/* Copyright 1995-1998,2000-2006,2009-2014,2018
Free Software Foundation, Inc.
This file is part of Guile.
Guile is free software: you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Guile is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Guile. If not, see
. */
#ifdef HAVE_CONFIG_H
# include
#endif
#include
#include "array-handle.h"
#include "arrays.h"
#include "boolean.h"
#include "generalized-vectors.h"
#include "gsubr.h"
#include "list.h"
#include "numbers.h"
#include "pairs.h"
#include "ports.h"
#include "srfi-4.h"
#include "bitvectors.h"
/* Bit vectors. Would be nice if they were implemented on top of bytevectors,
* but alack, all we have is this crufty C.
*/
#define SCM_F_BITVECTOR_IMMUTABLE (0x80)
#define IS_BITVECTOR(obj) SCM_HAS_TYP7 ((obj), scm_tc7_bitvector)
#define IS_MUTABLE_BITVECTOR(x) \
(SCM_NIMP (x) && \
((SCM_CELL_TYPE (x) & (0x7f | SCM_F_BITVECTOR_IMMUTABLE)) \
== scm_tc7_bitvector))
#define BITVECTOR_LENGTH(obj) ((size_t)SCM_CELL_WORD_1(obj))
#define BITVECTOR_BITS(obj) ((scm_t_uint32 *)SCM_CELL_WORD_2(obj))
scm_t_uint32 *
scm_i_bitvector_bits (SCM vec)
{
if (!IS_BITVECTOR (vec))
abort ();
return BITVECTOR_BITS (vec);
}
int
scm_i_is_mutable_bitvector (SCM vec)
{
return IS_MUTABLE_BITVECTOR (vec);
}
int
scm_i_print_bitvector (SCM vec, SCM port, scm_print_state *pstate)
{
size_t bit_len = BITVECTOR_LENGTH (vec);
size_t word_len = (bit_len+31)/32;
scm_t_uint32 *bits = BITVECTOR_BITS (vec);
size_t i, j;
scm_puts ("#*", port);
for (i = 0; i < word_len; i++, bit_len -= 32)
{
scm_t_uint32 mask = 1;
for (j = 0; j < 32 && j < bit_len; j++, mask <<= 1)
scm_putc ((bits[i] & mask)? '1' : '0', port);
}
return 1;
}
SCM
scm_i_bitvector_equal_p (SCM vec1, SCM vec2)
{
size_t bit_len = BITVECTOR_LENGTH (vec1);
size_t word_len = (bit_len + 31) / 32;
scm_t_uint32 last_mask = ((scm_t_uint32)-1) >> (32*word_len - bit_len);
scm_t_uint32 *bits1 = BITVECTOR_BITS (vec1);
scm_t_uint32 *bits2 = BITVECTOR_BITS (vec2);
/* compare lengths */
if (BITVECTOR_LENGTH (vec2) != bit_len)
return SCM_BOOL_F;
/* avoid underflow in word_len-1 below. */
if (bit_len == 0)
return SCM_BOOL_T;
/* compare full words */
if (memcmp (bits1, bits2, sizeof (scm_t_uint32) * (word_len-1)))
return SCM_BOOL_F;
/* compare partial last words */
if ((bits1[word_len-1] & last_mask) != (bits2[word_len-1] & last_mask))
return SCM_BOOL_F;
return SCM_BOOL_T;
}
int
scm_is_bitvector (SCM vec)
{
return IS_BITVECTOR (vec);
}
SCM_DEFINE (scm_bitvector_p, "bitvector?", 1, 0, 0,
(SCM obj),
"Return @code{#t} when @var{obj} is a bitvector, else\n"
"return @code{#f}.")
#define FUNC_NAME s_scm_bitvector_p
{
return scm_from_bool (scm_is_bitvector (obj));
}
#undef FUNC_NAME
SCM
scm_c_make_bitvector (size_t len, SCM fill)
{
size_t word_len = (len + 31) / 32;
scm_t_uint32 *bits;
SCM res;
bits = scm_gc_malloc_pointerless (sizeof (scm_t_uint32) * word_len,
"bitvector");
res = scm_double_cell (scm_tc7_bitvector, len, (scm_t_bits)bits, 0);
if (!SCM_UNBNDP (fill))
scm_bitvector_fill_x (res, fill);
else
memset (bits, 0, sizeof (scm_t_uint32) * word_len);
return res;
}
SCM_DEFINE (scm_make_bitvector, "make-bitvector", 1, 1, 0,
(SCM len, SCM fill),
"Create a new bitvector of length @var{len} and\n"
"optionally initialize all elements to @var{fill}.")
#define FUNC_NAME s_scm_make_bitvector
{
return scm_c_make_bitvector (scm_to_size_t (len), fill);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bitvector, "bitvector", 0, 0, 1,
(SCM bits),
"Create a new bitvector with the arguments as elements.")
#define FUNC_NAME s_scm_bitvector
{
return scm_list_to_bitvector (bits);
}
#undef FUNC_NAME
size_t
scm_c_bitvector_length (SCM vec)
{
if (!IS_BITVECTOR (vec))
scm_wrong_type_arg_msg (NULL, 0, vec, "bitvector");
return BITVECTOR_LENGTH (vec);
}
SCM_DEFINE (scm_bitvector_length, "bitvector-length", 1, 0, 0,
(SCM vec),
"Return the length of the bitvector @var{vec}.")
#define FUNC_NAME s_scm_bitvector_length
{
return scm_from_size_t (scm_c_bitvector_length (vec));
}
#undef FUNC_NAME
const scm_t_uint32 *
scm_array_handle_bit_elements (scm_t_array_handle *h)
{
if (h->element_type != SCM_ARRAY_ELEMENT_TYPE_BIT)
scm_wrong_type_arg_msg (NULL, 0, h->array, "bit array");
return ((const scm_t_uint32 *) h->elements) + h->base/32;
}
scm_t_uint32 *
scm_array_handle_bit_writable_elements (scm_t_array_handle *h)
{
if (h->writable_elements != h->elements)
scm_wrong_type_arg_msg (NULL, 0, h->array, "mutable bit array");
return (scm_t_uint32 *) scm_array_handle_bit_elements (h);
}
size_t
scm_array_handle_bit_elements_offset (scm_t_array_handle *h)
{
return h->base % 32;
}
const scm_t_uint32 *
scm_bitvector_elements (SCM vec,
scm_t_array_handle *h,
size_t *offp,
size_t *lenp,
ssize_t *incp)
{
scm_array_get_handle (vec, h);
if (1 != scm_array_handle_rank (h))
{
scm_array_handle_release (h);
scm_wrong_type_arg_msg (NULL, 0, vec, "rank 1 bit array");
}
if (offp)
{
scm_t_array_dim *dim = scm_array_handle_dims (h);
*offp = scm_array_handle_bit_elements_offset (h);
*lenp = dim->ubnd - dim->lbnd + 1;
*incp = dim->inc;
}
return scm_array_handle_bit_elements (h);
}
scm_t_uint32 *
scm_bitvector_writable_elements (SCM vec,
scm_t_array_handle *h,
size_t *offp,
size_t *lenp,
ssize_t *incp)
{
const scm_t_uint32 *ret = scm_bitvector_elements (vec, h, offp, lenp, incp);
if (h->writable_elements != h->elements)
scm_wrong_type_arg_msg (NULL, 0, h->array, "mutable bit array");
return (scm_t_uint32 *) ret;
}
SCM
scm_c_bitvector_ref (SCM vec, size_t idx)
{
scm_t_array_handle handle;
const scm_t_uint32 *bits;
if (IS_BITVECTOR (vec))
{
if (idx >= BITVECTOR_LENGTH (vec))
scm_out_of_range (NULL, scm_from_size_t (idx));
bits = BITVECTOR_BITS(vec);
return scm_from_bool (bits[idx/32] & (1L << (idx%32)));
}
else
{
SCM res;
size_t len, off;
ssize_t inc;
bits = scm_bitvector_elements (vec, &handle, &off, &len, &inc);
if (idx >= len)
scm_out_of_range (NULL, scm_from_size_t (idx));
idx = idx*inc + off;
res = scm_from_bool (bits[idx/32] & (1L << (idx%32)));
scm_array_handle_release (&handle);
return res;
}
}
SCM_DEFINE (scm_bitvector_ref, "bitvector-ref", 2, 0, 0,
(SCM vec, SCM idx),
"Return the element at index @var{idx} of the bitvector\n"
"@var{vec}.")
#define FUNC_NAME s_scm_bitvector_ref
{
return scm_c_bitvector_ref (vec, scm_to_size_t (idx));
}
#undef FUNC_NAME
void
scm_c_bitvector_set_x (SCM vec, size_t idx, SCM val)
{
scm_t_array_handle handle;
scm_t_uint32 *bits, mask;
if (IS_MUTABLE_BITVECTOR (vec))
{
if (idx >= BITVECTOR_LENGTH (vec))
scm_out_of_range (NULL, scm_from_size_t (idx));
bits = BITVECTOR_BITS(vec);
}
else
{
size_t len, off;
ssize_t inc;
bits = scm_bitvector_writable_elements (vec, &handle, &off, &len, &inc);
if (idx >= len)
scm_out_of_range (NULL, scm_from_size_t (idx));
idx = idx*inc + off;
}
mask = 1L << (idx%32);
if (scm_is_true (val))
bits[idx/32] |= mask;
else
bits[idx/32] &= ~mask;
if (!IS_MUTABLE_BITVECTOR (vec))
scm_array_handle_release (&handle);
}
SCM_DEFINE (scm_bitvector_set_x, "bitvector-set!", 3, 0, 0,
(SCM vec, SCM idx, SCM val),
"Set the element at index @var{idx} of the bitvector\n"
"@var{vec} when @var{val} is true, else clear it.")
#define FUNC_NAME s_scm_bitvector_set_x
{
scm_c_bitvector_set_x (vec, scm_to_size_t (idx), val);
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM_DEFINE (scm_bitvector_fill_x, "bitvector-fill!", 2, 0, 0,
(SCM vec, SCM val),
"Set all elements of the bitvector\n"
"@var{vec} when @var{val} is true, else clear them.")
#define FUNC_NAME s_scm_bitvector_fill_x
{
scm_t_array_handle handle;
size_t off, len;
ssize_t inc;
scm_t_uint32 *bits;
bits = scm_bitvector_writable_elements (vec, &handle,
&off, &len, &inc);
if (off == 0 && inc == 1 && len > 0)
{
/* the usual case
*/
size_t word_len = (len + 31) / 32;
scm_t_uint32 last_mask = ((scm_t_uint32)-1) >> (32*word_len - len);
if (scm_is_true (val))
{
memset (bits, 0xFF, sizeof(scm_t_uint32)*(word_len-1));
bits[word_len-1] |= last_mask;
}
else
{
memset (bits, 0x00, sizeof(scm_t_uint32)*(word_len-1));
bits[word_len-1] &= ~last_mask;
}
}
else
{
size_t i;
for (i = 0; i < len; i++)
scm_array_handle_set (&handle, i*inc, val);
}
scm_array_handle_release (&handle);
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM_DEFINE (scm_list_to_bitvector, "list->bitvector", 1, 0, 0,
(SCM list),
"Return a new bitvector initialized with the elements\n"
"of @var{list}.")
#define FUNC_NAME s_scm_list_to_bitvector
{
size_t bit_len = scm_to_size_t (scm_length (list));
SCM vec = scm_c_make_bitvector (bit_len, SCM_UNDEFINED);
size_t word_len = (bit_len+31)/32;
scm_t_array_handle handle;
scm_t_uint32 *bits = scm_bitvector_writable_elements (vec, &handle,
NULL, NULL, NULL);
size_t i, j;
for (i = 0; i < word_len && scm_is_pair (list); i++, bit_len -= 32)
{
scm_t_uint32 mask = 1;
bits[i] = 0;
for (j = 0; j < 32 && j < bit_len;
j++, mask <<= 1, list = SCM_CDR (list))
if (scm_is_true (SCM_CAR (list)))
bits[i] |= mask;
}
scm_array_handle_release (&handle);
return vec;
}
#undef FUNC_NAME
SCM_DEFINE (scm_bitvector_to_list, "bitvector->list", 1, 0, 0,
(SCM vec),
"Return a new list initialized with the elements\n"
"of the bitvector @var{vec}.")
#define FUNC_NAME s_scm_bitvector_to_list
{
scm_t_array_handle handle;
size_t off, len;
ssize_t inc;
const scm_t_uint32 *bits;
SCM res = SCM_EOL;
bits = scm_bitvector_elements (vec, &handle, &off, &len, &inc);
if (off == 0 && inc == 1)
{
/* the usual case
*/
size_t word_len = (len + 31) / 32;
size_t i, j;
for (i = 0; i < word_len; i++, len -= 32)
{
scm_t_uint32 mask = 1;
for (j = 0; j < 32 && j < len; j++, mask <<= 1)
res = scm_cons ((bits[i] & mask)? SCM_BOOL_T : SCM_BOOL_F, res);
}
}
else
{
size_t i;
for (i = 0; i < len; i++)
res = scm_cons (scm_array_handle_ref (&handle, i*inc), res);
}
scm_array_handle_release (&handle);
return scm_reverse_x (res, SCM_EOL);
}
#undef FUNC_NAME
/* From mmix-arith.w by Knuth.
Here's a fun way to count the number of bits in a tetrabyte.
[This classical trick is called the ``Gillies--Miller method for
sideways addition'' in {\sl The Preparation of Programs for an
Electronic Digital Computer\/} by Wilkes, Wheeler, and Gill, second
edition (Reading, Mass.:\ Addison--Wesley, 1957), 191--193. Some of
the tricks used here were suggested by Balbir Singh, Peter
Rossmanith, and Stefan Schwoon.]
*/
static size_t
count_ones (scm_t_uint32 x)
{
x=x-((x>>1)&0x55555555);
x=(x&0x33333333)+((x>>2)&0x33333333);
x=(x+(x>>4))&0x0f0f0f0f;
x=x+(x>>8);
return (x+(x>>16)) & 0xff;
}
SCM_DEFINE (scm_bit_count, "bit-count", 2, 0, 0,
(SCM b, SCM bitvector),
"Return the number of occurrences of the boolean @var{b} in\n"
"@var{bitvector}.")
#define FUNC_NAME s_scm_bit_count
{
scm_t_array_handle handle;
size_t off, len;
ssize_t inc;
const scm_t_uint32 *bits;
int bit = scm_to_bool (b);
size_t count = 0;
bits = scm_bitvector_elements (bitvector, &handle, &off, &len, &inc);
if (off == 0 && inc == 1 && len > 0)
{
/* the usual case
*/
size_t word_len = (len + 31) / 32;
scm_t_uint32 last_mask = ((scm_t_uint32)-1) >> (32*word_len - len);
size_t i;
for (i = 0; i < word_len-1; i++)
count += count_ones (bits[i]);
count += count_ones (bits[i] & last_mask);
}
else
{
size_t i;
for (i = 0; i < len; i++)
if (scm_is_true (scm_array_handle_ref (&handle, i*inc)))
count++;
}
scm_array_handle_release (&handle);
return scm_from_size_t (bit? count : len-count);
}
#undef FUNC_NAME
/* returns 32 for x == 0.
*/
static size_t
find_first_one (scm_t_uint32 x)
{
size_t pos = 0;
/* do a binary search in x. */
if ((x & 0xFFFF) == 0)
x >>= 16, pos += 16;
if ((x & 0xFF) == 0)
x >>= 8, pos += 8;
if ((x & 0xF) == 0)
x >>= 4, pos += 4;
if ((x & 0x3) == 0)
x >>= 2, pos += 2;
if ((x & 0x1) == 0)
pos += 1;
return pos;
}
SCM_DEFINE (scm_bit_position, "bit-position", 3, 0, 0,
(SCM item, SCM v, SCM k),
"Return the index of the first occurrence of @var{item} in bit\n"
"vector @var{v}, starting from @var{k}. If there is no\n"
"@var{item} entry between @var{k} and the end of\n"
"@var{v}, then return @code{#f}. For example,\n"
"\n"
"@example\n"
"(bit-position #t #*000101 0) @result{} 3\n"
"(bit-position #f #*0001111 3) @result{} #f\n"
"@end example")
#define FUNC_NAME s_scm_bit_position
{
scm_t_array_handle handle;
size_t off, len, first_bit;
ssize_t inc;
const scm_t_uint32 *bits;
int bit = scm_to_bool (item);
SCM res = SCM_BOOL_F;
bits = scm_bitvector_elements (v, &handle, &off, &len, &inc);
first_bit = scm_to_unsigned_integer (k, 0, len);
if (off == 0 && inc == 1 && len > 0)
{
size_t i, word_len = (len + 31) / 32;
scm_t_uint32 last_mask = ((scm_t_uint32)-1) >> (32*word_len - len);
size_t first_word = first_bit / 32;
scm_t_uint32 first_mask =
((scm_t_uint32)-1) << (first_bit - 32*first_word);
scm_t_uint32 w;
for (i = first_word; i < word_len; i++)
{
w = (bit? bits[i] : ~bits[i]);
if (i == first_word)
w &= first_mask;
if (i == word_len-1)
w &= last_mask;
if (w)
{
res = scm_from_size_t (32*i + find_first_one (w));
break;
}
}
}
else
{
size_t i;
for (i = first_bit; i < len; i++)
{
SCM elt = scm_array_handle_ref (&handle, i*inc);
if ((bit && scm_is_true (elt)) || (!bit && scm_is_false (elt)))
{
res = scm_from_size_t (i);
break;
}
}
}
scm_array_handle_release (&handle);
return res;
}
#undef FUNC_NAME
SCM_DEFINE (scm_bit_set_star_x, "bit-set*!", 3, 0, 0,
(SCM v, SCM kv, SCM obj),
"Set entries of bit vector @var{v} to @var{obj}, with @var{kv}\n"
"selecting the entries to change. The return value is\n"
"unspecified.\n"
"\n"
"If @var{kv} is a bit vector, then those entries where it has\n"
"@code{#t} are the ones in @var{v} which are set to @var{obj}.\n"
"@var{v} must be at least as long as @var{kv}. When @var{obj}\n"
"is @code{#t} it's like @var{kv} is OR'ed into @var{v}. Or when\n"
"@var{obj} is @code{#f} it can be seen as an ANDNOT.\n"
"\n"
"@example\n"
"(define bv #*01000010)\n"
"(bit-set*! bv #*10010001 #t)\n"
"bv\n"
"@result{} #*11010011\n"
"@end example\n"
"\n"
"If @var{kv} is a u32vector, then its elements are\n"
"indices into @var{v} which are set to @var{obj}.\n"
"\n"
"@example\n"
"(define bv #*01000010)\n"
"(bit-set*! bv #u32(5 2 7) #t)\n"
"bv\n"
"@result{} #*01100111\n"
"@end example")
#define FUNC_NAME s_scm_bit_set_star_x
{
scm_t_array_handle v_handle;
size_t v_off, v_len;
ssize_t v_inc;
scm_t_uint32 *v_bits;
int bit;
/* Validate that OBJ is a boolean so this is done even if we don't
need BIT.
*/
bit = scm_to_bool (obj);
v_bits = scm_bitvector_writable_elements (v, &v_handle,
&v_off, &v_len, &v_inc);
if (scm_is_bitvector (kv))
{
scm_t_array_handle kv_handle;
size_t kv_off, kv_len;
ssize_t kv_inc;
const scm_t_uint32 *kv_bits;
kv_bits = scm_bitvector_elements (kv, &kv_handle,
&kv_off, &kv_len, &kv_inc);
if (v_len < kv_len)
scm_misc_error (NULL,
"bit vectors must have equal length",
SCM_EOL);
if (v_off == 0 && v_inc == 1 && kv_off == 0 && kv_inc == 1 && kv_len > 0)
{
size_t word_len = (kv_len + 31) / 32;
scm_t_uint32 last_mask = ((scm_t_uint32)-1) >> (32*word_len - kv_len);
size_t i;
if (bit == 0)
{
for (i = 0; i < word_len-1; i++)
v_bits[i] &= ~kv_bits[i];
v_bits[i] &= ~(kv_bits[i] & last_mask);
}
else
{
for (i = 0; i < word_len-1; i++)
v_bits[i] |= kv_bits[i];
v_bits[i] |= kv_bits[i] & last_mask;
}
}
else
{
size_t i;
for (i = 0; i < kv_len; i++)
if (scm_is_true (scm_array_handle_ref (&kv_handle, i*kv_inc)))
scm_array_handle_set (&v_handle, i*v_inc, obj);
}
scm_array_handle_release (&kv_handle);
}
else if (scm_is_true (scm_u32vector_p (kv)))
{
scm_t_array_handle kv_handle;
size_t i, kv_len;
ssize_t kv_inc;
const scm_t_uint32 *kv_elts;
kv_elts = scm_u32vector_elements (kv, &kv_handle, &kv_len, &kv_inc);
for (i = 0; i < kv_len; i++, kv_elts += kv_inc)
scm_array_handle_set (&v_handle, (*kv_elts)*v_inc, obj);
scm_array_handle_release (&kv_handle);
}
else
scm_wrong_type_arg_msg (NULL, 0, kv, "bitvector or u32vector");
scm_array_handle_release (&v_handle);
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM_DEFINE (scm_bit_count_star, "bit-count*", 3, 0, 0,
(SCM v, SCM kv, SCM obj),
"Return a count of how many entries in bit vector @var{v} are\n"
"equal to @var{obj}, with @var{kv} selecting the entries to\n"
"consider.\n"
"\n"
"If @var{kv} is a bit vector, then those entries where it has\n"
"@code{#t} are the ones in @var{v} which are considered.\n"
"@var{kv} and @var{v} must be the same length.\n"
"\n"
"If @var{kv} is a u32vector, then it contains\n"
"the indexes in @var{v} to consider.\n"
"\n"
"For example,\n"
"\n"
"@example\n"
"(bit-count* #*01110111 #*11001101 #t) @result{} 3\n"
"(bit-count* #*01110111 #u32(7 0 4) #f) @result{} 2\n"
"@end example")
#define FUNC_NAME s_scm_bit_count_star
{
scm_t_array_handle v_handle;
size_t v_off, v_len;
ssize_t v_inc;
const scm_t_uint32 *v_bits;
size_t count = 0;
int bit;
/* Validate that OBJ is a boolean so this is done even if we don't
need BIT.
*/
bit = scm_to_bool (obj);
v_bits = scm_bitvector_elements (v, &v_handle,
&v_off, &v_len, &v_inc);
if (scm_is_bitvector (kv))
{
scm_t_array_handle kv_handle;
size_t kv_off, kv_len;
ssize_t kv_inc;
const scm_t_uint32 *kv_bits;
kv_bits = scm_bitvector_elements (kv, &kv_handle,
&kv_off, &kv_len, &kv_inc);
if (v_len != kv_len)
scm_misc_error (NULL,
"bit vectors must have equal length",
SCM_EOL);
if (v_off == 0 && v_inc == 1 && kv_off == 0 && kv_inc == 1 && kv_len > 0)
{
size_t i, word_len = (kv_len + 31) / 32;
scm_t_uint32 last_mask = ((scm_t_uint32)-1) >> (32*word_len - kv_len);
scm_t_uint32 xor_mask = bit? 0 : ((scm_t_uint32)-1);
for (i = 0; i < word_len-1; i++)
count += count_ones ((v_bits[i]^xor_mask) & kv_bits[i]);
count += count_ones ((v_bits[i]^xor_mask) & kv_bits[i] & last_mask);
}
else
{
size_t i;
for (i = 0; i < kv_len; i++)
if (scm_is_true (scm_array_handle_ref (&kv_handle, i)))
{
SCM elt = scm_array_handle_ref (&v_handle, i*v_inc);
if ((bit && scm_is_true (elt)) || (!bit && scm_is_false (elt)))
count++;
}
}
scm_array_handle_release (&kv_handle);
}
else if (scm_is_true (scm_u32vector_p (kv)))
{
scm_t_array_handle kv_handle;
size_t i, kv_len;
ssize_t kv_inc;
const scm_t_uint32 *kv_elts;
kv_elts = scm_u32vector_elements (kv, &kv_handle, &kv_len, &kv_inc);
for (i = 0; i < kv_len; i++, kv_elts += kv_inc)
{
SCM elt = scm_array_handle_ref (&v_handle, (*kv_elts)*v_inc);
if ((bit && scm_is_true (elt)) || (!bit && scm_is_false (elt)))
count++;
}
scm_array_handle_release (&kv_handle);
}
else
scm_wrong_type_arg_msg (NULL, 0, kv, "bitvector or u32vector");
scm_array_handle_release (&v_handle);
return scm_from_size_t (count);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bit_invert_x, "bit-invert!", 1, 0, 0,
(SCM v),
"Modify the bit vector @var{v} by replacing each element with\n"
"its negation.")
#define FUNC_NAME s_scm_bit_invert_x
{
scm_t_array_handle handle;
size_t off, len;
ssize_t inc;
scm_t_uint32 *bits;
bits = scm_bitvector_writable_elements (v, &handle, &off, &len, &inc);
if (off == 0 && inc == 1 && len > 0)
{
size_t word_len = (len + 31) / 32;
scm_t_uint32 last_mask = ((scm_t_uint32)-1) >> (32*word_len - len);
size_t i;
for (i = 0; i < word_len-1; i++)
bits[i] = ~bits[i];
bits[i] = bits[i] ^ last_mask;
}
else
{
size_t i;
for (i = 0; i < len; i++)
scm_array_handle_set (&handle, i*inc,
scm_not (scm_array_handle_ref (&handle, i*inc)));
}
scm_array_handle_release (&handle);
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM
scm_istr2bve (SCM str)
{
scm_t_array_handle handle;
size_t len = scm_i_string_length (str);
SCM vec = scm_c_make_bitvector (len, SCM_UNDEFINED);
SCM res = vec;
scm_t_uint32 mask;
size_t k, j;
const char *c_str;
scm_t_uint32 *data;
data = scm_bitvector_writable_elements (vec, &handle, NULL, NULL, NULL);
c_str = scm_i_string_chars (str);
for (k = 0; k < (len + 31) / 32; k++)
{
data[k] = 0L;
j = len - k * 32;
if (j > 32)
j = 32;
for (mask = 1L; j--; mask <<= 1)
switch (*c_str++)
{
case '0':
break;
case '1':
data[k] |= mask;
break;
default:
res = SCM_BOOL_F;
goto exit;
}
}
exit:
scm_array_handle_release (&handle);
scm_remember_upto_here_1 (str);
return res;
}
SCM_VECTOR_IMPLEMENTATION (SCM_ARRAY_ELEMENT_TYPE_BIT, scm_make_bitvector)
void
scm_init_bitvectors ()
{
#include "bitvectors.x"
}