/* Copyright (C) 1995,1996,1997,1998,2000,2001, 2002 Free Software Foundation, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 59 Temple Place, Suite 330, * Boston, MA 02111-1307 USA * * As a special exception, the Free Software Foundation gives permission * for additional uses of the text contained in its release of GUILE. * * The exception is that, if you link the GUILE library with other files * to produce an executable, this does not by itself cause the * resulting executable to be covered by the GNU General Public License. * Your use of that executable is in no way restricted on account of * linking the GUILE library code into it. * * This exception does not however invalidate any other reasons why * the executable file might be covered by the GNU General Public License. * * This exception applies only to the code released by the * Free Software Foundation under the name GUILE. If you copy * code from other Free Software Foundation releases into a copy of * GUILE, as the General Public License permits, the exception does * not apply to the code that you add in this way. To avoid misleading * anyone as to the status of such modified files, you must delete * this exception notice from them. * * If you write modifications of your own for GUILE, it is your choice * whether to permit this exception to apply to your modifications. * If you do not wish that, delete this exception notice. */ #include #include #include #include #include "libguile/validate.h" #include "libguile/coop-pthreads.h" #include "libguile/root.h" #include "libguile/eval.h" #include "libguile/async.h" #include "libguile/ports.h" #undef DEBUG /*** Queues */ static SCM make_queue () { return scm_cons (SCM_EOL, SCM_EOL); } static void enqueue (SCM q, SCM t) { SCM c = scm_cons (t, SCM_EOL); if (SCM_NULLP (SCM_CAR (q))) SCM_SETCAR (q, c); else SCM_SETCDR (SCM_CDR (q), c); SCM_SETCDR (q, c); } static SCM dequeue (SCM q) { SCM c = SCM_CAR (q); if (SCM_NULLP (c)) return SCM_BOOL_F; else { SCM_SETCAR (q, SCM_CDR (c)); if (SCM_NULLP (SCM_CAR (q))) SCM_SETCDR (q, SCM_EOL); return SCM_CAR (c); } } /*** Threads */ typedef struct scm_copt_thread { /* A condition variable for sleeping on. */ pthread_cond_t sleep_cond; /* A link for waiting queues. */ struct scm_copt_thread *next_waiting; scm_root_state *root; SCM handle; pthread_t pthread; SCM result; SCM joining_threads; /* For keeping track of the stack and registers. */ SCM_STACKITEM *base; SCM_STACKITEM *top; jmp_buf regs; } scm_copt_thread; static SCM make_thread (SCM creation_protects) { SCM z; scm_copt_thread *t = scm_gc_malloc (sizeof(*t), "thread"); z = scm_cell (scm_tc16_thread, (scm_t_bits)t); t->handle = z; t->result = creation_protects; t->base = NULL; t->joining_threads = make_queue (); pthread_cond_init (&t->sleep_cond, NULL); return z; } static void init_thread_creator (SCM thread, pthread_t th, scm_root_state *r) { scm_copt_thread *t = SCM_THREAD_DATA(thread); t->root = r; t->pthread = th; #ifdef DEBUG // fprintf (stderr, "%ld created %ld\n", pthread_self (), th); #endif } static void init_thread_creatant (SCM thread, SCM_STACKITEM *base) { scm_copt_thread *t = SCM_THREAD_DATA(thread); t->base = base; t->top = NULL; } static SCM thread_mark (SCM obj) { scm_copt_thread *t = SCM_THREAD_DATA (obj); scm_gc_mark (t->result); scm_gc_mark (t->joining_threads); return t->root->handle; } static int thread_print (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED) { scm_copt_thread *t = SCM_THREAD_DATA (exp); scm_puts ("#pthread != -1) { scm_putc (' ', port); scm_intprint (t->pthread, 10, port); } else scm_puts (" (exited)", port); scm_putc ('>', port); return 1; } static size_t thread_free (SCM obj) { scm_copt_thread *t = SCM_THREAD_DATA (obj); if (t->pthread != -1) abort (); scm_gc_free (t, sizeof (*t), "thread"); return 0; } /*** Fair mutexes */ /* POSIX mutexes are not necessarily fair but since we'd like to use a mutex for scheduling, we build a fair one on top of POSIX. */ typedef struct fair_mutex { pthread_mutex_t lock; scm_copt_thread *owner; scm_copt_thread *next_waiting, *last_waiting; } fair_mutex; static void fair_mutex_init (fair_mutex *m) { pthread_mutex_init (&m->lock, NULL); m->owner = NULL; m->next_waiting = NULL; m->last_waiting = NULL; } static void fair_mutex_lock_1 (fair_mutex *m, scm_copt_thread *t) { if (m->owner == NULL) m->owner = t; else { t->next_waiting = NULL; if (m->last_waiting) m->last_waiting->next_waiting = t; else m->next_waiting = t; m->last_waiting = t; do { pthread_cond_wait (&t->sleep_cond, &m->lock); } while (m->owner != t); assert (m->next_waiting == t); m->next_waiting = t->next_waiting; if (m->next_waiting == NULL) m->last_waiting = NULL; } pthread_mutex_unlock (&m->lock); } static void fair_mutex_lock (fair_mutex *m, scm_copt_thread *t) { pthread_mutex_lock (&m->lock); fair_mutex_lock_1 (m, t); } static void fair_mutex_unlock_1 (fair_mutex *m) { scm_copt_thread *t; pthread_mutex_lock (&m->lock); // fprintf (stderr, "%ld unlocking\n", m->owner->pthread); if ((t = m->next_waiting) != NULL) { m->owner = t; pthread_cond_signal (&t->sleep_cond); } else m->owner = NULL; // fprintf (stderr, "%ld unlocked\n", pthread_self ()); } static void fair_mutex_unlock (fair_mutex *m) { fair_mutex_unlock_1 (m); pthread_mutex_unlock (&m->lock); } /* Temporarily give up the mutex. This function makes sure that we are on the wait queue before starting the next thread. Otherwise the next thread might preempt us and we will have a hard time getting on the wait queue. */ #if 0 static void fair_mutex_yield (fair_mutex *m) { scm_copt_thread *self, *next; pthread_mutex_lock (&m->lock); /* get next thread */ if ((next = m->next_waiting) == NULL) { /* No use giving it up. */ pthread_mutex_unlock (&m->lock); return; } /* put us on queue */ self = m->owner; self->next_waiting = NULL; if (m->last_waiting) m->last_waiting->next_waiting = self; else m->next_waiting = self; m->last_waiting = self; /* wake up next thread */ m->owner = next; pthread_cond_signal (&next->sleep_cond); /* wait for mutex */ do { pthread_cond_wait (&self->sleep_cond, &m->lock); } while (m->owner != self); assert (m->next_waiting == self); m->next_waiting = self->next_waiting; if (m->next_waiting == NULL) m->last_waiting = NULL; pthread_mutex_unlock (&m->lock); } #else static void fair_mutex_yield (fair_mutex *m) { scm_copt_thread *self = m->owner; fair_mutex_unlock_1 (m); fair_mutex_lock_1 (m, self); } #endif static void fair_cond_wait (pthread_cond_t *c, fair_mutex *m) { scm_copt_thread *t = m->owner; fair_mutex_unlock_1 (m); pthread_cond_wait (c, &m->lock); fair_mutex_lock_1 (m, t); } /* Return 1 when the mutex was signalled and 0 when not. */ static int fair_cond_timedwait (pthread_cond_t *c, fair_mutex *m, struct timespec *at) { int res; scm_copt_thread *t = m->owner; fair_mutex_unlock_1 (m); res = pthread_cond_timedwait (c, &m->lock, at); /* XXX - signals? */ fair_mutex_lock_1 (m, t); return res == 0; } /*** Scheduling */ /* When a thread wants to execute Guile functions, it locks the guile_mutex. */ static fair_mutex guile_mutex; static SCM cur_thread; void *scm_i_copt_thread_data; void scm_i_copt_set_thread_data (void *data) { scm_copt_thread *t = SCM_THREAD_DATA (cur_thread); scm_i_copt_thread_data = data; t->root = (scm_root_state *)data; } static void resume (scm_copt_thread *t) { cur_thread = t->handle; scm_i_copt_thread_data = t->root; t->top = NULL; } static void enter_guile (scm_copt_thread *t) { fair_mutex_lock (&guile_mutex, t); resume (t); } static scm_copt_thread * suspend () { SCM cur = cur_thread; scm_copt_thread *c = SCM_THREAD_DATA (cur); /* record top of stack for the GC */ c->top = (SCM_STACKITEM *)&c; /* save registers. */ SCM_FLUSH_REGISTER_WINDOWS; setjmp (c->regs); return c; } static scm_copt_thread * leave_guile () { scm_copt_thread *c = suspend (); fair_mutex_unlock (&guile_mutex); return c; } int scm_i_switch_counter; SCM scm_yield () { /* Testing guile_mutex.next_waiting without locking guile_mutex.lock is OK since the outcome is not critical. Even when it changes after the test, we do the right thing. */ if (guile_mutex.next_waiting) { scm_copt_thread *t = suspend (); fair_mutex_yield (&guile_mutex); resume (t); } return SCM_BOOL_T; } /* Put the current thread to sleep until it is explicitely unblocked. */ static void block () { scm_copt_thread *t = suspend (); fair_cond_wait (&t->sleep_cond, &guile_mutex); resume (t); } /* Put the current thread to sleep until it is explicitely unblocked or until a signal arrives or until time AT (absolute time) is reached. Return 1 when it has been unblocked; 0 otherwise. */ static int timed_block (struct timespec *at) { int res; scm_copt_thread *t = suspend (); res = fair_cond_timedwait (&t->sleep_cond, &guile_mutex, at); resume (t); return res; } /* Unblock a sleeping thread. */ static void unblock (scm_copt_thread *t) { pthread_cond_signal (&t->sleep_cond); } /*** Thread creation */ static SCM all_threads; static int thread_count; typedef struct launch_data { SCM thread; SCM rootcont; scm_t_catch_body body; void *body_data; scm_t_catch_handler handler; void *handler_data; } launch_data; static SCM body_bootstrip (launch_data* data) { /* First save the new root continuation */ data->rootcont = scm_root->rootcont; return (data->body) (data->body_data); // return scm_call_0 (data->body); } static SCM handler_bootstrip (launch_data* data, SCM tag, SCM throw_args) { scm_root->rootcont = data->rootcont; return (data->handler) (data->handler_data, tag, throw_args); // return scm_apply_1 (data->handler, tag, throw_args); } static void really_launch (SCM_STACKITEM *base, launch_data *data) { SCM thread = data->thread; scm_copt_thread *t = SCM_THREAD_DATA (thread); init_thread_creatant (thread, base); enter_guile (t); data->rootcont = SCM_BOOL_F; t->result = scm_internal_cwdr ((scm_t_catch_body) body_bootstrip, data, (scm_t_catch_handler) handler_bootstrip, data, base); free (data); pthread_detach (t->pthread); all_threads = scm_delq (thread, all_threads); t->pthread = -1; thread_count--; leave_guile (); } static void * launch_thread (void *p) { really_launch ((SCM_STACKITEM *)&p, (launch_data *)p); return NULL; } static SCM create_thread (scm_t_catch_body body, void *body_data, scm_t_catch_handler handler, void *handler_data, SCM protects) { SCM thread; /* Make new thread. The first thing the new thread will do is to lock guile_mutex. Thus, we can safely complete its initialization after creating it. While the new thread starts, all its data is protected via all_threads. */ { pthread_t th; SCM root, old_winds; launch_data *data; /* Unwind wind chain. */ old_winds = scm_dynwinds; scm_dowinds (SCM_EOL, scm_ilength (scm_root->dynwinds)); /* Allocate thread locals. */ root = scm_make_root (scm_root->handle); data = scm_malloc (sizeof (launch_data)); /* Make thread. */ thread = make_thread (protects); data->thread = thread; data->body = body; data->body_data = body_data; data->handler = handler; data->handler_data = handler_data; pthread_create (&th, NULL, launch_thread, (void *) data); init_thread_creator (thread, th, SCM_ROOT_STATE (root)); all_threads = scm_cons (thread, all_threads); thread_count++; /* Return to old dynamic context. */ scm_dowinds (old_winds, - scm_ilength (old_winds)); } return thread; } SCM scm_call_with_new_thread (SCM argl) #define FUNC_NAME s_call_with_new_thread { SCM thunk, handler; /* Check arguments. */ { register SCM args = argl; if (!SCM_CONSP (args)) SCM_WRONG_NUM_ARGS (); thunk = SCM_CAR (args); SCM_ASSERT (SCM_NFALSEP (scm_thunk_p (thunk)), thunk, SCM_ARG1, s_call_with_new_thread); args = SCM_CDR (args); if (!SCM_CONSP (args)) SCM_WRONG_NUM_ARGS (); handler = SCM_CAR (args); SCM_ASSERT (SCM_NFALSEP (scm_procedure_p (handler)), handler, SCM_ARG2, s_call_with_new_thread); if (!SCM_NULLP (SCM_CDR (args))) SCM_WRONG_NUM_ARGS (); } return create_thread ((scm_t_catch_body) scm_call_0, thunk, (scm_t_catch_handler) scm_apply_1, handler, argl); } #undef FUNC_NAME SCM scm_spawn_thread (scm_t_catch_body body, void *body_data, scm_t_catch_handler handler, void *handler_data) { return create_thread (body, body_data, handler, handler_data, SCM_BOOL_F); } /*** Mutexes */ /* We implement our own mutex type since we want them to be 'fair', we want to do fancy things while waiting for them (like running asyncs) and we want to support waiting on many things at once. Also, we might add things that are nice for debugging. */ typedef struct scm_copt_mutex { /* the thread currently owning the mutex, or SCM_BOOL_F. */ SCM owner; /* how much the owner owns us. */ int level; /* the threads waiting for this mutex. */ SCM waiting; } scm_copt_mutex; static SCM mutex_mark (SCM mx) { scm_copt_mutex *m = SCM_MUTEX_DATA (mx); scm_gc_mark (m->owner); return m->waiting; } SCM scm_make_mutex () { SCM mx = scm_make_smob (scm_tc16_mutex); scm_copt_mutex *m = SCM_MUTEX_DATA (mx); m->owner = SCM_BOOL_F; m->level = 0; m->waiting = make_queue (); return mx; } SCM scm_lock_mutex (SCM mx) #define FUNC_NAME s_lock_mutex { scm_copt_mutex *m; SCM_ASSERT (SCM_MUTEXP (mx), mx, SCM_ARG1, FUNC_NAME); m = SCM_MUTEX_DATA (mx); if (m->owner == SCM_BOOL_F) m->owner = cur_thread; else if (m->owner == cur_thread) m->level++; else { while (m->owner != cur_thread) { enqueue (m->waiting, cur_thread); block (); SCM_ASYNC_TICK; } } return SCM_BOOL_T; } #undef FUNC_NAME SCM scm_try_mutex (SCM mx) #define FUNC_NAME s_try_mutex { scm_copt_mutex *m; SCM_ASSERT (SCM_MUTEXP (mx), mx, SCM_ARG1, FUNC_NAME); m = SCM_MUTEX_DATA (mx); if (m->owner == SCM_BOOL_F) m->owner = cur_thread; else if (m->owner == cur_thread) m->level++; else return SCM_BOOL_F; return SCM_BOOL_T; } #undef FUNC_NAME SCM scm_unlock_mutex (SCM mx) #define FUNC_NAME s_unlock_mutex { scm_copt_mutex *m; SCM_ASSERT (SCM_MUTEXP (mx), mx, SCM_ARG1, FUNC_NAME); m = SCM_MUTEX_DATA (mx); if (m->owner != cur_thread) { if (m->owner == SCM_BOOL_F) SCM_MISC_ERROR ("mutex not locked", SCM_EOL); else SCM_MISC_ERROR ("mutex not locked by this thread", SCM_EOL); } else if (m->level > 0) m->level--; else { SCM next = dequeue (m->waiting); if (!SCM_FALSEP (next)) { m->owner = next; unblock (SCM_THREAD_DATA (next)); scm_yield (); } else m->owner = SCM_BOOL_F; } return SCM_BOOL_T; } #undef FUNC_NAME /*** Condition variables */ /* Like mutexes, we implement our own condition variables using the primitives above. */ /* yeah, we don't need a structure for this, but more things (like a name) will likely follow... */ typedef struct scm_copt_cond { /* the threads waiting for this condition. */ SCM waiting; } scm_copt_cond; static SCM cond_mark (SCM cv) { scm_copt_cond *c = SCM_CONDVAR_DATA (cv); return c->waiting; } SCM scm_make_condition_variable (void) { SCM cv = scm_make_smob (scm_tc16_condvar); scm_copt_cond *c = SCM_CONDVAR_DATA (cv); c->waiting = make_queue (); return cv; } SCM scm_timed_wait_condition_variable (SCM cv, SCM mx, SCM t) #define FUNC_NAME s_wait_condition_variable { scm_copt_cond *c; struct timespec waittime; int res; SCM_ASSERT (SCM_CONDVARP (cv), cv, SCM_ARG1, s_wait_condition_variable); SCM_ASSERT (SCM_MUTEXP (mx), mx, SCM_ARG2, s_wait_condition_variable); if (!SCM_UNBNDP (t)) { if (SCM_CONSP (t)) { SCM_VALIDATE_UINT_COPY (3, SCM_CAR(t), waittime.tv_sec); SCM_VALIDATE_UINT_COPY (3, SCM_CDR(t), waittime.tv_nsec); waittime.tv_nsec *= 1000; } else { SCM_VALIDATE_UINT_COPY (3, t, waittime.tv_sec); waittime.tv_nsec = 0; } } c = SCM_CONDVAR_DATA (cv); enqueue (c->waiting, cur_thread); scm_unlock_mutex (mx); if (SCM_UNBNDP (t)) { block (); res = 1; } else res = timed_block (&waittime); scm_lock_mutex (mx); return SCM_BOOL (res); } #undef FUNC_NAME SCM scm_signal_condition_variable (SCM cv) #define FUNC_NAME s_signal_condition_variable { SCM th; scm_copt_cond *c; SCM_ASSERT (SCM_CONDVARP (cv), cv, SCM_ARG1, s_signal_condition_variable); c = SCM_CONDVAR_DATA (cv); if (!SCM_FALSEP (th = dequeue (c->waiting))) unblock (SCM_THREAD_DATA (th)); return SCM_BOOL_T; } #undef FUNC_NAME SCM scm_broadcast_condition_variable (SCM cv) #define FUNC_NAME s_broadcast_condition_variable { SCM th; scm_copt_cond *c; SCM_ASSERT (SCM_CONDVARP (cv), cv, SCM_ARG1, s_signal_condition_variable); c = SCM_CONDVAR_DATA (cv); while (!SCM_FALSEP (th = dequeue (c->waiting))) unblock (SCM_THREAD_DATA (th)); return SCM_BOOL_T; } #undef FUNC_NAME /*** Initialization */ void scm_threads_init (SCM_STACKITEM *base) { scm_tc16_thread = scm_make_smob_type ("thread", 0); scm_tc16_mutex = scm_make_smob_type ("mutex", sizeof (scm_copt_mutex)); scm_tc16_condvar = scm_make_smob_type ("condition-variable", sizeof (scm_copt_cond)); scm_i_switch_counter = SCM_I_THREAD_SWITCH_COUNT; fair_mutex_init (&guile_mutex); cur_thread = make_thread (SCM_BOOL_F); enter_guile (SCM_THREAD_DATA (cur_thread)); /* root is set later from init.c */ init_thread_creator (cur_thread, pthread_self(), NULL); init_thread_creatant (cur_thread, base); thread_count = 1; scm_gc_register_root (&all_threads); all_threads = scm_cons (cur_thread, SCM_EOL); scm_set_smob_mark (scm_tc16_thread, thread_mark); scm_set_smob_print (scm_tc16_thread, thread_print); scm_set_smob_free (scm_tc16_thread, thread_free); scm_set_smob_mark (scm_tc16_mutex, mutex_mark); scm_set_smob_mark (scm_tc16_condvar, cond_mark); } /*** Marking stacks */ /* XXX - what to do with this? Do we need to handle this for blocked threads as well? */ #ifdef __ia64__ # define SCM_MARK_BACKING_STORE() do { \ ucontext_t ctx; \ SCM_STACKITEM * top, * bot; \ getcontext (&ctx); \ scm_mark_locations ((SCM_STACKITEM *) &ctx.uc_mcontext, \ ((size_t) (sizeof (SCM_STACKITEM) - 1 + sizeof ctx.uc_mcontext) \ / sizeof (SCM_STACKITEM))); \ bot = (SCM_STACKITEM *) __libc_ia64_register_backing_store_base; \ top = (SCM_STACKITEM *) ctx.uc_mcontext.sc_ar_bsp; \ scm_mark_locations (bot, top - bot); } while (0) #else # define SCM_MARK_BACKING_STORE() #endif void scm_threads_mark_stacks (void) { volatile SCM c; for (c = all_threads; !SCM_NULLP (c); c = SCM_CDR (c)) { scm_copt_thread *t = SCM_THREAD_DATA (SCM_CAR (c)); if (t->base == NULL) { /* Not fully initialized yet. */ continue; } if (t->top == NULL) { /* Active thread */ /* stack_len is long rather than sizet in order to guarantee that &stack_len is long aligned */ #ifdef STACK_GROWS_UP long stack_len = ((SCM_STACKITEM *) (&t) - (SCM_STACKITEM *) thread->base); /* Protect from the C stack. This must be the first marking * done because it provides information about what objects * are "in-use" by the C code. "in-use" objects are those * for which the information about length and base address must * remain usable. This requirement is stricter than a liveness * requirement -- in particular, it constrains the implementation * of scm_resizuve. */ SCM_FLUSH_REGISTER_WINDOWS; /* This assumes that all registers are saved into the jmp_buf */ setjmp (scm_save_regs_gc_mark); scm_mark_locations ((SCM_STACKITEM *) scm_save_regs_gc_mark, ((size_t) sizeof scm_save_regs_gc_mark / sizeof (SCM_STACKITEM))); scm_mark_locations (((size_t) t->base, (sizet) stack_len)); #else long stack_len = ((SCM_STACKITEM *) t->base - (SCM_STACKITEM *) (&t)); /* Protect from the C stack. This must be the first marking * done because it provides information about what objects * are "in-use" by the C code. "in-use" objects are those * for which the information about length and base address must * remain usable. This requirement is stricter than a liveness * requirement -- in particular, it constrains the implementation * of scm_resizuve. */ SCM_FLUSH_REGISTER_WINDOWS; /* This assumes that all registers are saved into the jmp_buf */ setjmp (scm_save_regs_gc_mark); scm_mark_locations ((SCM_STACKITEM *) scm_save_regs_gc_mark, ((size_t) sizeof scm_save_regs_gc_mark / sizeof (SCM_STACKITEM))); scm_mark_locations ((SCM_STACKITEM *) &t, stack_len); #endif } else { /* Suspended thread */ #ifdef STACK_GROWS_UP long stack_len = t->top - t->base; scm_mark_locations (t->base, stack_len); #else long stack_len = t->base - t->top; scm_mark_locations (t->top, stack_len); #endif scm_mark_locations ((SCM_STACKITEM *) t->regs, ((size_t) sizeof(t->regs) / sizeof (SCM_STACKITEM))); } } } /*** Select */ int scm_internal_select (int nfds, SELECT_TYPE *readfds, SELECT_TYPE *writefds, SELECT_TYPE *exceptfds, struct timeval *timeout) { int res, eno; scm_copt_thread *c = leave_guile (); res = select (nfds, readfds, writefds, exceptfds, timeout); eno = errno; enter_guile (c); SCM_ASYNC_TICK; errno = eno; return res; } void scm_init_iselect () { } unsigned long scm_thread_usleep (unsigned long usec) { scm_copt_thread *c = leave_guile (); usleep (usec); enter_guile (c); return 0; } unsigned long scm_thread_sleep (unsigned long sec) { unsigned long res; scm_copt_thread *c = leave_guile (); res = sleep (sec); enter_guile (c); return res; } /*** Misc */ SCM scm_current_thread (void) { return cur_thread; } SCM scm_all_threads (void) { return all_threads; } scm_root_state * scm_i_thread_root (SCM thread) { if (thread == cur_thread) return scm_i_copt_thread_data; else return ((scm_copt_thread *)SCM_THREAD_DATA (thread))->root; } SCM scm_join_thread (SCM thread) #define FUNC_NAME s_join_thread { scm_copt_thread *t; SCM res; SCM_VALIDATE_THREAD (1, thread); t = SCM_THREAD_DATA (thread); if (t->pthread != -1) { scm_copt_thread *c = leave_guile (); pthread_join (t->pthread, NULL); enter_guile (c); } res = t->result; t->result = SCM_BOOL_F; return res; } #undef FUNC_NAME int scm_c_thread_exited_p (SCM thread) #define FUNC_NAME s_scm_thread_exited_p { scm_copt_thread *t; SCM_VALIDATE_THREAD (1, thread); t = SCM_THREAD_DATA (thread); return t->pthread == -1; } #undef FUNC_NAME /* Local Variables: c-file-style: "gnu" End: */