/* * Copyright (C) 2012-2019 Free Software Foundation, Inc. * * This file is part of GNU lightning. * * GNU lightning is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU lightning is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public * License for more details. * * Authors: * Paulo Cesar Pereira de Andrade */ #if __X32 # define jit_arg_reg_p(i) 0 # define jit_arg_f_reg_p(i) 0 # define stack_framesize 20 # define stack_adjust 12 # define CVT_OFFSET -12 # define REAL_WORDSIZE 4 # define va_gp_increment 4 # define va_fp_increment 8 #else # if __CYGWIN__ # define jit_arg_reg_p(i) ((i) >= 0 && (i) < 4) # define jit_arg_f_reg_p(i) jit_arg_reg_p(i) # define stack_framesize 152 # define va_fp_increment 8 # else # define jit_arg_reg_p(i) ((i) >= 0 && (i) < 6) # define jit_arg_f_reg_p(i) ((i) >= 0 && (i) < 8) # define stack_framesize 56 # define first_gp_argument rdi # define first_gp_offset offsetof(jit_va_list_t, rdi) # define first_gp_from_offset(gp) ((gp) / 8) # define last_gp_argument r9 # define va_gp_max_offset \ (offsetof(jit_va_list_t, r9) - offsetof(jit_va_list_t, rdi) + 8) # define first_fp_argument xmm0 # define first_fp_offset offsetof(jit_va_list_t, xmm0) # define last_fp_argument xmm7 # define va_fp_max_offset \ (offsetof(jit_va_list_t, xmm7) - offsetof(jit_va_list_t, rdi) + 16) # define va_fp_increment 16 # define first_fp_from_offset(fp) (((fp) - va_gp_max_offset) / 16) # endif # define va_gp_increment 8 # define stack_adjust 8 # define CVT_OFFSET -8 # define REAL_WORDSIZE 8 #endif /* * Types */ #if __X32 || __CYGWIN__ typedef jit_pointer_t jit_va_list_t; #else typedef struct jit_va_list { int32_t gpoff; int32_t fpoff; jit_pointer_t over; jit_pointer_t save; /* Declared explicitly as int64 for the x32 abi */ int64_t rdi; int64_t rsi; int64_t rdx; int64_t rcx; int64_t r8; int64_t r9; jit_float64_t xmm0; jit_float64_t _up0; jit_float64_t xmm1; jit_float64_t _up1; jit_float64_t xmm2; jit_float64_t _up2; jit_float64_t xmm3; jit_float64_t _up3; jit_float64_t xmm4; jit_float64_t _up4; jit_float64_t xmm5; jit_float64_t _up5; jit_float64_t xmm6; jit_float64_t _up6; jit_float64_t xmm7; jit_float64_t _up7; } jit_va_list_t; #endif jit_cpu_t jit_cpu; static const jit_register_t _rvs[] = { #if __X32 { rc(gpr) | rc(rg8) | 0, "%eax" }, { rc(gpr) | rc(rg8) | 1, "%ecx" }, { rc(gpr) | rc(rg8) | 2, "%edx" }, { rc(sav) | rc(rg8) | rc(gpr) | 3, "%ebx" }, { rc(sav) | rc(gpr) | 6, "%esi" }, { rc(sav) | rc(gpr) | 7, "%edi" }, { rc(sav) | 4, "%esp" }, { rc(sav) | 5, "%ebp" }, { rc(xpr) | rc(fpr) | 0, "%xmm0" }, { rc(xpr) | rc(fpr) | 1, "%xmm1" }, { rc(xpr) | rc(fpr) | 2, "%xmm2" }, { rc(xpr) | rc(fpr) | 3, "%xmm3" }, { rc(xpr) | rc(fpr) | 4, "%xmm4" }, { rc(xpr) | rc(fpr) | 5, "%xmm5" }, { rc(xpr) | rc(fpr) | 6, "%xmm6" }, { rc(xpr) | rc(fpr) | 7, "%xmm7" }, #elif __CYGWIN__ { rc(gpr) | rc(rg8) | 0, "%rax" }, { rc(gpr) | rc(rg8) | rc(rg8) | 10, "%r10" }, { rc(gpr) | rc(rg8) | rc(rg8) | 11, "%r11" }, { rc(sav) | rc(rg8) | rc(gpr) | 3, "%rbx" }, { rc(sav) | rc(gpr) | 7, "%rdi" }, { rc(sav) | rc(gpr) | 6, "%rsi" }, { rc(sav) | rc(gpr) | 12, "%r12" }, { rc(sav) | rc(gpr) | 13, "%r13" }, { rc(sav) | rc(gpr) | 14, "%r14" }, { rc(sav) | rc(gpr) | 15, "%r15" }, { rc(arg) | rc(rg8) | rc(gpr) | 9, "%r9" }, { rc(arg) | rc(rg8) | rc(gpr) | 8, "%r8" }, { rc(arg) | rc(rg8) | rc(gpr) | 2, "%rdx" }, { rc(arg) | rc(rg8) | rc(gpr) | 1, "%rcx" }, { rc(sav) | 4, "%rsp" }, { rc(sav) | 5, "%rbp" }, { rc(xpr) | rc(fpr) | 4, "%xmm4" }, { rc(xpr) | rc(fpr) | 5, "%xmm5" }, { rc(sav) | rc(xpr) | rc(fpr) | 6, "%xmm6" }, { rc(sav) | rc(xpr) | rc(fpr) | 7, "%xmm7" }, { rc(sav) | rc(xpr) | rc(fpr) | 8, "%xmm8" }, { rc(sav) | rc(xpr) | rc(fpr) | 9, "%xmm9" }, { rc(sav) | rc(xpr) | rc(fpr) | 10, "%xmm10" }, { rc(sav) | rc(xpr) | rc(fpr) | 11, "%xmm11" }, { rc(sav) | rc(xpr) | rc(fpr) | 12, "%xmm12" }, { rc(sav) | rc(xpr) | rc(fpr) | 13, "%xmm13" }, { rc(sav) | rc(xpr) | rc(fpr) | 14, "%xmm14" }, { rc(sav) | rc(xpr) | rc(fpr) | 15, "%xmm15" }, { rc(xpr) | rc(arg) | rc(fpr) | 3, "%xmm3" }, { rc(xpr) | rc(arg) | rc(fpr) | 2, "%xmm2" }, { rc(xpr) | rc(arg) | rc(fpr) | 1, "%xmm1" }, { rc(xpr) | rc(arg) | rc(fpr) | 0, "%xmm0" }, #else /* %rax is a pseudo flag argument for varargs functions */ { rc(arg) | rc(gpr) | rc(rg8) | 0, "%rax" }, { rc(gpr) | rc(rg8) | 10, "%r10" }, { rc(gpr) | rc(rg8) | 11, "%r11" }, { rc(gpr) | rc(rg8) | 12, "%r12" }, { rc(sav) | rc(rg8) | rc(gpr) | 3, "%rbx" }, { rc(sav) | rc(rg8) | rc(gpr) | 13, "%r13" }, { rc(sav) | rc(rg8) | rc(gpr) | 14, "%r14" }, { rc(sav) | rc(rg8) | rc(gpr) | 15, "%r15" }, { rc(arg) | rc(rg8) | rc(gpr) | 9, "%r9" }, { rc(arg) | rc(rg8) | rc(gpr) | 8, "%r8" }, { rc(arg) | rc(rg8) | rc(gpr) | 1, "%rcx" }, { rc(arg) | rc(rg8) | rc(gpr) | 2, "%rdx" }, { rc(arg) | rc(rg8) | rc(gpr) | 6, "%rsi" }, { rc(arg) | rc(rg8) | rc(gpr) | 7, "%rdi" }, { rc(sav) | 4, "%rsp" }, { rc(sav) | 5, "%rbp" }, { rc(xpr) | rc(fpr) | 8, "%xmm8" }, { rc(xpr) | rc(fpr) | 9, "%xmm9" }, { rc(xpr) | rc(fpr) | 10, "%xmm10" }, { rc(xpr) | rc(fpr) | 11, "%xmm11" }, { rc(xpr) | rc(fpr) | 12, "%xmm12" }, { rc(xpr) | rc(fpr) | 13, "%xmm13" }, { rc(xpr) | rc(fpr) | 14, "%xmm14" }, { rc(xpr) | rc(fpr) | 15, "%xmm15" }, { rc(xpr) | rc(arg) | rc(fpr) | 7, "%xmm7" }, { rc(xpr) | rc(arg) | rc(fpr) | 6, "%xmm6" }, { rc(xpr) | rc(arg) | rc(fpr) | 5, "%xmm5" }, { rc(xpr) | rc(arg) | rc(fpr) | 4, "%xmm4" }, { rc(xpr) | rc(arg) | rc(fpr) | 3, "%xmm3" }, { rc(xpr) | rc(arg) | rc(fpr) | 2, "%xmm2" }, { rc(xpr) | rc(arg) | rc(fpr) | 1, "%xmm1" }, { rc(xpr) | rc(arg) | rc(fpr) | 0, "%xmm0" }, #endif { _NOREG, "" }, }; #include "x86-cpu.c" #include "x86-sse.c" jit_bool_t jit_get_cpu(void) { union { struct { uint32_t sse3 : 1; uint32_t pclmulqdq : 1; uint32_t dtes64 : 1; /* amd reserved */ uint32_t monitor : 1; uint32_t ds_cpl : 1; /* amd reserved */ uint32_t vmx : 1; /* amd reserved */ uint32_t smx : 1; /* amd reserved */ uint32_t est : 1; /* amd reserved */ uint32_t tm2 : 1; /* amd reserved */ uint32_t ssse3 : 1; uint32_t cntx_id : 1; /* amd reserved */ uint32_t __reserved0 : 1; uint32_t fma : 1; uint32_t cmpxchg16b : 1; uint32_t xtpr : 1; /* amd reserved */ uint32_t pdcm : 1; /* amd reserved */ uint32_t __reserved1 : 1; uint32_t pcid : 1; /* amd reserved */ uint32_t dca : 1; /* amd reserved */ uint32_t sse4_1 : 1; uint32_t sse4_2 : 1; uint32_t x2apic : 1; /* amd reserved */ uint32_t movbe : 1; /* amd reserved */ uint32_t popcnt : 1; uint32_t tsc : 1; /* amd reserved */ uint32_t aes : 1; uint32_t xsave : 1; uint32_t osxsave : 1; uint32_t avx : 1; uint32_t __reserved2 : 1; /* amd F16C */ uint32_t __reserved3 : 1; uint32_t __alwayszero : 1; /* amd RAZ */ } bits; jit_uword_t cpuid; } ecx; union { struct { uint32_t fpu : 1; uint32_t vme : 1; uint32_t de : 1; uint32_t pse : 1; uint32_t tsc : 1; uint32_t msr : 1; uint32_t pae : 1; uint32_t mce : 1; uint32_t cmpxchg8b : 1; uint32_t apic : 1; uint32_t __reserved0 : 1; uint32_t sep : 1; uint32_t mtrr : 1; uint32_t pge : 1; uint32_t mca : 1; uint32_t cmov : 1; uint32_t pat : 1; uint32_t pse36 : 1; uint32_t psn : 1; /* amd reserved */ uint32_t clfsh : 1; uint32_t __reserved1 : 1; uint32_t ds : 1; /* amd reserved */ uint32_t acpi : 1; /* amd reserved */ uint32_t mmx : 1; uint32_t fxsr : 1; uint32_t sse : 1; uint32_t sse2 : 1; uint32_t ss : 1; /* amd reserved */ uint32_t htt : 1; uint32_t tm : 1; /* amd reserved */ uint32_t __reserved2 : 1; uint32_t pbe : 1; /* amd reserved */ } bits; jit_uword_t cpuid; } edx; #if __X32 int ac, flags; #endif jit_uword_t eax, ebx; #if __X32 /* adapted from glibc __sysconf */ __asm__ volatile ("pushfl;\n\t" "popl %0;\n\t" "movl $0x240000, %1;\n\t" "xorl %0, %1;\n\t" "pushl %1;\n\t" "popfl;\n\t" "pushfl;\n\t" "popl %1;\n\t" "xorl %0, %1;\n\t" "pushl %0;\n\t" "popfl" : "=r" (flags), "=r" (ac)); /* i386 or i486 without cpuid */ if ((ac & (1 << 21)) == 0) /* probably without x87 as well */ return false; #endif /* query %eax = 1 function */ __asm__ volatile ( #if __X32 || __X64_32 "xchgl %%ebx, %1; cpuid; xchgl %%ebx, %1" #else "xchgq %%rbx, %1; cpuid; xchgq %%rbx, %1" #endif : "=a" (eax), "=r" (ebx), "=c" (ecx.cpuid), "=d" (edx.cpuid) : "0" (1)); jit_cpu.fpu = edx.bits.fpu; jit_cpu.cmpxchg8b = edx.bits.cmpxchg8b; jit_cpu.cmov = edx.bits.cmov; jit_cpu.mmx = edx.bits.mmx; jit_cpu.sse = edx.bits.sse; jit_cpu.sse2 = edx.bits.sse2; jit_cpu.sse3 = ecx.bits.sse3; jit_cpu.pclmulqdq = ecx.bits.pclmulqdq; jit_cpu.ssse3 = ecx.bits.ssse3; jit_cpu.fma = ecx.bits.fma; jit_cpu.cmpxchg16b = ecx.bits.cmpxchg16b; jit_cpu.sse4_1 = ecx.bits.sse4_1; jit_cpu.sse4_2 = ecx.bits.sse4_2; jit_cpu.movbe = ecx.bits.movbe; jit_cpu.popcnt = ecx.bits.popcnt; jit_cpu.aes = ecx.bits.aes; jit_cpu.avx = ecx.bits.avx; /* query %eax = 0x80000001 function */ __asm__ volatile ( #if __X64 # if __X64_32 "xchgl %%ebx, %1; cpuid; xchgl %%ebx, %1" # else "xchgq %%rbx, %1; cpuid; xchgq %%rbx, %1" # endif : "=a" (eax), "=r" (ebx), "=c" (ecx.cpuid), "=d" (edx.cpuid) : "0" (0x80000001)); jit_cpu.lahf = ecx.cpuid & 1; #endif return jit_cpu.sse2; } jit_bool_t jit_init(jit_state_t *_jit) { return jit_cpu.sse2; } void jit_epilog(jit_state_t *_jit) { /* TODO: Restore registers. */ } static jit_bool_t is_fpr_arg(jit_arg_abi_t arg) { switch (arg) { case JIT_ARG_ABI_UINT8: case JIT_ARG_ABI_INT8: case JIT_ARG_ABI_UINT16: case JIT_ARG_ABI_INT16: case JIT_ARG_ABI_UINT32: case JIT_ARG_ABI_INT32: case JIT_ARG_ABI_UINT64: case JIT_ARG_ABI_INT64: case JIT_ARG_ABI_POINTER: return 0; case JIT_ARG_ABI_FLOAT: case JIT_ARG_ABI_DOUBLE: return 1; default: abort(); } } static jit_bool_t is_gpr_arg(jit_arg_abi_t arg) { return !is_fpr_arg(arg); } static const jit_gpr_t abi_gpr_args[] = { #if __X32 /* No GPRs in args. */ #elif __CYGWIN__ JIT_GPR(_RCX), JIT_GPR(_RDX), JIT_GPR(_R8), JIT_GPR(_R9) #else JIT_GPR(_RDI), JIT_GPR(_RSI), JIT_GPR(_RDX), JIT_GPR(_RCX), JIT_GPR(_R8), JIT_GPR(_R9) #endif }; static const jit_fpr_t abi_fpr_args[] = { #if __X32 /* No FPRs in args. */ #elif __CYGWIN__ JIT_FPR(_XMM0), JIT_FPR(_XMM1), JIT_FPR(_XMM2), JIT_FPR(_XMM3) #else JIT_FPR(_XMM0), JIT_FPR(_XMM1), JIT_FPR(_XMM2), JIT_FPR(_XMM3), JIT_FPR(_XMM4), JIT_FPR(_XMM5), JIT_FPR(_XMM6), JIT_FPR(_XMM7) #endif }; static const int abi_gpr_arg_count = sizeof(abi_gpr_args) / sizeof(abi_gpr_args[0]); static const int abi_fpr_arg_count = sizeof(abi_fpr_args) / sizeof(abi_fpr_args[0]); struct abi_arg_iterator { const jit_arg_abi_t *abi; size_t argc; size_t arg_idx; size_t gpr_idx; size_t fpr_idx; size_t stack_size; }; static void next_abi_arg(struct abi_arg_iterator *iter, jit_arg_t *arg) { ASSERT(iter->arg_idx < iter->argc); jit_arg_abi_t abi = iter->abi[iter->arg_idx]; if (is_gpr_arg(abi)) { if (iter->gpr_idx < abi_gpr_arg_count) { arg->kind = JIT_ARG_LOC_GPR; arg->loc.gpr = abi_gpr_args[iter->gpr_idx++]; #ifdef __CYGWIN__ iter->fpr_idx++; #endif } else { abort(); } } else { ASSERT(is_fpr_arg(abi)); if (iter->fpr_idx < abi_fpr_arg_count) { arg->kind = JIT_ARG_LOC_FPR; arg->loc.fpr = abi_fpr_args[iter->fpr_idx++]; #ifdef __CYGWIN__ iter->gpr_idx++; #endif } else { abort(); } } iter->arg_idx++; } static void abi_gpr_to_mem(jit_state_t *_jit, jit_arg_abi_t abi, jit_gpr_t src, jit_gpr_t base, ptrdiff_t offset) { switch (abi) { case JIT_ARG_ABI_UINT8: case JIT_ARG_ABI_INT8: jit_stxi_c(_jit, offset, base, src); break; case JIT_ARG_ABI_UINT16: case JIT_ARG_ABI_INT16: jit_stxi_s(_jit, offset, base, src); break; case JIT_ARG_ABI_UINT32: case JIT_ARG_ABI_INT32: #if __WORDSIZE == 32 case JIT_ARG_ABI_POINTER: #endif jit_stxi_i(_jit, offset, base, src); break; #if __WORDSIZE == 64 case JIT_ARG_ABI_UINT64: case JIT_ARG_ABI_INT64: case JIT_ARG_ABI_POINTER: jit_stxi_l(_jit, offset, base, src); break; #endif default: abort(); } } static void abi_fpr_to_mem(jit_state_t *_jit, jit_arg_abi_t abi, jit_fpr_t src, jit_gpr_t base, ptrdiff_t offset) { switch (abi) { case JIT_ARG_ABI_FLOAT: jit_stxi_f(_jit, offset, base, src); break; case JIT_ARG_ABI_DOUBLE: jit_stxi_d(_jit, offset, base, src); break; default: abort(); } } static void abi_mem_to_gpr(jit_state_t *_jit, jit_arg_abi_t abi, jit_gpr_t dst, jit_gpr_t base, ptrdiff_t offset) { switch (abi) { case JIT_ARG_ABI_UINT8: jit_ldxi_uc(_jit, dst, base, offset); break; case JIT_ARG_ABI_INT8: jit_ldxi_c(_jit, dst, base, offset); break; case JIT_ARG_ABI_UINT16: jit_ldxi_us(_jit, dst, base, offset); break; case JIT_ARG_ABI_INT16: jit_ldxi_s(_jit, dst, base, offset); break; case JIT_ARG_ABI_UINT32: jit_ldxi_ui(_jit, dst, base, offset); break; case JIT_ARG_ABI_INT32: jit_ldxi_i(_jit, dst, base, offset); break; case JIT_ARG_ABI_UINT64: jit_ldxi_l(_jit, dst, base, offset); break; case JIT_ARG_ABI_INT64: jit_ldxi_l(_jit, dst, base, offset); break; case JIT_ARG_ABI_POINTER: jit_ldxi_l(_jit, dst, base, offset); break; default: abort(); } } static void abi_mem_to_fpr(jit_state_t *_jit, jit_arg_abi_t abi, jit_fpr_t dst, jit_gpr_t base, ptrdiff_t offset) { switch (abi) { case JIT_ARG_ABI_FLOAT: jit_ldxi_f(_jit, dst, base, offset); break; case JIT_ARG_ABI_DOUBLE: jit_ldxi_d(_jit, dst, base, offset); break; default: abort(); } } static void store_mem_abi_arg(jit_state_t *_jit, jit_arg_abi_t abi, jit_arg_t *arg, jit_gpr_t base, ptrdiff_t offset) { switch (arg->kind) { case JIT_ARG_LOC_GPR: abi_gpr_to_mem(_jit, abi, arg->loc.gpr, base, offset); break; case JIT_ARG_LOC_FPR: abi_fpr_to_mem(_jit, abi, arg->loc.fpr, base, offset); break; case JIT_ARG_LOC_MEM: if (is_gpr_arg(abi)) { jit_gpr_t tmp = get_temp_gpr(_jit); abi_mem_to_gpr(_jit, abi, tmp, arg->loc.mem.base, arg->loc.mem.offset); abi_gpr_to_mem(_jit, abi, tmp, base, offset); unget_temp_gpr(_jit); } else { jit_fpr_t tmp = get_temp_xpr(_jit); abi_mem_to_fpr(_jit, abi, tmp, arg->loc.mem.base, arg->loc.mem.offset); abi_fpr_to_mem(_jit, abi, tmp, base, offset); unget_temp_xpr(_jit); } break; default: abort(); } arg->kind = JIT_ARG_LOC_MEM; arg->loc.mem.base = base; arg->loc.mem.offset = offset; } static void shuffle_gpr_arg(jit_state_t *_jit, jit_gpr_t dst, size_t argc, jit_arg_t *args, size_t idx) { ASSERT(args[idx].kind == JIT_ARG_LOC_GPR); if (rn(args[idx].loc.gpr) == rn(dst)) return; /* Arg in a reg but it's not the right one. See if this reg holds some other arg, and swap if so. */ for (size_t j=idx+1; jargc = argc; iter->abi = abi; } static void prepare_args(jit_state_t *_jit, size_t argc, const jit_arg_abi_t abi[], jit_arg_t args[]) { jit_arg_t scratch; struct abi_arg_iterator iter; // Compute stack arg size. reset_abi_arg_iterator(&iter, argc, abi); for (size_t i = 0; i < argc; i++) next_abi_arg(&iter, &scratch); // Put all ABI memory arguments in place. We do this first because it might // free up some registers. if (iter.stack_size) { size_t stack_size = iter.stack_size; subi(_jit, _RSP_REGNO, _RSP_REGNO, stack_size); reset_abi_arg_iterator(&iter, argc, abi); for (size_t i = 0; i < argc; i++) { next_abi_arg(&iter, &scratch); if (scratch.kind == JIT_ARG_LOC_MEM) store_mem_abi_arg(_jit, abi[i], &args[i], scratch.loc.mem.base, scratch.loc.mem.offset); } } // We move on now to the ABI register arguments. All args whose values are in // registers are ABI register arguments, but they might not be the right // register for the correponding ABI argument. Note that there may be ABI // register arguments whose values are still in memory; we will load them // later. reset_abi_arg_iterator(&iter, argc, abi); for (size_t i = 0; i < argc; i++) { next_abi_arg(&iter, &scratch); switch (scratch.kind) { case JIT_ARG_LOC_GPR: if (args[i].kind == JIT_ARG_LOC_GPR) shuffle_gpr_arg(_jit, scratch.loc.gpr, argc, args, i); break; case JIT_ARG_LOC_FPR: if (args[i].kind == JIT_ARG_LOC_FPR) shuffle_fpr_arg(_jit, scratch.loc.fpr, argc, args, i); break; default: break; } } // The only thing that's left is ABI register arguments whose values are still // in memory; load them now. reset_abi_arg_iterator(&iter, argc, abi); for (size_t i = 0; i < argc; i++) { next_abi_arg(&iter, &scratch); switch (scratch.kind) { case JIT_ARG_LOC_GPR: if (args[i].kind == JIT_ARG_LOC_MEM) { abi_mem_to_gpr(_jit, abi[i], scratch.loc.gpr, args[i].loc.mem.base, args[i].loc.mem.offset); args[i].kind = JIT_ARG_LOC_GPR; args[i].loc.gpr = scratch.loc.gpr; } break; case JIT_ARG_LOC_FPR: if (args[i].kind == JIT_ARG_LOC_MEM) { abi_mem_to_fpr(_jit, abi[i], scratch.loc.fpr, args[i].loc.mem.base, args[i].loc.mem.offset); args[i].kind = JIT_ARG_LOC_FPR; args[i].loc.fpr = scratch.loc.fpr; } break; default: break; } } } static void cleanup_stack_after_call(jit_state_t *_jit, size_t argc, const jit_arg_abi_t abi[]) { jit_arg_t scratch; struct abi_arg_iterator iter; // Compute stack arg size. reset_abi_arg_iterator(&iter, argc, abi); for (size_t i = 0; i < argc; i++) next_abi_arg(&iter, &scratch); if (iter.stack_size) jit_addi(_jit, JIT_SP, JIT_SP, iter.stack_size); } void jit_calli(jit_state_t *_jit, jit_pointer_t f, size_t argc, const jit_arg_abi_t abi[], jit_arg_t args[]) { prepare_args(_jit, argc, abi, args); calli(_jit, (jit_word_t)f); cleanup_stack_after_call(_jit, argc, abi); } void jit_callr(jit_state_t *_jit, jit_gpr_t f, size_t argc, const jit_arg_abi_t abi[], jit_arg_t args[]) { prepare_args(_jit, argc, abi, args); callr(_jit, rn(f)); cleanup_stack_after_call(_jit, argc, abi); } void jit_receive(jit_state_t *_jit, size_t argc, const jit_arg_abi_t abi[], jit_arg_t args[]) { struct abi_arg_iterator iter; reset_abi_arg_iterator(&iter, argc, abi); for (size_t i = 0; i < argc; i++) next_abi_arg(&iter, &args[i]); } void jit_load_args(jit_state_t *_jit, size_t argc, const jit_arg_abi_t abi[], jit_arg_t args[], const jit_anyreg_t regs[]) { /* First shuffle any arguments that are already in registers into position. */ for (size_t i = 0; i < argc; i++) { switch (args[i].kind) { case JIT_ARG_LOC_IMM: abort(); case JIT_ARG_LOC_GPR: shuffle_gpr_arg(_jit, regs[i].gpr, argc, args, i); break; case JIT_ARG_LOC_FPR: shuffle_fpr_arg(_jit, regs[i].fpr, argc, args, i); break; case JIT_ARG_LOC_MEM: break; default: abort(); } } /* Now load spilled arguments from memory into registers. */ for (size_t i = 0; i < argc; i++) { if (args[i].kind == JIT_ARG_LOC_MEM) { if (is_gpr_arg(abi[i])) abi_mem_to_gpr(_jit, abi[i], regs[i].gpr, args[i].loc.mem.base, args[i].loc.mem.offset); else abi_mem_to_fpr(_jit, abi[i], regs[i].fpr, args[i].loc.mem.base, args[i].loc.mem.offset); } } } void jit_flush(void *fptr, void *tptr) { } static void jit_try_shorten(jit_state_t *_jit, jit_reloc_t reloc) { }