle br-if-equal.
* libguile/arrays.c (scm_from_contiguous_typed_array):
* libguile/bytevectors.c (scm_uniform_array_to_bytevector): For
bitvectors, round up the length to 32-bit units, as they are stored
internally. Otherwise I think this probably does the wrong thing for
the last word on big-endian systems.
* libguile/bitvectors.c (BITVECTOR_LENGTH, BITVECTOR_BITS):
(scm_c_make_bitvector): Reorder the length and pointer words to match
the layout of bytevectors.
* module/language/cps/primitives.scm (*branching-primcall-arities*):
* module/system/vm/assembler.scm (br-if-bitvector):
* module/system/vm/disassembler.scm (code-annotation): Add bitvector
test support.
* module/system/vm/assembler.scm (<uniform-vector-backing-store>): Add
an element-size field.
(intern-constant): Adapt make-uniform-vector-backing-store call. Use
uniform-array->bytevector, as the old compiler did.
(link-data): Add bitvector cases.
* libguile/vm-engine.c (define!): Rename from define.
* module/language/cps/arities.scm (fix-clause-arities): If a prim
aliases an RTL instruction with a different name and we reify a
primcall, reify the instruction name.
* module/language/cps/compile-rtl.scm (emit-rtl-sequence): Update
emit-define! for new name.
* module/language/cps/primitives.scm (*rtl-instruction-aliases*): Add
bytevector native accessors.
* module/language/cps/compile-rtl.scm (emit-rtl-sequence): Add emitters
for bytevector ops. Add br-if-bytevector emitter.
* module/language/cps/primitives.scm (*branching-primcall-arities*):
Mark bytevector? as a branching primitive.
* module/system/vm/assembler.scm (br-if-bytevector): New instruction
* module/system/vm/disassembler.scm (code-annotation): Add support for
bytevector?.
* libguile/vm-engine (box-ref, box-set!): Instead of aborting if a box
isn't a var, call out to vm_error_not_a_variable. This makes these
instructions equivalent to variable-ref/variable-set!.
(vector-set!): Rename from vector-set.
* module/language/cps/compile-rtl.scm (emit-rtl-sequence): Add
variable-set! case, and adapt vector-set!.
* module/language/cps/primitives.scm (*rtl-instruction-aliases*): Add
variable-ref / variable-set! aliases to box-ref / box-set!.