#include #include #include #include #include #include #define GC_API_ #include "gc-api.h" #include "semi-attrs.h" #include "large-object-space.h" #if GC_PRECISE #include "precise-roots-embedder.h" #else #error semi is a precise collector #endif struct semi_space { uintptr_t hp; uintptr_t limit; uintptr_t from_space; uintptr_t to_space; size_t page_size; size_t stolen_pages; uintptr_t base; size_t size; long count; }; struct gc_heap { struct semi_space semi_space; struct large_object_space large_object_space; }; // One mutator per space, can just store the heap in the mutator. struct gc_mutator { struct gc_heap heap; struct gc_mutator_roots *roots; }; static inline void clear_memory(uintptr_t addr, size_t size) { memset((char*)addr, 0, size); } static inline struct gc_heap* mutator_heap(struct gc_mutator *mut) { return &mut->heap; } static inline struct semi_space* heap_semi_space(struct gc_heap *heap) { return &heap->semi_space; } static inline struct large_object_space* heap_large_object_space(struct gc_heap *heap) { return &heap->large_object_space; } static inline struct semi_space* mutator_semi_space(struct gc_mutator *mut) { return heap_semi_space(mutator_heap(mut)); } static uintptr_t align_up(uintptr_t addr, size_t align) { return (addr + align - 1) & ~(align-1); } static void collect(struct gc_mutator *mut) GC_NEVER_INLINE; static void collect_for_alloc(struct gc_mutator *mut, size_t bytes) GC_NEVER_INLINE; static void visit(struct gc_edge edge, void *visit_data); static int semi_space_steal_pages(struct semi_space *space, size_t npages) { size_t stolen_pages = space->stolen_pages + npages; size_t old_limit_size = space->limit - space->to_space; size_t new_limit_size = (space->size - align_up(stolen_pages, 2) * space->page_size) / 2; if (space->to_space + new_limit_size < space->hp) return 0; space->limit = space->to_space + new_limit_size; space->stolen_pages = stolen_pages; madvise((void*)(space->to_space + new_limit_size), old_limit_size - new_limit_size, MADV_DONTNEED); madvise((void*)(space->from_space + new_limit_size), old_limit_size - new_limit_size, MADV_DONTNEED); return 1; } static void semi_space_set_stolen_pages(struct semi_space *space, size_t npages) { space->stolen_pages = npages; size_t limit_size = (space->size - align_up(npages, 2) * space->page_size) / 2; space->limit = space->to_space + limit_size; } static void flip(struct semi_space *space) { space->hp = space->from_space; space->from_space = space->to_space; space->to_space = space->hp; space->limit = space->hp + space->size / 2; space->count++; } static struct gc_ref copy(struct semi_space *space, struct gc_ref ref) { size_t size; gc_trace_object(ref, NULL, NULL, &size); struct gc_ref new_ref = gc_ref(space->hp); memcpy(gc_ref_heap_object(new_ref), gc_ref_heap_object(ref), size); gc_object_forward_nonatomic(ref, new_ref); space->hp += align_up(size, GC_ALIGNMENT); return new_ref; } static uintptr_t scan(struct gc_heap *heap, struct gc_ref grey) { size_t size; gc_trace_object(grey, visit, heap, &size); return gc_ref_value(grey) + align_up(size, GC_ALIGNMENT); } static struct gc_ref forward(struct semi_space *space, struct gc_ref obj) { uintptr_t forwarded = gc_object_forwarded_nonatomic(obj); return forwarded ? gc_ref(forwarded) : copy(space, obj); } static void visit_semi_space(struct gc_heap *heap, struct semi_space *space, struct gc_edge edge, struct gc_ref ref) { gc_edge_update(edge, forward(space, ref)); } static void visit_large_object_space(struct gc_heap *heap, struct large_object_space *space, struct gc_ref ref) { if (large_object_space_copy(space, ref)) gc_trace_object(ref, visit, heap, NULL); } static int semi_space_contains(struct semi_space *space, struct gc_ref ref) { uintptr_t addr = gc_ref_value(ref); return addr - space->base < space->size; } static void visit(struct gc_edge edge, void *visit_data) { struct gc_heap *heap = visit_data; struct gc_ref ref = gc_edge_ref(edge); if (!gc_ref_is_heap_object(ref)) return; if (semi_space_contains(heap_semi_space(heap), ref)) visit_semi_space(heap, heap_semi_space(heap), edge, ref); else if (large_object_space_contains(heap_large_object_space(heap), ref)) visit_large_object_space(heap, heap_large_object_space(heap), ref); else GC_CRASH(); } static void collect(struct gc_mutator *mut) { struct gc_heap *heap = mutator_heap(mut); struct semi_space *semi = heap_semi_space(heap); struct large_object_space *large = heap_large_object_space(heap); // fprintf(stderr, "start collect #%ld:\n", space->count); large_object_space_start_gc(large, 0); flip(semi); uintptr_t grey = semi->hp; if (mut->roots) gc_trace_mutator_roots(mut->roots, visit, heap); // fprintf(stderr, "pushed %zd bytes in roots\n", space->hp - grey); while(grey < semi->hp) grey = scan(heap, gc_ref(grey)); large_object_space_finish_gc(large, 0); semi_space_set_stolen_pages(semi, large->live_pages_at_last_collection); // fprintf(stderr, "%zd bytes copied\n", (space->size>>1)-(space->limit-space->hp)); } static void collect_for_alloc(struct gc_mutator *mut, size_t bytes) { collect(mut); struct semi_space *space = mutator_semi_space(mut); if (space->limit - space->hp < bytes) { fprintf(stderr, "ran out of space, heap size %zu\n", space->size); GC_CRASH(); } } void* gc_allocate_large(struct gc_mutator *mut, size_t size) { struct gc_heap *heap = mutator_heap(mut); struct large_object_space *space = heap_large_object_space(heap); struct semi_space *semi_space = heap_semi_space(heap); size_t npages = large_object_space_npages(space, size); if (!semi_space_steal_pages(semi_space, npages)) { collect(mut); if (!semi_space_steal_pages(semi_space, npages)) { fprintf(stderr, "ran out of space, heap size %zu\n", semi_space->size); GC_CRASH(); } } void *ret = large_object_space_alloc(space, npages); if (!ret) ret = large_object_space_obtain_and_alloc(space, npages); if (!ret) { perror("weird: we have the space but mmap didn't work"); GC_CRASH(); } return ret; } void* gc_allocate_small(struct gc_mutator *mut, size_t size) { struct semi_space *space = mutator_semi_space(mut); while (1) { uintptr_t addr = space->hp; uintptr_t new_hp = align_up (addr + size, GC_ALIGNMENT); if (space->limit < new_hp) { collect_for_alloc(mut, size); continue; } space->hp = new_hp; // FIXME: Allow allocator to avoid clearing memory? clear_memory(addr, size); return (void *)addr; } } void* gc_allocate_pointerless(struct gc_mutator *mut, size_t size) { return gc_allocate(mut, size); } static int initialize_semi_space(struct semi_space *space, size_t size) { // Allocate even numbers of pages. size_t page_size = getpagesize(); size = align_up(size, page_size * 2); void *mem = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); if (mem == MAP_FAILED) { perror("mmap failed"); return 0; } space->to_space = space->hp = space->base = (uintptr_t) mem; space->from_space = space->base + size / 2; space->page_size = page_size; space->stolen_pages = 0; space->size = size; space->count = 0; return 1; } #define FOR_EACH_GC_OPTION(M) \ M(GC_OPTION_FIXED_HEAP_SIZE, "fixed-heap-size") \ M(GC_OPTION_PARALLELISM, "parallelism") static void dump_available_gc_options(void) { fprintf(stderr, "available gc options:"); #define PRINT_OPTION(option, name) fprintf(stderr, " %s", name); FOR_EACH_GC_OPTION(PRINT_OPTION) #undef PRINT_OPTION fprintf(stderr, "\n"); } int gc_option_from_string(const char *str) { #define PARSE_OPTION(option, name) if (strcmp(str, name) == 0) return option; FOR_EACH_GC_OPTION(PARSE_OPTION) #undef PARSE_OPTION if (strcmp(str, "fixed-heap-size") == 0) return GC_OPTION_FIXED_HEAP_SIZE; if (strcmp(str, "parallelism") == 0) return GC_OPTION_PARALLELISM; fprintf(stderr, "bad gc option: '%s'\n", str); dump_available_gc_options(); return -1; } struct options { size_t fixed_heap_size; size_t parallelism; }; static size_t parse_size_t(double value) { GC_ASSERT(value >= 0); GC_ASSERT(value <= (size_t) -1); return value; } static int parse_options(int argc, struct gc_option argv[], struct options *options) { options->parallelism = 1; for (int i = 0; i < argc; i++) { switch (argv[i].option) { case GC_OPTION_FIXED_HEAP_SIZE: options->fixed_heap_size = parse_size_t(argv[i].value); break; case GC_OPTION_PARALLELISM: options->parallelism = parse_size_t(argv[i].value); break; default: GC_CRASH(); } } if (!options->fixed_heap_size) { fprintf(stderr, "fixed heap size is currently required\n"); return 0; } if (options->parallelism != 1) { fprintf(stderr, "parallelism unimplemented in semispace copying collector\n"); return 0; } return 1; } int gc_init(int argc, struct gc_option argv[], struct gc_stack_addr *stack_base, struct gc_heap **heap, struct gc_mutator **mut) { GC_ASSERT_EQ(gc_allocator_allocation_pointer_offset(), offsetof(struct semi_space, hp)); GC_ASSERT_EQ(gc_allocator_allocation_limit_offset(), offsetof(struct semi_space, limit)); struct options options = { 0, }; if (!parse_options(argc, argv, &options)) return 0; *mut = calloc(1, sizeof(struct gc_mutator)); if (!*mut) GC_CRASH(); *heap = mutator_heap(*mut); struct semi_space *space = mutator_semi_space(*mut); if (!initialize_semi_space(space, options.fixed_heap_size)) return 0; if (!large_object_space_init(heap_large_object_space(*heap), *heap)) return 0; // Ignore stack base, as we are precise. (*mut)->roots = NULL; return 1; } void gc_mutator_set_roots(struct gc_mutator *mut, struct gc_mutator_roots *roots) { mut->roots = roots; } void gc_heap_set_roots(struct gc_heap *heap, struct gc_heap_roots *roots) { GC_CRASH(); } struct gc_mutator* gc_init_for_thread(struct gc_stack_addr *base, struct gc_heap *heap) { fprintf(stderr, "Semispace copying collector not appropriate for multithreaded use.\n"); GC_CRASH(); } void gc_finish_for_thread(struct gc_mutator *space) { } void* gc_call_without_gc(struct gc_mutator *mut, void* (*f)(void*), void *data) { // Can't be threads, then there won't be collection. return f(data); } void gc_print_stats(struct gc_heap *heap) { struct semi_space *space = heap_semi_space(heap); printf("Completed %ld collections\n", space->count); printf("Heap size is %zd\n", space->size); }