;;; Continuation-passing style (CPS) intermediate language (IL) ;; Copyright (C) 2013, 2014 Free Software Foundation, Inc. ;;;; This library is free software; you can redistribute it and/or ;;;; modify it under the terms of the GNU Lesser General Public ;;;; License as published by the Free Software Foundation; either ;;;; version 3 of the License, or (at your option) any later version. ;;;; ;;;; This library is distributed in the hope that it will be useful, ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;;;; Lesser General Public License for more details. ;;;; ;;;; You should have received a copy of the GNU Lesser General Public ;;;; License along with this library; if not, write to the Free Software ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ;;; Commentary: ;;; ;;; Many passes rely on a local or global static analysis of a function. ;;; This module implements a simple data-flow graph (DFG) analysis, ;;; tracking the definitions and uses of variables and continuations. ;;; It also builds a table of continuations and scope links, to be able ;;; to easily determine if one continuation is in the scope of another, ;;; and to get to the expression inside a continuation. ;;; ;;; Note that the data-flow graph of continuation labels is a ;;; control-flow graph. ;;; ;;; We currently don't expose details of the DFG type outside this ;;; module, preferring to only expose accessors. That may change in the ;;; future but it seems to work for now. ;;; ;;; Code: (define-module (language cps dfg) #:use-module (ice-9 match) #:use-module (srfi srfi-1) #:use-module (srfi srfi-9) #:use-module (srfi srfi-26) #:use-module (language cps) #:export (build-cont-table build-local-cont-table lookup-cont compute-dfg dfg-cont-table lookup-def lookup-uses lookup-predecessors lookup-successors lookup-block-scope find-call call-expression find-expression find-defining-expression find-constant-value continuation-bound-in? variable-free-in? constant-needs-allocation? control-point? lookup-bound-syms ;; Control flow analysis. analyze-control-flow cfa-k-idx cfa-k-count cfa-k-sym cfa-predecessors ;; Data flow analysis. compute-live-variables dfa-k-idx dfa-k-sym dfa-k-count dfa-k-in dfa-k-out dfa-var-idx dfa-var-name dfa-var-sym dfa-var-count print-dfa)) (define (build-cont-table fun) (fold-conts (lambda (k cont table) (hashq-set! table k cont) table) (make-hash-table) fun)) (define (build-local-cont-table cont) (fold-local-conts (lambda (k cont table) (hashq-set! table k cont) table) (make-hash-table) cont)) (define (lookup-cont sym conts) (let ((res (hashq-ref conts sym))) (unless res (error "Unknown continuation!" sym (hash-fold acons '() conts))) res)) ;; Data-flow graph for CPS: both for values and continuations. (define-record-type $dfg (make-dfg conts blocks use-maps) dfg? ;; hash table of sym -> $kif, $kargs, etc (conts dfg-cont-table) ;; hash table of sym -> $block (blocks dfg-blocks) ;; hash table of sym -> $use-map (use-maps dfg-use-maps)) (define-record-type $use-map (make-use-map name sym def uses) use-map? (name use-map-name) (sym use-map-sym) (def use-map-def) (uses use-map-uses set-use-map-uses!)) (define-record-type $block (%make-block scope scope-level preds succs) block? (scope block-scope set-block-scope!) (scope-level block-scope-level set-block-scope-level!) (preds block-preds set-block-preds!) (succs block-succs set-block-succs!)) (define (make-block scope scope-level) (%make-block scope scope-level '() '())) ;; Some analyses assume that the only relevant set of nodes is the set ;; that is reachable from some start node. Others need to include nodes ;; that are reachable from an end node as well, or all nodes in a ;; function. In that case pass an appropriate implementation of ;; fold-all-conts, as analyze-control-flow does. (define (reverse-post-order k0 get-successors fold-all-conts) (let ((order '()) (visited? (make-hash-table))) (let visit ((k k0)) (hashq-set! visited? k #t) (for-each (lambda (k) (unless (hashq-ref visited? k) (visit k))) (get-successors k)) (set! order (cons k order))) (list->vector (fold-all-conts (lambda (k seed) (if (hashq-ref visited? k) seed (begin (hashq-set! visited? k #t) (cons k seed)))) order)))) (define (make-block-mapping order) (let ((mapping (make-hash-table))) (let lp ((n 0)) (when (< n (vector-length order)) (hashq-set! mapping (vector-ref order n) n) (lp (1+ n)))) mapping)) (define (convert-predecessors order get-predecessors) (let ((preds-vec (make-vector (vector-length order) #f))) (let lp ((n 0)) (when (< n (vector-length order)) (vector-set! preds-vec n (get-predecessors (vector-ref order n))) (lp (1+ n)))) preds-vec)) ;; Control-flow analysis. (define-record-type $cfa (make-cfa k-map order preds) cfa? ;; Hash table mapping k-sym -> k-idx (k-map cfa-k-map) ;; Vector of k-idx -> k-sym, in reverse post order (order cfa-order) ;; Vector of k-idx -> list of k-idx (preds cfa-preds)) (define* (cfa-k-idx cfa k #:key (default (lambda (k) (error "unknown k" k)))) (or (hashq-ref (cfa-k-map cfa) k) (default k))) (define (cfa-k-count cfa) (vector-length (cfa-order cfa))) (define (cfa-k-sym cfa n) (vector-ref (cfa-order cfa) n)) (define (cfa-predecessors cfa n) (vector-ref (cfa-preds cfa) n)) (define-inlinable (vector-push! vec idx val) (let ((v vec) (i idx)) (vector-set! v i (cons val (vector-ref v i))))) (define (compute-reachable cfa dfg) "Given the forward control-flow analysis in CFA, compute and return the continuations that may be reached if flow reaches a continuation N. Returns a vector of bitvectors. The given CFA should be a forward CFA, for quickest convergence." (let* ((k-count (cfa-k-count cfa)) ;; Vector of bitvectors, indicating that continuation N can ;; reach a set M... (reachable (make-vector k-count #f)) ;; Vector of lists, indicating that continuation N can directly ;; reach continuations M... (succs (make-vector k-count '()))) ;; All continuations are reachable from themselves. (let lp ((n 0)) (when (< n k-count) (let ((bv (make-bitvector k-count #f))) (bitvector-set! bv n #t) (vector-set! reachable n bv) (lp (1+ n))))) ;; Initialize successor lists. (let lp ((n 0)) (when (< n k-count) (for-each (lambda (succ) (vector-push! succs n (cfa-k-idx cfa succ))) (block-succs (lookup-block (cfa-k-sym cfa n) (dfg-blocks dfg)))) (lp (1+ n)))) ;; Iterate cfa backwards, to converge quickly. (let ((tmp (make-bitvector k-count #f))) (let lp ((n k-count) (changed? #f)) (cond ((zero? n) (if changed? (lp 0 #f) reachable)) (else (let ((n (1- n))) (bitvector-fill! tmp #f) (for-each (lambda (succ) (bit-set*! tmp (vector-ref reachable succ) #t)) (vector-ref succs n)) (bitvector-set! tmp n #t) (bit-set*! tmp (vector-ref reachable n) #f) (cond ((bit-position #t tmp 0) (bit-set*! (vector-ref reachable n) tmp #t) (lp n #t)) (else (lp n changed?)))))))))) (define (find-prompts cfa dfg) "Find the prompts in CFA, and return them as a list of PROMPT-INDEX, HANDLER-INDEX pairs." (let lp ((n 0) (prompts '())) (cond ((= n (cfa-k-count cfa)) (reverse prompts)) (else (match (lookup-cont (cfa-k-sym cfa n) (dfg-cont-table dfg)) (($ $kargs names syms body) (match (find-expression body) (($ $prompt escape? tag handler) (lp (1+ n) (acons n (cfa-k-idx cfa handler) prompts))) (_ (lp (1+ n) prompts)))) (_ (lp (1+ n) prompts))))))) (define (compute-interval cfa dfg reachable start end) "Compute and return the set of continuations that may be reached from START, inclusive, but not reached by END, exclusive. Returns a bitvector." (let ((body (make-bitvector (cfa-k-count cfa) #f))) (bit-set*! body (vector-ref reachable start) #t) (bit-set*! body (vector-ref reachable end) #f) body)) (define (find-prompt-bodies cfa dfg) "Find all the prompts in CFA, and compute the set of continuations that is reachable from the prompt bodies but not from the corresponding handler. Returns a list of PROMPT, HANDLER, BODY lists, where the BODY is a bitvector." (match (find-prompts cfa dfg) (() '()) (((prompt . handler) ...) (let ((reachable (compute-reachable cfa dfg))) (map (lambda (prompt handler) ;; FIXME: It isn't correct to use all continuations ;; reachable from the prompt, because that includes ;; continuations outside the prompt body. This point is ;; moot if the handler's control flow joins with the the ;; body, as is usually but not always the case. ;; ;; One counter-example is when the handler contifies an ;; infinite loop; in that case we compute a too-large ;; prompt body. This error is currently innocuous, but ;; we should fix it at some point. ;; ;; The fix is to end the body at the corresponding "pop" ;; primcall, if any. (let ((body (compute-interval cfa dfg reachable prompt handler))) (list prompt handler body))) prompt handler))))) (define* (visit-prompt-control-flow cfa dfg f #:key complete?) "For all prompts in CFA, invoke F with arguments PROMPT, HANDLER, and BODY for each body continuation in the prompt." (for-each (match-lambda ((prompt handler body) (define (out-or-back-edge? n) ;; Most uses of visit-prompt-control-flow don't need every body ;; continuation, and would be happy getting called only for ;; continuations that postdominate the rest of the body. Unless ;; you pass #:complete? #t, we only invoke F on continuations ;; that can leave the body, or on back-edges in loops. ;; ;; You would think that looking for the final "pop" primcall ;; would be sufficient, but that is incorrect; it's possible for ;; a loop in the prompt body to be contified, and that loop need ;; not continue to the pop if it never terminates. The pop could ;; even be removed by DCE, in that case. (or-map (lambda (succ) (let ((succ (cfa-k-idx cfa succ))) (or (not (bitvector-ref body succ)) (<= succ n)))) (block-succs (lookup-block (cfa-k-sym cfa n) (dfg-blocks dfg))))) (let lp ((n 0)) (let ((n (bit-position #t body n))) (when n (when (or complete? (out-or-back-edge? n)) (f prompt handler n)) (lp (1+ n))))))) (find-prompt-bodies cfa dfg))) (define* (analyze-control-flow fun dfg #:key reverse? add-handler-preds?) (define (build-cfa kentry block-succs block-preds forward-cfa) (define (block-accessor accessor) (lambda (k) (accessor (lookup-block k (dfg-blocks dfg))))) (define (reachable-preds mapping accessor) ;; It's possible for a predecessor to not be in the mapping, if ;; the predecessor is not reachable from the entry node. (lambda (k) (filter-map (cut hashq-ref mapping <>) ((block-accessor accessor) k)))) (let* ((order (reverse-post-order kentry (block-accessor block-succs) (if forward-cfa (lambda (f seed) (let lp ((n (cfa-k-count forward-cfa)) (seed seed)) (if (zero? n) seed (lp (1- n) (f (cfa-k-sym forward-cfa (1- n)) seed))))) (lambda (f seed) seed)))) (k-map (make-block-mapping order)) (preds (convert-predecessors order (reachable-preds k-map block-preds))) (cfa (make-cfa k-map order preds))) (when add-handler-preds? ;; Any expression in the prompt body could cause an abort to the ;; handler. This code adds links from every block in the prompt ;; body to the handler. This causes all values used by the ;; handler to be seen as live in the prompt body, as indeed they ;; are. (let ((forward-cfa (or forward-cfa cfa))) (visit-prompt-control-flow forward-cfa dfg (lambda (prompt handler body) (define (renumber n) (if (eq? forward-cfa cfa) n (cfa-k-idx cfa (cfa-k-sym forward-cfa n)))) (let ((handler (renumber handler)) (body (renumber body))) (if reverse? (vector-push! preds body handler) (vector-push! preds handler body))))))) cfa)) (match fun (($ $fun src meta free ($ $cont kentry (and entry ($ $kentry self ($ $cont ktail tail) clauses)))) (if reverse? (build-cfa ktail block-preds block-succs (analyze-control-flow fun dfg #:reverse? #f #:add-handler-preds? #f)) (build-cfa kentry block-succs block-preds #f))))) ;; Dominator analysis. (define-record-type $dominator-analysis (make-dominator-analysis cfa idoms dom-levels loop-header irreducible) dominator-analysis? ;; The corresponding $cfa (cfa dominator-analysis-cfa) ;; Vector of k-idx -> k-idx (idoms dominator-analysis-idoms) ;; Vector of k-idx -> dom-level (dom-levels dominator-analysis-dom-levels) ;; Vector of k-idx -> k-idx or -1 (loop-header dominator-analysis-loop-header) ;; Vector of k-idx -> true or false value (irreducible dominator-analysis-irreducible)) (define (compute-dom-levels idoms) (let ((dom-levels (make-vector (vector-length idoms) #f))) (define (compute-dom-level n) (or (vector-ref dom-levels n) (let ((dom-level (1+ (compute-dom-level (vector-ref idoms n))))) (vector-set! dom-levels n dom-level) dom-level))) (vector-set! dom-levels 0 0) (let lp ((n 0)) (when (< n (vector-length idoms)) (compute-dom-level n) (lp (1+ n)))) dom-levels)) (define (compute-idoms preds) (let ((idoms (make-vector (vector-length preds) 0))) (define (common-idom d0 d1) ;; We exploit the fact that a reverse post-order is a topological ;; sort, and so the idom of a node is always numerically less than ;; the node itself. (cond ((= d0 d1) d0) ((< d0 d1) (common-idom d0 (vector-ref idoms d1))) (else (common-idom (vector-ref idoms d0) d1)))) (define (compute-idom preds) (match preds (() 0) ((pred . preds) (let lp ((idom pred) (preds preds)) (match preds (() idom) ((pred . preds) (lp (common-idom idom pred) preds))))))) ;; This is the iterative O(n^2) fixpoint algorithm, originally from ;; Allen and Cocke ("Graph-theoretic constructs for program flow ;; analysis", 1972). See the discussion in Cooper, Harvey, and ;; Kennedy's "A Simple, Fast Dominance Algorithm", 2001. (let iterate ((n 0) (changed? #f)) (cond ((< n (vector-length preds)) (let ((idom (vector-ref idoms n)) (idom* (compute-idom (vector-ref preds n)))) (cond ((eqv? idom idom*) (iterate (1+ n) changed?)) (else (vector-set! idoms n idom*) (iterate (1+ n) #t))))) (changed? (iterate 0 #f)) (else idoms))))) ;; Compute a vector containing, for each node, a list of the nodes that ;; it immediately dominates. These are the "D" edges in the DJ tree. (define (compute-dom-edges idoms) (let ((doms (make-vector (vector-length idoms) '()))) (let lp ((n 0)) (when (< n (vector-length idoms)) (let ((idom (vector-ref idoms n))) (vector-push! doms idom n)) (lp (1+ n)))) doms)) ;; Compute a vector containing, for each node, a list of the successors ;; of that node that are not dominated by that node. These are the "J" ;; edges in the DJ tree. (define (compute-join-edges preds idoms) (define (dominates? n1 n2) (or (= n1 n2) (and (< n1 n2) (dominates? n1 (vector-ref idoms n2))))) (let ((joins (make-vector (vector-length idoms) '()))) (let lp ((n 0)) (when (< n (vector-length preds)) (for-each (lambda (pred) (unless (dominates? pred n) (vector-push! joins pred n))) (vector-ref preds n)) (lp (1+ n)))) joins)) ;; Compute a vector containing, for each node, a list of the back edges ;; to that node. If a node is not the entry of a reducible loop, that ;; list is empty. (define (compute-reducible-back-edges joins idoms) (define (dominates? n1 n2) (or (= n1 n2) (and (< n1 n2) (dominates? n1 (vector-ref idoms n2))))) (let ((back-edges (make-vector (vector-length idoms) '()))) (let lp ((n 0)) (when (< n (vector-length joins)) (for-each (lambda (succ) (when (dominates? succ n) (vector-push! back-edges succ n))) (vector-ref joins n)) (lp (1+ n)))) back-edges)) ;; Compute the levels in the dominator tree at which there are ;; irreducible loops, as an integer. If a bit N is set in the integer, ;; that indicates that at level N in the dominator tree, there is at ;; least one irreducible loop. (define (compute-irreducible-dom-levels doms joins idoms dom-levels) (define (dominates? n1 n2) (or (= n1 n2) (and (< n1 n2) (dominates? n1 (vector-ref idoms n2))))) (let ((pre-order (make-vector (vector-length doms) #f)) (last-pre-order (make-vector (vector-length doms) #f)) (res 0) (count 0)) ;; Is MAYBE-PARENT an ancestor of N on the depth-first spanning tree ;; computed from the DJ graph? See Havlak 1997, "Nesting of ;; Reducible and Irreducible Loops". (define (ancestor? a b) (let ((w (vector-ref pre-order a)) (v (vector-ref pre-order b))) (and (<= w v) (<= v (vector-ref last-pre-order w))))) ;; Compute depth-first spanning tree of DJ graph. (define (recurse n) (unless (vector-ref pre-order n) (visit n))) (define (visit n) ;; Pre-order visitation index. (vector-set! pre-order n count) (set! count (1+ count)) (for-each recurse (vector-ref doms n)) (for-each recurse (vector-ref joins n)) ;; Pre-order visitation index of last descendant. (vector-set! last-pre-order (vector-ref pre-order n) (1- count))) (visit 0) (let lp ((n 0)) (when (< n (vector-length joins)) (for-each (lambda (succ) ;; If this join edge is not a loop back edge but it ;; does go to an ancestor on the DFST of the DJ ;; graph, then we have an irreducible loop. (when (and (not (dominates? succ n)) (ancestor? succ n)) (set! res (logior (ash 1 (vector-ref dom-levels succ)))))) (vector-ref joins n)) (lp (1+ n)))) res)) (define (compute-nodes-by-level dom-levels) (let* ((max-level (let lp ((n 0) (max-level 0)) (if (< n (vector-length dom-levels)) (lp (1+ n) (max (vector-ref dom-levels n) max-level)) max-level))) (nodes-by-level (make-vector (1+ max-level) '()))) (let lp ((n (1- (vector-length dom-levels)))) (when (>= n 0) (vector-push! nodes-by-level (vector-ref dom-levels n) n) (lp (1- n)))) nodes-by-level)) ;; Collect all predecessors to the back-nodes that are strictly ;; dominated by the loop header, and mark them as belonging to the loop. ;; If they already have a loop header, that means they are either in a ;; nested loop, or they have already been visited already. (define (mark-loop-body header back-nodes preds idoms loop-headers) (define (strictly-dominates? n1 n2) (and (< n1 n2) (let ((idom (vector-ref idoms n2))) (or (= n1 idom) (strictly-dominates? n1 idom))))) (define (visit node) (when (strictly-dominates? header node) (cond ((vector-ref loop-headers node) => visit) (else (vector-set! loop-headers node header) (for-each visit (vector-ref preds node)))))) (for-each visit back-nodes)) (define (mark-irreducible-loops level idoms dom-levels loop-headers) ;; FIXME: Identify strongly-connected components that are >= LEVEL in ;; the dominator tree, and somehow mark them as irreducible. (warn 'irreducible-loops-at-level level)) ;; "Identifying Loops Using DJ Graphs" by Sreedhar, Gao, and Lee, ACAPS ;; Technical Memo 98, 1995. (define (identify-loops preds idoms dom-levels) (let* ((doms (compute-dom-edges idoms)) (joins (compute-join-edges preds idoms)) (back-edges (compute-reducible-back-edges joins idoms)) (irreducible-levels (compute-irreducible-dom-levels doms joins idoms dom-levels)) (loop-headers (make-vector (vector-length preds) #f)) (nodes-by-level (compute-nodes-by-level dom-levels))) (let lp ((level (1- (vector-length nodes-by-level)))) (when (>= level 0) (for-each (lambda (n) (let ((edges (vector-ref back-edges n))) (unless (null? edges) (mark-loop-body n edges preds idoms loop-headers)))) (vector-ref nodes-by-level level)) (when (logbit? level irreducible-levels) (mark-irreducible-loops level idoms dom-levels loop-headers)) (lp (1- level)))) loop-headers)) (define (analyze-dominators cfa) (match cfa (($ $cfa k-map order preds) (let* ((idoms (compute-idoms preds)) (dom-levels (compute-dom-levels idoms)) (loop-headers (identify-loops preds idoms dom-levels))) (make-dominator-analysis cfa idoms dom-levels loop-headers #f))))) ;; Compute the maximum fixed point of the data-flow constraint problem. ;; ;; This always completes, as the graph is finite and the in and out sets ;; are complete semi-lattices. If the graph is reducible and the blocks ;; are sorted in reverse post-order, this completes in a maximum of LC + ;; 2 iterations, where LC is the loop connectedness number. See Hecht ;; and Ullman, "Analysis of a simple algorithm for global flow ;; problems", POPL 1973, or the recent summary in "Notes on graph ;; algorithms used in optimizing compilers", Offner 2013. (define (compute-maximum-fixed-point preds inv outv killv genv union?) (define (bitvector-copy! dst src) (bitvector-fill! dst #f) (bit-set*! dst src #t)) (define (bitvector-meet! accum src) (bit-set*! accum src union?)) (let lp ((n 0) (changed? #f)) (cond ((< n (vector-length preds)) (let ((in (vector-ref inv n)) (out (vector-ref outv n)) (kill (vector-ref killv n)) (gen (vector-ref genv n))) (let ((out-count (or changed? (bit-count #t out)))) (for-each (lambda (pred) (bitvector-meet! in (vector-ref outv pred))) (vector-ref preds n)) (bitvector-copy! out in) (for-each (cut bitvector-set! out <> #f) kill) (for-each (cut bitvector-set! out <> #t) gen) (lp (1+ n) (or changed? (not (eqv? out-count (bit-count #t out)))))))) (changed? (lp 0 #f))))) ;; Data-flow analysis. (define-record-type $dfa (make-dfa cfa var-map names syms in out) dfa? ;; CFA, for its reverse-post-order numbering (cfa dfa-cfa) ;; Hash table mapping var-sym -> var-idx (var-map dfa-var-map) ;; Vector of var-idx -> name (names dfa-names) ;; Vector of var-idx -> var-sym (syms dfa-syms) ;; Vector of k-idx -> bitvector (in dfa-in) ;; Vector of k-idx -> bitvector (out dfa-out)) (define (dfa-k-idx dfa k) (cfa-k-idx (dfa-cfa dfa) k)) (define (dfa-k-sym dfa idx) (cfa-k-sym (dfa-cfa dfa) idx)) (define (dfa-k-count dfa) (cfa-k-count (dfa-cfa dfa))) (define (dfa-var-idx dfa var) (or (hashq-ref (dfa-var-map dfa) var) (error "unknown var" var))) (define (dfa-var-name dfa idx) (vector-ref (dfa-names dfa) idx)) (define (dfa-var-sym dfa idx) (vector-ref (dfa-syms dfa) idx)) (define (dfa-var-count dfa) (vector-length (dfa-syms dfa))) (define (dfa-k-in dfa idx) (vector-ref (dfa-in dfa) idx)) (define (dfa-k-out dfa idx) (vector-ref (dfa-out dfa) idx)) (define (compute-live-variables fun dfg) (define (make-variable-mapping use-maps) (let ((mapping (make-hash-table)) (n 0)) (hash-for-each (lambda (sym use-map) (hashq-set! mapping sym n) (set! n (1+ n))) use-maps) (values mapping n))) (call-with-values (lambda () (make-variable-mapping (dfg-use-maps dfg))) (lambda (var-map nvars) (let* ((cfa (analyze-control-flow fun dfg #:reverse? #t #:add-handler-preds? #t)) (syms (make-vector nvars #f)) (names (make-vector nvars #f)) (usev (make-vector (cfa-k-count cfa) '())) (defv (make-vector (cfa-k-count cfa) '())) (live-in (make-vector (cfa-k-count cfa) #f)) (live-out (make-vector (cfa-k-count cfa) #f))) ;; Initialize syms, names, defv, and usev. (hash-for-each (lambda (sym use-map) (match use-map (($ $use-map name sym def uses) (let ((v (or (hashq-ref var-map sym) (error "unknown var" sym)))) (vector-set! syms v sym) (vector-set! names v name) (for-each (lambda (def) (vector-push! defv (cfa-k-idx cfa def) v)) (block-preds (lookup-block def (dfg-blocks dfg)))) (for-each (lambda (use) (vector-push! usev (cfa-k-idx cfa use) v)) uses))))) (dfg-use-maps dfg)) ;; Initialize live-in and live-out sets. (let lp ((n 0)) (when (< n (vector-length live-out)) (vector-set! live-in n (make-bitvector nvars #f)) (vector-set! live-out n (make-bitvector nvars #f)) (lp (1+ n)))) ;; Liveness is a reverse data-flow problem, so we give ;; compute-maximum-fixed-point a reversed graph, swapping in ;; for out, and usev for defv. Note that since we are using ;; a reverse CFA, cfa-preds are actually successors, and ;; continuation 0 is ktail. (compute-maximum-fixed-point (cfa-preds cfa) live-out live-in defv usev #t) (make-dfa cfa var-map names syms live-in live-out))))) (define (print-dfa dfa) (match dfa (($ $dfa cfa var-map names syms in out) (define (print-var-set bv) (let lp ((n 0)) (let ((n (bit-position #t bv n))) (when n (format #t " ~A" (vector-ref syms n)) (lp (1+ n)))))) (let lp ((n 0)) (when (< n (cfa-k-count cfa)) (format #t "~A:\n" (cfa-k-sym cfa n)) (format #t " in:") (print-var-set (vector-ref in n)) (newline) (format #t " out:") (print-var-set (vector-ref out n)) (newline) (lp (1+ n))))))) (define (visit-fun fun conts blocks use-maps global?) (define (add-def! name sym def-k) (unless def-k (error "Term outside labelled continuation?")) (hashq-set! use-maps sym (make-use-map name sym def-k '()))) (define (add-use! sym use-k) (match (hashq-ref use-maps sym) (#f (error "Symbol out of scope?" sym)) ((and use-map ($ $use-map name sym def uses)) (set-use-map-uses! use-map (cons use-k uses))))) (define* (declare-block! label cont parent #:optional (level (1+ (lookup-scope-level parent blocks)))) (hashq-set! conts label cont) (hashq-set! blocks label (make-block parent level))) (define (link-blocks! pred succ) (let ((pred-block (hashq-ref blocks pred)) (succ-block (hashq-ref blocks succ))) (unless (and pred-block succ-block) (error "internal error" pred-block succ-block)) (set-block-succs! pred-block (cons succ (block-succs pred-block))) (set-block-preds! succ-block (cons pred (block-preds succ-block))))) (define (visit exp exp-k) (define (def! name sym) (add-def! name sym exp-k)) (define (use! sym) (add-use! sym exp-k)) (define (use-k! k) (link-blocks! exp-k k)) (define (recur exp) (visit exp exp-k)) (match exp (($ $letk (($ $cont k cont) ...) body) ;; Set up recursive environment before visiting cont bodies. (for-each (lambda (cont k) (declare-block! k cont exp-k)) cont k) (for-each visit cont k) (recur body)) (($ $kargs names syms body) (for-each def! names syms) (recur body)) (($ $kif kt kf) (use-k! kt) (use-k! kf)) (($ $kreceive arity k) (use-k! k)) (($ $letrec names syms funs body) (unless global? (error "$letrec should not be present when building a local DFG")) (for-each def! names syms) (for-each (cut visit-fun <> conts blocks use-maps global?) funs) (visit body exp-k)) (($ $continue k src exp) (use-k! k) (match exp (($ $call proc args) (use! proc) (for-each use! args)) (($ $primcall name args) (for-each use! args)) (($ $values args) (for-each use! args)) (($ $prompt escape? tag handler) (use! tag) (use-k! handler)) (($ $fun) (when global? (visit-fun exp conts blocks use-maps global?))) (_ #f))))) (match fun (($ $fun src meta free ($ $cont kentry (and entry ($ $kentry self ($ $cont ktail tail) clauses)))) (declare-block! kentry entry #f 0) (add-def! #f self kentry) (declare-block! ktail tail kentry) (for-each (match-lambda (($ $cont kclause (and clause ($ $kclause arity ($ $cont kbody body)))) (declare-block! kclause clause kentry) (link-blocks! kentry kclause) (declare-block! kbody body kclause) (link-blocks! kclause kbody) (visit body kbody))) clauses)))) (define* (compute-dfg fun #:key (global? #t)) (let* ((conts (make-hash-table)) (blocks (make-hash-table)) (use-maps (make-hash-table))) (visit-fun fun conts blocks use-maps global?) (make-dfg conts blocks use-maps))) (define (lookup-block k blocks) (let ((res (hashq-ref blocks k))) (unless res (error "Unknown continuation!" k (hash-fold acons '() blocks))) res)) (define (lookup-scope-level k blocks) (match (lookup-block k blocks) (($ $block _ scope-level) scope-level))) (define (lookup-use-map sym use-maps) (let ((res (hashq-ref use-maps sym))) (unless res (error "Unknown lexical!" sym (hash-fold acons '() use-maps))) res)) (define (lookup-def sym dfg) (match dfg (($ $dfg conts blocks use-maps) (match (lookup-use-map sym use-maps) (($ $use-map name sym def uses) def))))) (define (lookup-uses sym dfg) (match dfg (($ $dfg conts blocks use-maps) (match (lookup-use-map sym use-maps) (($ $use-map name sym def uses) uses))))) (define (lookup-block-scope k dfg) (block-scope (lookup-block k (dfg-blocks dfg)))) (define (lookup-predecessors k dfg) (match (lookup-block k (dfg-blocks dfg)) (($ $block _ _ preds succs) preds))) (define (lookup-successors k dfg) (match (lookup-block k (dfg-blocks dfg)) (($ $block _ _ preds succs) succs))) (define (find-defining-term sym dfg) (match (lookup-predecessors (lookup-def sym dfg) dfg) ((def-exp-k) (lookup-cont def-exp-k (dfg-cont-table dfg))) (else #f))) (define (find-call term) (match term (($ $kargs names syms body) (find-call body)) (($ $letk conts body) (find-call body)) (($ $letrec names syms funs body) (find-call body)) (($ $continue) term))) (define (call-expression call) (match call (($ $continue k src exp) exp))) (define (find-expression term) (call-expression (find-call term))) (define (find-defining-expression sym dfg) (match (find-defining-term sym dfg) (#f #f) (($ $kreceive) #f) (($ $kclause) #f) (term (find-expression term)))) (define (find-constant-value sym dfg) (match (find-defining-expression sym dfg) (($ $const val) (values #t val)) (($ $continue k src ($ $void)) (values #t *unspecified*)) (else (values #f #f)))) (define (constant-needs-allocation? sym val dfg) (define (immediate-u8? val) (and (integer? val) (exact? val) (<= 0 val 255))) (define (find-exp term) (match term (($ $kargs names syms body) (find-exp body)) (($ $letk conts body) (find-exp body)) (else term))) (match dfg (($ $dfg conts blocks use-maps) (match (lookup-use-map sym use-maps) (($ $use-map _ _ def uses) (or-map (lambda (use) (match (find-expression (lookup-cont use conts)) (($ $call) #f) (($ $values) #f) (($ $primcall 'free-ref (closure slot)) (not (eq? sym slot))) (($ $primcall 'free-set! (closure slot value)) (not (eq? sym slot))) (($ $primcall 'cache-current-module! (mod . _)) (eq? sym mod)) (($ $primcall 'cached-toplevel-box _) #f) (($ $primcall 'cached-module-box _) #f) (($ $primcall 'resolve (name bound?)) (eq? sym name)) (($ $primcall 'make-vector/immediate (len init)) (not (eq? sym len))) (($ $primcall 'vector-ref/immediate (v i)) (not (eq? sym i))) (($ $primcall 'vector-set!/immediate (v i x)) (not (eq? sym i))) (($ $primcall 'allocate-struct/immediate (vtable nfields)) (not (eq? sym nfields))) (($ $primcall 'struct-ref/immediate (s n)) (not (eq? sym n))) (($ $primcall 'struct-set!/immediate (s n x)) (not (eq? sym n))) (($ $primcall 'builtin-ref (idx)) #f) (_ #t))) uses)))))) (define (continuation-scope-contains? scope-k k blocks) (let ((scope-level (lookup-scope-level scope-k blocks))) (let lp ((k k)) (or (eq? scope-k k) (match (lookup-block k blocks) (($ $block scope level) (and (< scope-level level) (lp scope)))))))) (define (continuation-bound-in? k use-k dfg) (match dfg (($ $dfg conts blocks use-maps) (match (lookup-block k blocks) (($ $block def-k) (continuation-scope-contains? def-k use-k blocks)))))) (define (variable-free-in? var k dfg) (match dfg (($ $dfg conts blocks use-maps) (or-map (lambda (use) (continuation-scope-contains? k use blocks)) (match (lookup-use-map var use-maps) (($ $use-map name sym def uses) uses)))))) ;; A continuation is a control point if it has multiple predecessors, or ;; if its single predecessor has multiple successors. (define (control-point? k dfg) (match (lookup-predecessors k dfg) ((pred) (match (lookup-successors pred dfg) ((_) #f) (_ #t))) (_ #t))) (define (lookup-bound-syms k dfg) (match dfg (($ $dfg conts blocks use-maps) (match (lookup-cont k conts) (($ $kargs names syms body) syms)))))