* module/language/ghil/compile-glil.scm (optimize*): Add a note.
* module/system/base/syntax.scm (transform-record): Access the common
slots once at the beginning. Cuts down on the number of toplevel refs
needed by the generated code.
* module/system/base/syntax.scm (transform-record): Introduce a ->
binding inside the body, that produces records of the same type.
* module/language/ghil/compile-glil.scm (optimize*): Remove our ->ghil
definition, as transform-record introduces a -> binding for us. Nice.
* module/language/ghil/compile-glil.scm (optimize*): Rewritten optimizer
-- not yet in use, but it's closer to the code that I'd like to write.
* module/system/base/syntax.scm (transform-record): New crazy macro,
makes GHIL a little less painful to work with.
* am/guilec (.scm.go): Create the target's directory, in case
$(builddir) != $(srcdir).
* configure.in: Don't output any makefile under `module/system' or
`module/language'.
* module/Makefile.am (SUBDIRS): Remove `language' and `system'. Add `.'
to the front.
(modpath, SOURCES, SCHEME_LANG_SOURCES, ECMASCRIPT_LANG_SOURCES,
GHIL_LANG_SOURCES, GLIL_LANG_SOURCES, ASSEMBLY_LANG_SOURCES,
BYTECODE_LANG_SOURCES, OBJCODE_LANG_SOURCES, VALUE_LANG_SOURCES): New
variables, taken from former `Makefile.am' files in sub-directories.
* module/language/ghil/compile-glil.scm (codegen): If there are more than
255 arguments, make a list and use apply instead of calling directly.
* module/language/Makefile.am: Now we can compile parse.scm. Yay!
* module/language/scheme/compile-ghil.scm: Add a note.
* module/language/ecmascript/compile-ghil.scm: Add a note.
* module/language/Makefile.am: OK, we can compile compile-ghil.scm now,
thankfully.
* module/language/ecmascript/compile-ghil.scm (ormatch): New macro, a
wrapper around pmatch to avoid some of the more egregious
non-tail recursiveness.
(comp): Use ormatch.
* module/language/ghil.scm (unparse-ghil): The body of bind and mv-bind
is a single expression, not a list of expressions.
* module/language/ghil/compile-glil.scm (codegen): Be more clever when
allocating "local" variables -- if a variable goes out of scope, its
index can be re-used later.
* module/language/glil.scm (parse-glil, unparse-ghil): The "rest" of a
mv-bind is a flag, not a list. The "ra" of an mv-call is a label, not a
GLIL expression.
* module/language/objcode/spec.scm (collapse-locals, decompile-value):
When decompiling a value, process the bindings list differently.
Comments in the code.
* module/language/scheme/compile-ghil.scm (define-scheme-translator): Fix
the generated error procedure.
(let): Re-indent.
(letrec): Re-indent.
* module/system/base/syntax.scm (record-case): If the body of a clause is
null, fill it with the unspecified value.
* libguile/vm-i-system.c (drop, return): Declare drop and return as
popping one arg from the stack.
* module/language/ghil/compile-glil.scm:
* module/language/glil/compile-assembly.scm (make-meta): Adjust so that
we declare 'drop and 'return calls as popping one arg from the stack.
* module/language/ecmascript/compile-ghil.scm (comp, comp-body): Flesh
out a bit more. Most significantly, scoping within functions obeys
javascript semantics better, modulo bits about with() forms.
* module/language/ecmascript/impl.scm: Define some runtime helper
routines.
* module/language/Makefile.am (SOURCES): Add impl.scm.
* module/language/ecmascript/parse.scm (parse-ecmascript): Minor tweaks.
* module/language/ecmascript/tokenize.scm (read-identifier): Identifiers
now read as symbols, not strings.
* module/system/base/syntax.scm (define-record): So, in the generated
constructors, allow optional arguments, but not keyword arguments.
Conses much less in the constructors.
(define-record/keywords): And the old define-record is here.
* module/language/ghil.scm (parse-ghil):
* module/language/ghil/compile-glil.scm (codegen):
* module/language/scheme/compile-ghil.scm (translate-1, quote)
(quasiquote): Don't use keywords in this compiler hotpath.
* module/system/base/language.scm (<language>):
* module/system/repl/common.scm (<repl>):
* module/system/vm/debug.scm (<debugger>): Use define-record/keywords.
* module/language/ghil/compile-glil.scm (codegen): Record source location
for offset 0 into a lambda, if we can.
* module/language/scheme/compile-ghil.scm (translate-1)
(define-scheme-translator): In the retrans procedures, propagate the
location information from the enclosing expression if the subexpression
has no location information. Gives source information to many more
expressions.
(location): Just propagate the source properties as they are, the
glil->assembly compiler will interpret them.
* module/language/glil.scm (<glil>): Change glil-source to take "props"
and not "loc", as it's the source properties that we're interested in.
* module/language/glil/compile-assembly.scm (limn-sources): New function,
takes a list of addr-source property pairs and "compresses" them for
serialization to disk.
(glil->assembly): Limn the sources before writing them to disk. Avoid
non-tail recursion when determining total byte length of code.
* module/system/vm/program.scm (source:file, source:line, source:column):
Update for new source representation.
(program-source): Export.
(write-program): Nicer pretty-printing of anonymous procedures.
* libguile/backtrace.c (display_backtrace_get_file_line): Update for the
new VM source representation.
* libguile/programs.h:
* libguile/programs.c (scm_program_sources): Update for the new
serialized source representation, where the filename is not in the
stream unless it changes.
(scm_program_source): New exported function, looks up the source for a
given ip offset.
(scm_c_program_source): Update to return the last source information
that was <= the given IP, because we only serialize source info when it
changes.
* module/system/base/language.scm (lookup-decompilation-order): New
function, like its compiling cousin, but backwards.
(compute-translation-order): Rework so that languages can be specified
either by name or by identity. Return a list of language - procedure
pairs, without the "to" language in the list, instead of a list of
languages.
(invalidate-compilation-cache!): Invalidate the decompilation cache
too.
(<language>): Add a decompiler field.
* module/system/base/compile.scm (compile-passes): Much simpler now that
lookup-compilation-order gives us the procedures directly.
* module/language/*/spec.scm: Specify compilers by name, so that we can
avoid unnecessary module loads, and so that when we specify
decompilers, we can avoid cycles.
* module/language/ghil.scm (parse-ghil, unparse-ghil): Rework to make the
parse format correspond more closely with the object representation, so
that I only have to document it once in the manual. The salient change
is that no expression is self-quoting, and that variable references
should go through `(ref FOO)'. Rename `set!' to `set'.
* module/language/ghil/compile-glil.scm: Add a couple of compilers for
unquote and unquote-splicing, that just raise an error. This way I can
document unquote and unquote-splicing as normal ghil expressions,
except that it's the compiler that catches them if they're outside a
quasiquote.
(codegen): Adapt to change in <glil-asm>.
* module/language/ghil/spec.scm (parse): Fix parser typo bug.
* module/language/glil.scm (<glil-asm>): Remove useless <glil-vars>
structure, which also had a confusing name. Just put the nargs, nrest,
nlocs, and nexts in the <glil-asm> directly.
(parse-glil, unparse-glil): Serialize `asm' more straightforwardly.
* module/language/glil/compile-objcode.scm (<bytespec>): Remove
<glil-vars>, as with <glil-asm>.
(preprocess, make-meta, codegen, dump-object!): Adapt to change in
<glil-asm>.
* module/system/base/language.scm (<language>): Rework so that instead of
hardcoding passes in the language, we define compilers that translate
from one language to another. Add `parser' to the language fields, a
bit of a hack but useful for languages with s-expression external
representations but with record internal representations.
(define-language, *compilation-cache*, invalidate-compilation-cache!)
(compute-compilation-order, lookup-compilation-order): Add an algorithm
that does a depth-first search for a translation path from a source
language to a target language, caching the result in a lookup table.
* module/language/scheme/spec.scm:
* module/language/ghil/spec.scm: Update to the new language format.
* module/language/glil/spec.scm: Add a language specification for GLIL,
with a compiler to objcode. Also there are parsers and printers, for
repl usage, but for some reason this doesn't work yet.
* module/language/objcode/spec.scm: Define a language specification for
object code. There is some sleight of hand here, in the "compiler" to
values; but there is method behind the madness, because this way we
higher levels can pass environments (a module + externals pair) to
objcode->program.
* module/language/value/spec.scm: Define a language specification for
values. There is something intellectually dishonest about this, but it
does serve its purpose as a foundation for the language hierarchy.
* configure.in:
* module/language/Makefile.am
* module/language/ghil/Makefile.am
* module/language/glil/Makefile.am
* module/language/objcode/Makefile.am
* module/language/value/Makefile.am:
Autotomfoolery for the ghil, glil, objcode, and value languages.
* module/language/scheme/translate.scm (translate): Import the bits that
understand `compile-time-environment' here, and pass on the relevant
portions of the environment to the next compiler pass.
* module/system/base/compile.scm (current-language): New procedure, refs
the current language fluid, or lazily sets it to scheme.
(call-once, call-with-output-file/atomic): Refactor these bits to use
with-throw-handler. No functional change.
(compile-file, compile-and-load, compile-passes, compile-fold)
(compile): Refactor the public interface of the compiler to be generic
and simple. Uses `lookup-compilation-order' to find a path from the
source language to the target language.
* module/system/base/syntax.scm (define-type): Adapt to changes in
define-record.
(define-record): Instead of expecting all slots in the first form,
expect them in the body, and let the first form hold the options.
* module/system/il/compile.scm (compile): Adapt to the compilation pass
API (three in and two out).
* module/system/il/ghil.scm (<ghil-var>, <ghil-env>)
(<ghil-toplevel-env>): Adapt to define-record changes.
* module/system/il/glil.scm (<glil-vars>): Adapt to define-record
changes.
(<glil>, print-glil): Add a GLIL record printer that uses unparse.
(parse-glil, unparse-glil): Update unparse (formerly known as pprint),
and write a parse function.
* module/system/repl/common.scm (<repl>): Adapt to define-record changes.
(repl-parse): New function, parses the read form using the current
language. Something of a hack.
(repl-compile): Adapt to changes in `compile'.
(repl-eval): Fix up the does-the-language-have-a-compiler check for
changes in <language>.
* module/system/repl/repl.scm (start-repl): Parse the form before eval.
* module/system/repl/command.scm (describe): Parse.
(compile): Be more generic.
(compile-file): Adapt to changes in compile-file.
(disassemble, time, profile, trace): Parse.
* module/system/vm/debug.scm:
* module/system/vm/assemble.scm: Adapt to define-record changes.
* module/language/scheme/translate.scm (receive): Fix an important bug
that gave `receive' letrec semantics instead of let semantics. Whoops!
* module/system/repl/common.scm (repl-print): Slightly refine the meaning
of "language-printer": a language printer prints an expression of a
language, not the result of evaluation. `write' prints values.
* module/language/ghil/spec.scm (ghil): Define a language printer, and a
translator for turning s-expressions (not scheme, mind you) into GHIL.
* module/language/scheme/translate.scm (quote, quasiquote): Add some
#:keyword action, so that we can (quote #:keywords).
* module/system/base/language.scm (<language>):
* module/system/base/compile.scm (read-file-in): Don't require that a
language have a read-file; instead error when read-file is called.
(compile-passes, compile-in): Refactor to call a helper method to turn
the language + set of options into a set of compiler passes.
* module/system/base/syntax.scm (define-type): Allow the type to be a
list, with the car being the name and the cdr being keyword options.
Interpret #:printer as a printer, and pass it down to...
(define-record): Here.
* module/system/il/ghil.scm (print-ghil, <ghil>): New printer for GHIL,
yay!
(parse-ghil, unparse-ghil): New lovely functions. Will document them in
the manual.
* module/system/base/syntax.scm (keywords): Don't enable :keywords, it
breaks code that may assume that ':foo is a symbol, like boot-9.
* module/*.scm: Don't use :keywords, use #:keywords. The user can decide
if she wants #:keywords in their .guile, and :keywords might make us
compile modules differently.