/* Copyright (C) 1995,1996 Free Software Foundation, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * As a special exception, the Free Software Foundation gives permission * for additional uses of the text contained in its release of GUILE. * * The exception is that, if you link the GUILE library with other files * to produce an executable, this does not by itself cause the * resulting executable to be covered by the GNU General Public License. * Your use of that executable is in no way restricted on account of * linking the GUILE library code into it. * * This exception does not however invalidate any other reasons why * the executable file might be covered by the GNU General Public License. * * This exception applies only to the code released by the * Free Software Foundation under the name GUILE. If you copy * code from other Free Software Foundation releases into a copy of * GUILE, as the General Public License permits, the exception does * not apply to the code that you add in this way. To avoid misleading * anyone as to the status of such modified files, you must delete * this exception notice from them. * * If you write modifications of your own for GUILE, it is your choice * whether to permit this exception to apply to your modifications. * If you do not wish that, delete this exception notice. */ #include #include #include "_scm.h" #include "genio.h" #include "unif.h" #include "numbers.h" #define DIGITS '0':case '1':case '2':case '3':case '4':\ case '5':case '6':case '7':case '8':case '9' /* IS_INF tests its floating point number for infiniteness */ #ifndef IS_INF # define IS_INF(x) ((x)==(x)/2) #endif /* MAXEXP is the maximum double precision expontent * FLTMAX is less than or scm_equal the largest single precision float */ #ifdef SCM_FLOATS # ifdef STDC_HEADERS # ifndef GO32 # include # endif /* ndef GO32 */ # endif /* def STDC_HEADERS */ # ifdef DBL_MAX_10_EXP # define MAXEXP DBL_MAX_10_EXP # else # define MAXEXP 308 /* IEEE doubles */ # endif /* def DBL_MAX_10_EXP */ # ifdef FLT_MAX # define FLTMAX FLT_MAX # else # define FLTMAX 1e+23 # endif /* def FLT_MAX */ #endif /* def SCM_FLOATS */ SCM_PROC(s_exact_p, "exact?", 1, 0, 0, scm_exact_p); #ifdef __STDC__ SCM scm_exact_p(SCM x) #else SCM scm_exact_p(x) SCM x; #endif { if SCM_INUMP(x) return SCM_BOOL_T; #ifdef SCM_BIGDIG if (SCM_NIMP(x) && SCM_BIGP(x)) return SCM_BOOL_T; #endif return SCM_BOOL_F; } SCM_PROC(s_odd_p, "odd?", 1, 0, 0, scm_odd_p); #ifdef __STDC__ SCM scm_odd_p(SCM n) #else SCM scm_odd_p(n) SCM n; #endif { #ifdef SCM_BIGDIG if SCM_NINUMP(n) { SCM_ASSERT(SCM_NIMP(n) && SCM_BIGP(n), n, SCM_ARG1, s_odd_p); return (1 & SCM_BDIGITS(n)[0]) ? SCM_BOOL_T : SCM_BOOL_F; } #else SCM_ASSERT(SCM_INUMP(n), n, SCM_ARG1, s_odd_p); #endif return (4 & (int)n) ? SCM_BOOL_T : SCM_BOOL_F; } SCM_PROC(s_even_p, "even?", 1, 0, 0, scm_even_p); #ifdef __STDC__ SCM scm_even_p(SCM n) #else SCM scm_even_p(n) SCM n; #endif { #ifdef SCM_BIGDIG if SCM_NINUMP(n) { SCM_ASSERT(SCM_NIMP(n) && SCM_BIGP(n), n, SCM_ARG1, s_even_p); return (1 & SCM_BDIGITS(n)[0]) ? SCM_BOOL_F : SCM_BOOL_T; } #else SCM_ASSERT(SCM_INUMP(n), n, SCM_ARG1, s_even_p); #endif return (4 & (int)n) ? SCM_BOOL_F : SCM_BOOL_T; } SCM_PROC(s_abs, "abs", 1, 0, 0, scm_abs); #ifdef __STDC__ SCM scm_abs(SCM x) #else SCM scm_abs(x) SCM x; #endif { #ifdef SCM_BIGDIG if SCM_NINUMP(x) { SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_abs); if (SCM_TYP16(x)==scm_tc16_bigpos) return x; return scm_copybig(x, 0); } #else SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_abs); #endif if (SCM_INUM(x) >= 0) return x; x = -SCM_INUM(x); if (!SCM_POSFIXABLE(x)) #ifdef SCM_BIGDIG return scm_long2big(x); #else scm_num_overflow (s_abs); #endif return SCM_MAKINUM(x); } SCM_PROC(s_quotient, "quotient", 2, 0, 0, scm_quotient); #ifdef __STDC__ SCM scm_quotient(SCM x, SCM y) #else SCM scm_quotient(x, y) SCM x; SCM y; #endif { register long z; #ifdef SCM_BIGDIG if SCM_NINUMP(x) { long w; SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_quotient); if SCM_NINUMP(y) { SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady); return scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BDIGITS(y), SCM_NUMDIGS(y), SCM_BIGSIGN(x) ^ SCM_BIGSIGN(y), 2); } z = SCM_INUM(y); SCM_ASRTGO(z, ov); if (1==z) return x; if (z < 0) z = -z; if (z < SCM_BIGRAD) { w = scm_copybig(x, SCM_BIGSIGN(x) ? (y>0) : (y<0)); scm_divbigdig(SCM_BDIGITS(w), SCM_NUMDIGS(w), (SCM_BIGDIG)z); return scm_normbig(w); } #ifndef SCM_DIGSTOOBIG w = scm_pseudolong(z); return scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), (SCM_BIGDIG *)&w, SCM_DIGSPERLONG, SCM_BIGSIGN(x) ? (y>0) : (y<0), 2); #else { SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; scm_longdigs(z, zdigs); return scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), zdigs, SCM_DIGSPERLONG, SCM_BIGSIGN(x) ? (y>0) : (y<0), 2); } #endif } if SCM_NINUMP(y) { # ifndef RECKLESS if (!(SCM_NIMP(y) && SCM_BIGP(y))) bady: scm_wta(y, (char *)SCM_ARG2, s_quotient); # endif return SCM_INUM0; } #else SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_quotient); SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_quotient); #endif if ((z = SCM_INUM(y))==0) ov: scm_num_overflow (s_quotient); z = SCM_INUM(x)/z; #ifdef BADIVSGNS { #if (__TURBOC__==1) long t = ((y<0) ? -SCM_INUM(x) : SCM_INUM(x))%SCM_INUM(y); #else long t = SCM_INUM(x)%SCM_INUM(y); #endif if (t==0) ; else if (t < 0) if (x < 0) ; else z--; else if (x < 0) z++; } #endif if (!SCM_FIXABLE(z)) #ifdef SCM_BIGDIG return scm_long2big(z); #else scm_num_overflow (s_quotient); #endif return SCM_MAKINUM(z); } SCM_PROC(s_remainder, "remainder", 2, 0, 0, scm_remainder); #ifdef __STDC__ SCM scm_remainder(SCM x, SCM y) #else SCM scm_remainder(x, y) SCM x; SCM y; #endif { register long z; #ifdef SCM_BIGDIG if SCM_NINUMP(x) { SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_remainder); if SCM_NINUMP(y) { SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady); return scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BDIGITS(y), SCM_NUMDIGS(y), SCM_BIGSIGN(x), 0); } if (!(z = SCM_INUM(y))) goto ov; return scm_divbigint(x, z, SCM_BIGSIGN(x), 0); } if SCM_NINUMP(y) { # ifndef RECKLESS if (!(SCM_NIMP(y) && SCM_BIGP(y))) bady: scm_wta(y, (char *)SCM_ARG2, s_remainder); # endif return x; } #else SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_remainder); SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_remainder); #endif if (!(z = SCM_INUM(y))) ov: scm_num_overflow (s_remainder); #if (__TURBOC__==1) if (z < 0) z = -z; #endif z = SCM_INUM(x)%z; #ifdef BADIVSGNS if (!z) ; else if (z < 0) if (x < 0) ; else z += SCM_INUM(y); else if (x < 0) z -= SCM_INUM(y); #endif return SCM_MAKINUM(z); } SCM_PROC(s_modulo, "modulo", 2, 0, 0, scm_modulo); #ifdef __STDC__ SCM scm_modulo(SCM x, SCM y) #else SCM scm_modulo(x, y) SCM x; SCM y; #endif { register long yy, z; #ifdef SCM_BIGDIG if SCM_NINUMP(x) { SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_modulo); if SCM_NINUMP(y) { SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady); return scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BDIGITS(y), SCM_NUMDIGS(y), SCM_BIGSIGN(y), (SCM_BIGSIGN(x) ^ SCM_BIGSIGN(y)) ? 1 : 0); } if (!(z = SCM_INUM(y))) goto ov; return scm_divbigint(x, z, y < 0, (SCM_BIGSIGN(x) ? (y > 0) : (y < 0)) ? 1 : 0); } if SCM_NINUMP(y) { # ifndef RECKLESS if (!(SCM_NIMP(y) && SCM_BIGP(y))) bady: scm_wta(y, (char *)SCM_ARG2, s_modulo); # endif return (SCM_BIGSIGN(y) ? (x>0) : (x<0)) ? scm_sum(x, y) : x; } #else SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_modulo); SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_modulo); #endif if (!(yy = SCM_INUM(y))) ov: scm_num_overflow (s_modulo); #if (__TURBOC__==1) z = SCM_INUM(x); z = ((yy<0) ? -z : z)%yy; #else z = SCM_INUM(x)%yy; #endif return SCM_MAKINUM(((yy<0) ? (z>0) : (z<0)) ? z+yy : z); } SCM_PROC1 (s_gcd, "gcd", scm_tc7_asubr, scm_gcd); #ifdef __STDC__ SCM scm_gcd(SCM x, SCM y) #else SCM scm_gcd(x, y) SCM x; SCM y; #endif { register long u, v, k, t; if SCM_UNBNDP(y) return SCM_UNBNDP(x) ? SCM_INUM0 : x; tailrec: #ifdef SCM_BIGDIG if SCM_NINUMP(x) { big_gcd: SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_gcd); if SCM_BIGSIGN(x) x = scm_copybig(x, 0); newy: if SCM_NINUMP(y) { SCM_ASSERT(SCM_NIMP(y) && SCM_BIGP(y), y, SCM_ARG2, s_gcd); if SCM_BIGSIGN(y) y = scm_copybig(y, 0); switch (scm_bigcomp(x, y)) { case -1: swaprec: t = scm_remainder(x, y); x = y; y = t; goto tailrec; case 0: return x; case 1: y = scm_remainder(y, x); goto newy; } /* instead of the switch, we could just return scm_gcd(y, scm_modulo(x, y)); */ } if (SCM_INUM0==y) return x; goto swaprec; } if SCM_NINUMP(y) { t=x; x=y; y=t; goto big_gcd;} #else SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_gcd); SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_gcd); #endif u = SCM_INUM(x); if (u<0) u = -u; v = SCM_INUM(y); if (v<0) v = -v; else if (0==v) goto getout; if (0==u) {u = v; goto getout;} for (k = 1;!(1 & ((int)u|(int)v));k <<= 1, u >>= 1, v >>= 1); if (1 & (int)u) t = -v; else { t = u; b3: t = SCM_SRS(t, 1); } if (!(1 & (int)t)) goto b3; if (t>0) u = t; else v = -t; if ((t = u-v)) goto b3; u = u*k; getout: if (!SCM_POSFIXABLE(u)) #ifdef SCM_BIGDIG return scm_long2big(u); #else scm_num_overflow (s_gcd); #endif return SCM_MAKINUM(u); } SCM_PROC1 (s_lcm, "lcm", scm_tc7_asubr, scm_lcm); #ifdef __STDC__ SCM scm_lcm(SCM n1, SCM n2) #else SCM scm_lcm(n1, n2) SCM n1; SCM n2; #endif { SCM d; if SCM_UNBNDP(n2) { n2 = SCM_MAKINUM(1L); if SCM_UNBNDP(n1) return n2; } d = scm_gcd(n1, n2); if (SCM_INUM0==d) return d; return scm_abs(scm_product(n1, scm_quotient(n2, d))); } #ifndef SCM_BIGDIG # ifndef SCM_FLOATS # define scm_long2num SCM_MAKINUM # endif #endif #ifndef scm_long2num SCM_PROC1 (s_logand, "logand", scm_tc7_asubr, scm_logand); #ifdef __STDC__ SCM scm_logand(SCM n1, SCM n2) #else SCM scm_logand(n1, n2) SCM n1; SCM n2; #endif { return scm_long2num(scm_num2long(n1, (char *)SCM_ARG1, s_logand) & scm_num2long(n2, (char *)SCM_ARG2, s_logand)); } SCM_PROC1 (s_logior, "logior", scm_tc7_asubr, scm_logior); #ifdef __STDC__ SCM scm_logior(SCM n1, SCM n2) #else SCM scm_logior(n1, n2) SCM n1; SCM n2; #endif { return scm_long2num(scm_num2long(n1, (char *)SCM_ARG1, s_logior) | scm_num2long(n2, (char *)SCM_ARG2, s_logior)); } SCM_PROC1 (s_logxor, "logxor", scm_tc7_asubr, scm_logxor); #ifdef __STDC__ SCM scm_logxor(SCM n1, SCM n2) #else SCM scm_logxor(n1, n2) SCM n1; SCM n2; #endif { return scm_long2num(scm_num2long(n1, (char *)SCM_ARG1, s_logxor) ^ scm_num2long(n2, (char *)SCM_ARG2, s_logxor)); } SCM_PROC(s_logtest, "logtest", 2, 0, 0, scm_logtest); #ifdef __STDC__ SCM scm_logtest(SCM n1, SCM n2) #else SCM scm_logtest(n1, n2) SCM n1; SCM n2; #endif { return ((scm_num2long (n1, (char *)SCM_ARG1, s_logtest) & scm_num2long (n2, (char *)SCM_ARG2, s_logtest)) ? SCM_BOOL_T : SCM_BOOL_F); } SCM_PROC(s_logbit_p, "logbit?", 2, 0, 0, scm_logbit_p); #ifdef __STDC__ SCM scm_logbit_p(SCM n1, SCM n2) #else SCM scm_logbit_p(n1, n2) SCM n1; SCM n2; #endif { return (((1 << scm_num2long (n1, (char *)SCM_ARG1, s_logtest)) & scm_num2long (n2, (char *)SCM_ARG2, s_logtest)) ? SCM_BOOL_T : SCM_BOOL_F); } #else SCM_PROC1 (s_logand, "logand", scm_tc7_asubr, scm_logand); #ifdef __STDC__ SCM scm_logand(SCM n1, SCM n2) #else SCM scm_logand(n1, n2) SCM n1; SCM n2; #endif { SCM_ASSERT(SCM_INUMP(n1), n1, SCM_ARG1, s_logand); SCM_ASSERT(SCM_INUMP(n2), n2, SCM_ARG2, s_logand); return SCM_MAKINUM(SCM_INUM(n1) & SCM_INUM(n2)); } SCM_PROC1 (s_logior, "logior", scm_tc7_asubr, scm_logior); #ifdef __STDC__ SCM scm_logior(SCM n1, SCM n2) #else SCM scm_logior(n1, n2) SCM n1; SCM n2; #endif { SCM_ASSERT(SCM_INUMP(n1), n1, SCM_ARG1, s_logior); SCM_ASSERT(SCM_INUMP(n2), n2, SCM_ARG2, s_logior); return SCM_MAKINUM(SCM_INUM(n1) | SCM_INUM(n2)); } SCM_PROC1 (s_logxor, "logxor", scm_tc7_asubr, scm_logxor); #ifdef __STDC__ SCM scm_logxor(SCM n1, SCM n2) #else SCM scm_logxor(n1, n2) SCM n1; SCM n2; #endif { SCM_ASSERT(SCM_INUMP(n1), n1, SCM_ARG1, s_logxor); SCM_ASSERT(SCM_INUMP(n2), n2, SCM_ARG2, s_logxor); return SCM_MAKINUM(SCM_INUM(n1) ^ SCM_INUM(n2)); } SCM_PROC(s_logtest, "logtest", 2, 0, 0, scm_logtest); #ifdef __STDC__ SCM scm_logtest(SCM n1, SCM n2) #else SCM scm_logtest(n1, n2) SCM n1; SCM n2; #endif { SCM_ASSERT(SCM_INUMP(n1), n1, SCM_ARG1, s_logtest); SCM_ASSERT(SCM_INUMP(n2), n2, SCM_ARG2, s_logtest); return (SCM_INUM(n1) & SCM_INUM(n2)) ? SCM_BOOL_T : SCM_BOOL_F; } SCM_PROC(s_logbit_p, "logbit?", 2, 0, 0, scm_logbit_p); #ifdef __STDC__ SCM scm_logbit_p(SCM n1, SCM n2) #else SCM scm_logbit_p(n1, n2) SCM n1; SCM n2; #endif { SCM_ASSERT(SCM_INUMP(n1) && SCM_INUM(n1) >= 0, n1, SCM_ARG1, s_logbit_p); SCM_ASSERT(SCM_INUMP(n2), n2, SCM_ARG2, s_logbit_p); return ((1 << SCM_INUM(n1)) & SCM_INUM(n2)) ? SCM_BOOL_T : SCM_BOOL_F; } #endif SCM_PROC(s_lognot, "lognot", 1, 0, 0, scm_lognot); #ifdef __STDC__ SCM scm_lognot(SCM n) #else SCM scm_lognot(n) SCM n; #endif { SCM_ASSERT(SCM_INUMP(n), n, SCM_ARG1, s_lognot); return scm_difference(SCM_MAKINUM(-1L), n); } SCM_PROC(s_integer_expt, "integer-expt", 2, 0, 0, scm_integer_expt); #ifdef __STDC__ SCM scm_integer_expt(SCM z1, SCM z2) #else SCM scm_integer_expt(z1, z2) SCM z1; SCM z2; #endif { SCM acc = SCM_MAKINUM(1L); #ifdef SCM_BIGDIG if (SCM_INUM0==z1 || acc==z1) return z1; else if (SCM_MAKINUM(-1L)==z1) return SCM_BOOL_F==scm_even_p(z2)?z1:acc; #endif SCM_ASSERT(SCM_INUMP(z2), z2, SCM_ARG2, s_integer_expt); z2 = SCM_INUM(z2); if (z2 < 0) { z2 = -z2; z1 = scm_divide(z1, SCM_UNDEFINED); } while(1) { if (0==z2) return acc; if (1==z2) return scm_product(acc, z1); if (z2 & 1) acc = scm_product(acc, z1); z1 = scm_product(z1, z1); z2 >>= 1; } } SCM_PROC(s_ash, "ash", 2, 0, 0, scm_ash); #ifdef __STDC__ SCM scm_ash(SCM n, SCM cnt) #else SCM scm_ash(n, cnt) SCM n; SCM cnt; #endif { SCM res = SCM_INUM(n); SCM_ASSERT(SCM_INUMP(cnt), cnt, SCM_ARG2, s_ash); #ifdef SCM_BIGDIG if(cnt < 0) { res = scm_integer_expt(SCM_MAKINUM(2), SCM_MAKINUM(-SCM_INUM(cnt))); if (SCM_NFALSEP(scm_negative_p(n))) return scm_sum(SCM_MAKINUM(-1L), scm_quotient(scm_sum(SCM_MAKINUM(1L), n), res)); else return scm_quotient(n, res); } else return scm_product(n, scm_integer_expt(SCM_MAKINUM(2), cnt)); #else SCM_ASSERT(SCM_INUMP(n), n, SCM_ARG1, s_ash); cnt = SCM_INUM(cnt); if (cnt < 0) return SCM_MAKINUM(SCM_SRS(res, -cnt)); res = SCM_MAKINUM(res<>cnt != SCM_INUM(n)) scm_num_overflow (s_ash); return res; #endif } SCM_PROC(s_bit_extract, "bit-extract", 3, 0, 0, scm_bit_extract); #ifdef __STDC__ SCM scm_bit_extract(SCM n, SCM start, SCM end) #else SCM scm_bit_extract(n, start, end) SCM n; SCM start; SCM end; #endif { SCM_ASSERT(SCM_INUMP(start), start, SCM_ARG2, s_bit_extract); SCM_ASSERT(SCM_INUMP(end), end, SCM_ARG3, s_bit_extract); start = SCM_INUM(start); end = SCM_INUM(end); SCM_ASSERT(end >= start, SCM_MAKINUM(end), SCM_OUTOFRANGE, s_bit_extract); #ifdef SCM_BIGDIG if SCM_NINUMP(n) return scm_logand(scm_difference(scm_integer_expt(SCM_MAKINUM(2), SCM_MAKINUM(end - start)), SCM_MAKINUM(1L)), scm_ash(n, SCM_MAKINUM(-start))); #else SCM_ASSERT(SCM_INUMP(n), n, SCM_ARG1, s_bit_extract); #endif return SCM_MAKINUM((SCM_INUM(n)>>start) & ((1L<<(end-start))-1)); } char scm_logtab[] = {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; SCM_PROC(s_logcount, "logcount", 1, 0, 0, scm_logcount); #ifdef __STDC__ SCM scm_logcount (SCM n) #else SCM scm_logcount(n) SCM n; #endif { register unsigned long c = 0; register long nn; #ifdef SCM_BIGDIG if SCM_NINUMP(n) { scm_sizet i; SCM_BIGDIG *ds, d; SCM_ASSERT(SCM_NIMP(n) && SCM_BIGP(n), n, SCM_ARG1, s_logcount); if SCM_BIGSIGN(n) return scm_logcount(scm_difference(SCM_MAKINUM(-1L), n)); ds = SCM_BDIGITS(n); for(i = SCM_NUMDIGS(n); i--; ) for(d = ds[i]; d; d >>= 4) c += scm_logtab[15 & d]; return SCM_MAKINUM(c); } #else SCM_ASSERT(SCM_INUMP(n), n, SCM_ARG1, s_logcount); #endif if ((nn = SCM_INUM(n)) < 0) nn = -1 - nn; for(; nn; nn >>= 4) c += scm_logtab[15 & nn]; return SCM_MAKINUM(c); } char scm_ilentab[] = {0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4}; SCM_PROC(s_integer_length, "integer-length", 1, 0, 0, scm_integer_length); #ifdef __STDC__ SCM scm_integer_length(SCM n) #else SCM scm_integer_length(n) SCM n; #endif { register unsigned long c = 0; register long nn; unsigned int l = 4; #ifdef SCM_BIGDIG if SCM_NINUMP(n) { SCM_BIGDIG *ds, d; SCM_ASSERT(SCM_NIMP(n) && SCM_BIGP(n), n, SCM_ARG1, s_integer_length); if SCM_BIGSIGN(n) return scm_integer_length(scm_difference(SCM_MAKINUM(-1L), n)); ds = SCM_BDIGITS(n); d = ds[c = SCM_NUMDIGS(n)-1]; for(c *= SCM_BITSPERDIG; d; d >>= 4) {c += 4; l = scm_ilentab[15 & d];} return SCM_MAKINUM(c - 4 + l); } #else SCM_ASSERT(SCM_INUMP(n), n, SCM_ARG1, s_integer_length); #endif if ((nn = SCM_INUM(n)) < 0) nn = -1 - nn; for(;nn; nn >>= 4) {c += 4; l = scm_ilentab[15 & nn];} return SCM_MAKINUM(c - 4 + l); } #ifdef SCM_BIGDIG char s_bignum[] = "bignum"; #ifdef __STDC__ SCM scm_mkbig(scm_sizet nlen, int sign) #else SCM scm_mkbig(nlen, sign) scm_sizet nlen; int sign; #endif { SCM v = nlen; if (((v << 16) >> 16) != nlen) scm_wta(SCM_MAKINUM(nlen), (char *)SCM_NALLOC, s_bignum); SCM_NEWCELL(v); SCM_DEFER_INTS; SCM_SETCHARS(v, scm_must_malloc((long)(nlen*sizeof(SCM_BIGDIG)), s_bignum)); SCM_SETNUMDIGS(v, nlen, sign?scm_tc16_bigneg:scm_tc16_bigpos); SCM_ALLOW_INTS; return v; } #ifdef __STDC__ SCM scm_big2inum(SCM b, scm_sizet l) #else SCM scm_big2inum(b, l) SCM b; scm_sizet l; #endif { unsigned long num = 0; SCM_BIGDIG *tmp = SCM_BDIGITS(b); while (l--) num = SCM_BIGUP(num) + tmp[l]; if (SCM_TYP16(b)==scm_tc16_bigpos) { if SCM_POSFIXABLE(num) return SCM_MAKINUM(num); } else if SCM_UNEGFIXABLE(num) return SCM_MAKINUM(-num); return b; } char s_adjbig[] = "scm_adjbig"; #ifdef __STDC__ SCM scm_adjbig(SCM b, scm_sizet nlen) #else SCM scm_adjbig(b, nlen) SCM b; scm_sizet nlen; #endif { long nsiz = nlen; if (((nsiz << 16) >> 16) != nlen) scm_wta(SCM_MAKINUM(nsiz), (char *)SCM_NALLOC, s_adjbig); SCM_DEFER_INTS; SCM_SETCHARS(b, (SCM_BIGDIG *)scm_must_realloc((char *)SCM_CHARS(b), (long)(SCM_NUMDIGS(b)*sizeof(SCM_BIGDIG)), (long)(nsiz*sizeof(SCM_BIGDIG)), s_adjbig)); SCM_SETNUMDIGS(b, nsiz, SCM_TYP16(b)); SCM_ALLOW_INTS; return b; } #ifdef __STDC__ SCM scm_normbig(SCM b) #else SCM scm_normbig(b) SCM b; #endif { #ifndef _UNICOS scm_sizet nlen = SCM_NUMDIGS(b); #else int nlen = SCM_NUMDIGS(b); /* unsigned nlen breaks on Cray when nlen => 0 */ #endif SCM_BIGDIG *zds = SCM_BDIGITS(b); while (nlen-- && !zds[nlen]); nlen++; if (nlen * SCM_BITSPERDIG/SCM_CHAR_BIT <= sizeof(SCM)) if SCM_INUMP(b = scm_big2inum(b, (scm_sizet)nlen)) return b; if (SCM_NUMDIGS(b)==nlen) return b; return scm_adjbig(b, (scm_sizet)nlen); } #ifdef __STDC__ SCM scm_copybig(SCM b, int sign) #else SCM scm_copybig(b, sign) SCM b; int sign; #endif { scm_sizet i = SCM_NUMDIGS(b); SCM ans = scm_mkbig(i, sign); SCM_BIGDIG *src = SCM_BDIGITS(b), *dst = SCM_BDIGITS(ans); while (i--) dst[i] = src[i]; return ans; } #ifdef __STDC__ SCM scm_long2big(long n) #else SCM scm_long2big(n) long n; #endif { scm_sizet i = 0; SCM_BIGDIG *digits; SCM ans = scm_mkbig(SCM_DIGSPERLONG, n<0); digits = SCM_BDIGITS(ans); if (n < 0) n = -n; while (i < SCM_DIGSPERLONG) { digits[i++] = SCM_BIGLO(n); n = SCM_BIGDN((unsigned long)n); } return ans; } #ifdef LONGLONGS #ifdef __STDC__ SCM scm_long_long2big(long_long n) #else SCM scm_long_long2big(n) long_long n; #endif { scm_sizet i; SCM_BIGDIG *digits; SCM ans; int n_digits; { long tn; tn = (long) n; if ((long long)tn == n) return scm_long2big (tn); } { long_long tn; for (tn = n, n_digits = 0; tn; ++n_digits, tn = SCM_BIGDN ((ulong_long)tn)) ; } i = 0; ans = scm_mkbig(n_digits, n<0); digits = SCM_BDIGITS(ans); if (n < 0) n = -n; while (i < n_digits) { digits[i++] = SCM_BIGLO(n); n = SCM_BIGDN((ulong_long)n); } return ans; } #endif #ifdef __STDC__ SCM scm_2ulong2big(unsigned long * np) #else SCM scm_2ulong2big(np) unsigned long * np; #endif { unsigned long n; scm_sizet i; SCM_BIGDIG *digits; SCM ans; ans = scm_mkbig(2 * SCM_DIGSPERLONG, 0); digits = SCM_BDIGITS(ans); n = np[0]; for (i = 0; i < SCM_DIGSPERLONG; ++i) { digits[i] = SCM_BIGLO(n); n = SCM_BIGDN((unsigned long)n); } n = np[1]; for (i = 0; i < SCM_DIGSPERLONG; ++i) { digits[i + SCM_DIGSPERLONG] = SCM_BIGLO(n); n = SCM_BIGDN((unsigned long)n); } return ans; } #ifdef __STDC__ SCM scm_ulong2big(unsigned long n) #else SCM scm_ulong2big(n) unsigned long n; #endif { scm_sizet i = 0; SCM_BIGDIG *digits; SCM ans = scm_mkbig(SCM_DIGSPERLONG, 0); digits = SCM_BDIGITS(ans); while (i < SCM_DIGSPERLONG) { digits[i++] = SCM_BIGLO(n); n = SCM_BIGDN(n); } return ans; } #ifdef __STDC__ int scm_bigcomp(SCM x, SCM y) #else int scm_bigcomp(x, y) SCM x; SCM y; #endif { int xsign = SCM_BIGSIGN(x); int ysign = SCM_BIGSIGN(y); scm_sizet xlen, ylen; if (ysign < xsign) return 1; if (ysign > xsign) return -1; if ((ylen = SCM_NUMDIGS(y)) > (xlen = SCM_NUMDIGS(x))) return (xsign) ? -1 : 1; if (ylen < xlen) return (xsign) ? 1 : -1; while(xlen-- && (SCM_BDIGITS(y)[xlen]==SCM_BDIGITS(x)[xlen])); if (-1==xlen) return 0; return (SCM_BDIGITS(y)[xlen] > SCM_BDIGITS(x)[xlen]) ? (xsign ? -1 : 1) : (xsign ? 1 : -1); } #ifndef SCM_DIGSTOOBIG #ifdef __STDC__ long scm_pseudolong(long x) #else long scm_pseudolong(x) long x; #endif { union { long l; SCM_BIGDIG bd[SCM_DIGSPERLONG]; } p; scm_sizet i = 0; if (x < 0) x = -x; while (i < SCM_DIGSPERLONG) {p.bd[i++] = SCM_BIGLO(x); x = SCM_BIGDN(x);} /* p.bd[0] = SCM_BIGLO(x); p.bd[1] = SCM_BIGDN(x); */ return p.l; } #else #ifdef __STDC__ void scm_longdigs(long x, SCM_BIGDIG digs[]) #else void scm_longdigs(x, digs) long x; SCM_BIGDIG digs[]; #endif { scm_sizet i = 0; if (x < 0) x = -x; while (i < SCM_DIGSPERLONG) {digs[i++] = SCM_BIGLO(x); x = SCM_BIGDN(x);} } #endif #ifdef __STDC__ SCM scm_addbig(SCM_BIGDIG *x, scm_sizet nx, int xsgn, SCM bigy, int sgny) #else SCM scm_addbig(x, nx, xsgn, bigy, sgny) SCM_BIGDIG *x; scm_sizet nx; int xsgn; SCM bigy; int sgny; #endif { /* Assumes nx <= SCM_NUMDIGS(bigy) */ /* Assumes xsgn and sgny scm_equal either 0 or 0x0100 */ long num = 0; scm_sizet i = 0, ny = SCM_NUMDIGS(bigy); SCM z = scm_copybig(bigy, SCM_BIGSIGN(bigy) ^ sgny); SCM_BIGDIG *zds = SCM_BDIGITS(z); if (xsgn ^ SCM_BIGSIGN(z)) { do { num += (long) zds[i] - x[i]; if (num < 0) {zds[i] = num + SCM_BIGRAD; num = -1;} else {zds[i] = SCM_BIGLO(num); num = 0;} } while (++i < nx); if (num && nx==ny) { num = 1; i = 0; SCM_CAR(z) ^= 0x0100; do { num += (SCM_BIGRAD-1) - zds[i]; zds[i++] = SCM_BIGLO(num); num = SCM_BIGDN(num); } while (i < ny); } else while (i < ny) { num += zds[i]; if (num < 0) {zds[i++] = num + SCM_BIGRAD; num = -1;} else {zds[i++] = SCM_BIGLO(num); num = 0;} } } else { do { num += (long) zds[i] + x[i]; zds[i++] = SCM_BIGLO(num); num = SCM_BIGDN(num); } while (i < nx); if (!num) return z; while (i < ny) { num += zds[i]; zds[i++] = SCM_BIGLO(num); num = SCM_BIGDN(num); if (!num) return z; } if (num) {z = scm_adjbig(z, ny+1); SCM_BDIGITS(z)[ny] = num; return z;} } return scm_normbig(z); } #ifdef __STDC__ SCM scm_mulbig(SCM_BIGDIG *x, scm_sizet nx, SCM_BIGDIG *y, scm_sizet ny, int sgn) #else SCM scm_mulbig(x, nx, y, ny, sgn) SCM_BIGDIG *x; scm_sizet nx; SCM_BIGDIG *y; scm_sizet ny; int sgn; #endif { scm_sizet i = 0, j = nx + ny; unsigned long n = 0; SCM z = scm_mkbig(j, sgn); SCM_BIGDIG *zds = SCM_BDIGITS(z); while (j--) zds[j] = 0; do { j = 0; if (x[i]) { do { n += zds[i + j] + ((unsigned long) x[i] * y[j]); zds[i + j++] = SCM_BIGLO(n); n = SCM_BIGDN(n); } while (j < ny); if (n) {zds[i + j] = n; n = 0;} } } while (++i < nx); return scm_normbig(z); } #ifdef __STDC__ unsigned int scm_divbigdig(SCM_BIGDIG *ds, scm_sizet h, SCM_BIGDIG div) #else unsigned int scm_divbigdig(ds, h, div) SCM_BIGDIG *ds; scm_sizet h; SCM_BIGDIG div; #endif { register unsigned long t2 = 0; while(h--) { t2 = SCM_BIGUP(t2) + ds[h]; ds[h] = t2 / div; t2 %= div; } return t2; } #ifdef __STDC__ SCM scm_divbigint(SCM x, long z, int sgn, int mode) #else SCM scm_divbigint(x, z, sgn, mode) SCM x; long z; int sgn; int mode; #endif { if (z < 0) z = -z; if (z < SCM_BIGRAD) { register unsigned long t2 = 0; register SCM_BIGDIG *ds = SCM_BDIGITS(x); scm_sizet nd = SCM_NUMDIGS(x); while(nd--) t2 = (SCM_BIGUP(t2) + ds[nd]) % z; if (mode) t2 = z - t2; return SCM_MAKINUM(sgn ? -t2 : t2); } { #ifndef SCM_DIGSTOOBIG unsigned long t2 = scm_pseudolong(z); return scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), (SCM_BIGDIG *)&t2, SCM_DIGSPERLONG, sgn, mode); #else SCM_BIGDIG t2[SCM_DIGSPERLONG]; scm_longdigs(z, t2); return scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), t2, SCM_DIGSPERLONG, sgn, mode); #endif } } #ifdef __STDC__ SCM scm_divbigbig(SCM_BIGDIG *x, scm_sizet nx, SCM_BIGDIG *y, scm_sizet ny, int sgn, int modes) #else SCM scm_divbigbig(x, nx, y, ny, sgn, modes) SCM_BIGDIG *x; scm_sizet nx; SCM_BIGDIG *y; scm_sizet ny; int sgn; int modes; #endif { /* modes description 0 remainder 1 scm_modulo 2 quotient 3 quotient but returns 0 if division is not exact. */ scm_sizet i = 0, j = 0; long num = 0; unsigned long t2 = 0; SCM z, newy; SCM_BIGDIG d = 0, qhat, *zds, *yds; /* algorithm requires nx >= ny */ if (nx < ny) switch (modes) { case 0: /* remainder -- just return x */ z = scm_mkbig(nx, sgn); zds = SCM_BDIGITS(z); do {zds[i] = x[i];} while (++i < nx); return z; case 1: /* scm_modulo -- return y-x */ z = scm_mkbig(ny, sgn); zds = SCM_BDIGITS(z); do { num += (long) y[i] - x[i]; if (num < 0) {zds[i] = num + SCM_BIGRAD; num = -1;} else {zds[i] = num; num = 0;} } while (++i < nx); while (i < ny) { num += y[i]; if (num < 0) {zds[i++] = num + SCM_BIGRAD; num = -1;} else {zds[i++] = num; num = 0;} } goto doadj; case 2: return SCM_INUM0; /* quotient is zero */ case 3: return 0; /* the division is not exact */ } z = scm_mkbig(nx==ny ? nx+2 : nx+1, sgn); zds = SCM_BDIGITS(z); if (nx==ny) zds[nx+1] = 0; while(!y[ny-1]) ny--; /* in case y came in as a psuedolong */ if (y[ny-1] < (SCM_BIGRAD>>1)) { /* normalize operands */ d = SCM_BIGRAD/(y[ny-1]+1); newy = scm_mkbig(ny, 0); yds = SCM_BDIGITS(newy); while(j < ny) {t2 += (unsigned long) y[j]*d; yds[j++] = SCM_BIGLO(t2); t2 = SCM_BIGDN(t2);} y = yds; j = 0; t2 = 0; while(j < nx) {t2 += (unsigned long) x[j]*d; zds[j++] = SCM_BIGLO(t2); t2 = SCM_BIGDN(t2);} zds[j] = t2; } else {zds[j = nx] = 0; while (j--) zds[j] = x[j];} j = nx==ny ? nx+1 : nx; /* dividend needs more digits than divisor */ do { /* loop over digits of quotient */ if (zds[j]==y[ny-1]) qhat = SCM_BIGRAD-1; else qhat = (SCM_BIGUP(zds[j]) + zds[j-1])/y[ny-1]; if (!qhat) continue; i = 0; num = 0; t2 = 0; do { /* multiply and subtract */ t2 += (unsigned long) y[i] * qhat; num += zds[j - ny + i] - SCM_BIGLO(t2); if (num < 0) {zds[j - ny + i] = num + SCM_BIGRAD; num = -1;} else {zds[j - ny + i] = num; num = 0;} t2 = SCM_BIGDN(t2); } while (++i < ny); num += zds[j - ny + i] - t2; /* borrow from high digit; don't update */ while (num) { /* "add back" required */ i = 0; num = 0; qhat--; do { num += (long) zds[j - ny + i] + y[i]; zds[j - ny + i] = SCM_BIGLO(num); num = SCM_BIGDN(num); } while (++i < ny); num--; } if (modes & 2) zds[j] = qhat; } while (--j >= ny); switch (modes) { case 3: /* check that remainder==0 */ for(j = ny;j && !zds[j-1];--j) ; if (j) return 0; case 2: /* move quotient down in z */ j = (nx==ny ? nx+2 : nx+1) - ny; for (i = 0;i < j;i++) zds[i] = zds[i+ny]; ny = i; break; case 1: /* subtract for scm_modulo */ i = 0; num = 0; j = 0; do {num += y[i] - zds[i]; j = j | zds[i]; if (num < 0) {zds[i] = num + SCM_BIGRAD; num = -1;} else {zds[i] = num; num = 0;} } while (++i < ny); if (!j) return SCM_INUM0; case 0: /* just normalize remainder */ if (d) scm_divbigdig(zds, ny, d); } doadj: for(j = ny;j && !zds[j-1];--j) ; if (j * SCM_BITSPERDIG <= sizeof(SCM)*SCM_CHAR_BIT) if SCM_INUMP(z = scm_big2inum(z, j)) return z; return scm_adjbig(z, j); } #endif /*** NUMBERS -> STRINGS ***/ #ifdef SCM_FLOATS int scm_dblprec; static double fx[] = {0.0, 5e-1, 5e-2, 5e-3, 5e-4, 5e-5, 5e-6, 5e-7, 5e-8, 5e-9, 5e-10, 5e-11,5e-12,5e-13,5e-14,5e-15, 5e-16,5e-17,5e-18,5e-19,5e-20}; #ifdef __STDC__ static scm_sizet idbl2str(double f, char *a) #else static scm_sizet idbl2str(f, a) double f; char *a; #endif { int efmt, dpt, d, i, wp = scm_dblprec; scm_sizet ch = 0; int exp = 0; if (f == 0.0) goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;}*/ if (f < 0.0) {f = -f;a[ch++]='-';} else if (f > 0.0) ; else goto funny; if (IS_INF(f)) { if (ch == 0) a[ch++]='+'; funny: a[ch++]='#'; a[ch++]='.'; a[ch++]='#'; return ch; } # ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from make-uniform-vector, from causing infinite loops. */ while (f < 1.0) {f *= 10.0; if (exp-- < DBL_MIN_10_EXP) goto funny;} while (f > 10.0) {f *= 0.10; if (exp++ > DBL_MAX_10_EXP) goto funny;} # else while (f < 1.0) {f *= 10.0; exp--;} while (f > 10.0) {f /= 10.0; exp++;} # endif if (f+fx[wp] >= 10.0) {f = 1.0; exp++;} zero: # ifdef ENGNOT dpt = (exp+9999)%3; exp -= dpt++; efmt = 1; # else efmt = (exp < -3) || (exp > wp+2); if (!efmt) if (exp < 0) { a[ch++] = '0'; a[ch++] = '.'; dpt = exp; while (++dpt) a[ch++] = '0'; } else dpt = exp+1; else dpt = 1; # endif do { d = f; f -= d; a[ch++] = d+'0'; if (f < fx[wp]) break; if (f+fx[wp] >= 1.0) { a[ch-1]++; break; } f *= 10.0; if (!(--dpt)) a[ch++] = '.'; } while (wp--); if (dpt > 0) # ifndef ENGNOT if ((dpt > 4) && (exp > 6)) { d = (a[0]=='-'?2:1); for (i = ch++; i > d; i--) a[i] = a[i-1]; a[d] = '.'; efmt = 1; } else # endif { while (--dpt) a[ch++] = '0'; a[ch++] = '.'; } if (a[ch-1]=='.') a[ch++]='0'; /* trailing zero */ if (efmt && exp) { a[ch++] = 'e'; if (exp < 0) { exp = -exp; a[ch++] = '-'; } for (i = 10; i <= exp; i *= 10); for (i /= 10; i; i /= 10) { a[ch++] = exp/i + '0'; exp %= i; } } return ch; } #ifdef __STDC__ static scm_sizet iflo2str(SCM flt, char *str) #else static scm_sizet iflo2str(flt, str) SCM flt; char *str; #endif { scm_sizet i; # ifdef SCM_SINGLES if SCM_SINGP(flt) i = idbl2str(SCM_FLO(flt), str); else # endif i = idbl2str(SCM_REAL(flt), str); if SCM_CPLXP(flt) { if(0 <= SCM_IMAG(flt)) /* jeh */ str[i++] = '+'; /* jeh */ i += idbl2str(SCM_IMAG(flt), &str[i]); str[i++] = 'i'; } return i; } #endif /* SCM_FLOATS */ #ifdef __STDC__ scm_sizet scm_iint2str(long num, int rad, char *p) #else scm_sizet scm_iint2str(num, rad, p) long num; int rad; char *p; #endif { scm_sizet j; register int i = 1, d; register long n = num; if (n < 0) {n = -n; i++;} for (n /= rad;n > 0;n /= rad) i++; j = i; n = num; if (n < 0) {n = -n; *p++ = '-'; i--;} while (i--) { d = n % rad; n /= rad; p[i] = d + ((d < 10) ? '0' : 'a' - 10); } return j; } #ifdef SCM_BIGDIG #ifdef __STDC__ static SCM big2str(SCM b, register unsigned int radix) #else static SCM big2str(b, radix) SCM b; register unsigned int radix; #endif { SCM t = scm_copybig(b, 0); /* sign of temp doesn't matter */ register SCM_BIGDIG *ds = SCM_BDIGITS(t); scm_sizet i = SCM_NUMDIGS(t); scm_sizet j = radix==16 ? (SCM_BITSPERDIG*i)/4+2 : radix >= 10 ? (SCM_BITSPERDIG*i*241L)/800+2 : (SCM_BITSPERDIG*i)+2; scm_sizet k = 0; scm_sizet radct = 0; scm_sizet ch; /* jeh */ SCM_BIGDIG radpow = 1, radmod = 0; SCM ss = scm_makstr((long)j, 0); char *s = SCM_CHARS(ss), c; while ((long) radpow * radix < SCM_BIGRAD) { radpow *= radix; radct++; } s[0] = scm_tc16_bigneg==SCM_TYP16(b) ? '-' : '+'; while ((i || radmod) && j) { if (k == 0) { radmod = (SCM_BIGDIG)scm_divbigdig(ds, i, radpow); k = radct; if (!ds[i-1]) i--; } c = radmod % radix; radmod /= radix; k--; s[--j] = c < 10 ? c + '0' : c + 'a' - 10; } ch = s[0] == '-' ? 1 : 0; /* jeh */ if (ch < j) { /* jeh */ for(i = j;j < SCM_LENGTH(ss);j++) s[ch+j-i] = s[j]; /* jeh */ scm_vector_set_length_x(ss, (SCM)SCM_MAKINUM(ch+SCM_LENGTH(ss)-i)); /* jeh */ } return ss; } #endif SCM_PROC(s_number_to_string, "number->string", 1, 1, 0, scm_number_to_string); #ifdef __STDC__ SCM scm_number_to_string(SCM x, SCM radix) #else SCM scm_number_to_string(x, radix) SCM x; SCM radix; #endif { if SCM_UNBNDP(radix) radix=SCM_MAKINUM(10L); else SCM_ASSERT(SCM_INUMP(radix), radix, SCM_ARG2, s_number_to_string); #ifdef SCM_FLOATS if SCM_NINUMP(x) { char num_buf[SCM_FLOBUFLEN]; # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(x), badx); if SCM_BIGP(x) return big2str(x, (unsigned int)SCM_INUM(radix)); # ifndef RECKLESS if (!(SCM_INEXP(x))) badx: scm_wta(x, (char *)SCM_ARG1, s_number_to_string); # endif # else SCM_ASSERT(SCM_NIMP(x) && SCM_INEXP(x), x, SCM_ARG1, s_number_to_string); # endif return scm_makfromstr(num_buf, iflo2str(x, num_buf), 0); } #else # ifdef SCM_BIGDIG if SCM_NINUMP(x) { SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_number_to_string); return big2str(x, (unsigned int)SCM_INUM(radix)); } # else SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_number_to_string); # endif #endif { char num_buf[SCM_INTBUFLEN]; return scm_makfromstr(num_buf, scm_iint2str(SCM_INUM(x), (int)SCM_INUM(radix), num_buf), 0); } } /* These print routines are stubbed here so that scm_repl.c doesn't need SCM_FLOATS or SCM_BIGDIGs conditionals */ #ifdef __STDC__ int scm_floprint(SCM sexp, SCM port, scm_print_state *pstate) #else int scm_floprint(sexp, port, pstate) SCM sexp; SCM port; scm_print_state *pstate; #endif { #ifdef SCM_FLOATS char num_buf[SCM_FLOBUFLEN]; scm_gen_write (scm_regular_string, num_buf, iflo2str(sexp, num_buf), port); #else scm_ipruk("float", sexp, port); #endif return !0; } #ifdef __STDC__ int scm_bigprint(SCM exp, SCM port, scm_print_state *pstate) #else int scm_bigprint(exp, port, pstate) SCM exp; SCM port; scm_print_state *pstate; #endif { #ifdef SCM_BIGDIG exp = big2str(exp, (unsigned int)10); scm_gen_write (scm_regular_string, SCM_CHARS(exp), (scm_sizet)SCM_LENGTH(exp), port); #else scm_ipruk("bignum", exp, port); #endif return !0; } /*** END nums->strs ***/ /*** STRINGS -> NUMBERS ***/ static SCM scm_small_istr2int(str, len, radix) char *str; long len; long radix; { register long n = 0, ln; register int c; register int i = 0; int lead_neg = 0; if (0 >= len) return SCM_BOOL_F; /* zero scm_length */ switch (*str) { /* leading sign */ case '-': lead_neg = 1; case '+': if (++i==len) return SCM_BOOL_F; /* bad if lone `+' or `-' */ } do { switch (c = str[i++]) { case DIGITS: c = c - '0'; goto accumulate; case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': c = c-'A'+10; goto accumulate; case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': c = c-'a'+10; accumulate: if (c >= radix) return SCM_BOOL_F; /* bad digit for radix */ ln = n; n = n * radix - c; /* Negation is a workaround for HP700 cc bug */ if (n > ln || (-n > -SCM_MOST_NEGATIVE_FIXNUM)) goto ovfl; break; default: return SCM_BOOL_F; /* not a digit */ } } while (i < len); if (!lead_neg) if ((n = -n) > SCM_MOST_POSITIVE_FIXNUM) goto ovfl; return SCM_MAKINUM(n); ovfl: /* overflow scheme integer */ return SCM_BOOL_F; } #ifdef __STDC__ SCM scm_istr2int(char *str, long len, long radix) #else SCM scm_istr2int(str, len, radix) char *str; long len; long radix; #endif { scm_sizet j; register scm_sizet k, blen = 1; scm_sizet i = 0; int c; SCM res; register SCM_BIGDIG *ds; register unsigned long t2; if (0 >= len) return SCM_BOOL_F; /* zero scm_length */ /* Short numbers we parse directly into an int, to avoid the overhead of creating a bignum. */ if (len < 6) return scm_small_istr2int (str, len, radix); if (16==radix) j = 1+(4*len*sizeof(char))/(SCM_BITSPERDIG); else if (10 <= radix) j = 1+(84*len*sizeof(char))/(SCM_BITSPERDIG*25); else j = 1+(len*sizeof(char))/(SCM_BITSPERDIG); switch (str[0]) { /* leading sign */ case '-': case '+': if (++i==len) return SCM_BOOL_F; /* bad if lone `+' or `-' */ } res = scm_mkbig(j, '-'==str[0]); ds = SCM_BDIGITS(res); for (k = j;k--;) ds[k] = 0; do { switch (c = str[i++]) { case DIGITS: c = c - '0'; goto accumulate; case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': c = c-'A'+10; goto accumulate; case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': c = c-'a'+10; accumulate: if (c >= radix) return SCM_BOOL_F; /* bad digit for radix */ k = 0; t2 = c; moretodo: while(k < blen) { /* printf("k = %d, blen = %d, t2 = %ld, ds[k] = %d\n", k, blen, t2, ds[k]);*/ t2 += ds[k]*radix; ds[k++] = SCM_BIGLO(t2); t2 = SCM_BIGDN(t2); } if (blen > j) scm_num_overflow ("bignum"); if (t2) {blen++; goto moretodo;} break; default: return SCM_BOOL_F; /* not a digit */ } } while (i < len); if (blen * SCM_BITSPERDIG/SCM_CHAR_BIT <= sizeof(SCM)) if SCM_INUMP(res = scm_big2inum(res, blen)) return res; if (j==blen) return res; return scm_adjbig(res, blen); } #ifdef SCM_FLOATS #ifdef __STDC__ SCM scm_istr2flo(char *str, long len, long radix) #else SCM scm_istr2flo(str, len, radix) char *str; long len; long radix; #endif { register int c, i = 0; double lead_sgn; double res = 0.0, tmp = 0.0; int flg = 0; int point = 0; SCM second; if (i >= len) return SCM_BOOL_F; /* zero scm_length */ switch (*str) { /* leading sign */ case '-': lead_sgn = -1.0; i++; break; case '+': lead_sgn = 1.0; i++; break; default : lead_sgn = 0.0; } if (i==len) return SCM_BOOL_F; /* bad if lone `+' or `-' */ if (str[i]=='i' || str[i]=='I') { /* handle `+i' and `-i' */ if (lead_sgn==0.0) return SCM_BOOL_F; /* must have leading sign */ if (++i < len) return SCM_BOOL_F; /* `i' not last character */ return scm_makdbl(0.0, lead_sgn); } do { /* check initial digits */ switch (c = str[i]) { case DIGITS: c = c - '0'; goto accum1; case 'D': case 'E': case 'F': if (radix==10) goto out1; /* must be exponent */ case 'A': case 'B': case 'C': c = c-'A'+10; goto accum1; case 'd': case 'e': case 'f': if (radix==10) goto out1; case 'a': case 'b': case 'c': c = c-'a'+10; accum1: if (c >= radix) return SCM_BOOL_F; /* bad digit for radix */ res = res * radix + c; flg = 1; /* res is valid */ break; default: goto out1; } } while (++i < len); out1: /* if true, then we did see a digit above, and res is valid */ if (i==len) goto done; /* By here, must have seen a digit, or must have next char be a `.' with radix==10 */ if (!flg) if (!(str[i]=='.' && radix==10)) return SCM_BOOL_F; while (str[i]=='#') { /* optional sharps */ res *= radix; if (++i==len) goto done; } if (str[i]=='/') { while (++i < len) { switch (c = str[i]) { case DIGITS: c = c - '0'; goto accum2; case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': c = c-'A'+10; goto accum2; case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': c = c-'a'+10; accum2: if (c >= radix) return SCM_BOOL_F; tmp = tmp * radix + c; break; default: goto out2; } } out2: if (tmp==0.0) return SCM_BOOL_F; /* `slash zero' not allowed */ if (i < len) while (str[i]=='#') { /* optional sharps */ tmp *= radix; if (++i==len) break; } res /= tmp; goto done; } if (str[i]=='.') { /* decimal point notation */ if (radix != 10) return SCM_BOOL_F; /* must be radix 10 */ while (++i < len) { switch (c = str[i]) { case DIGITS: point--; res = res*10.0 + c-'0'; flg = 1; break; default: goto out3; } } out3: if (!flg) return SCM_BOOL_F; /* no digits before or after decimal point */ if (i==len) goto adjust; while (str[i]=='#') { /* ignore remaining sharps */ if (++i==len) goto adjust; } } switch (str[i]) { /* exponent */ case 'd': case 'D': case 'e': case 'E': case 'f': case 'F': case 'l': case 'L': case 's': case 'S': { int expsgn = 1, expon = 0; if (radix != 10) return SCM_BOOL_F; /* only in radix 10 */ if (++i==len) return SCM_BOOL_F; /* bad exponent */ switch (str[i]) { case '-': expsgn=(-1); case '+': if (++i==len) return SCM_BOOL_F; /* bad exponent */ } if (str[i] < '0' || str[i] > '9') return SCM_BOOL_F; /* bad exponent */ do { switch (c = str[i]) { case DIGITS: expon = expon*10 + c-'0'; if (expon > MAXEXP) return SCM_BOOL_F; /* exponent too large */ break; default: goto out4; } } while (++i < len); out4: point += expsgn*expon; } } adjust: if (point >= 0) while (point--) res *= 10.0; else # ifdef _UNICOS while (point++) res *= 0.1; # else while (point++) res /= 10.0; # endif done: /* at this point, we have a legitimate floating point result */ if (lead_sgn==-1.0) res = -res; if (i==len) return scm_makdbl(res, 0.0); if (str[i]=='i' || str[i]=='I') { /* pure imaginary number */ if (lead_sgn==0.0) return SCM_BOOL_F; /* must have leading sign */ if (++i < len) return SCM_BOOL_F; /* `i' not last character */ return scm_makdbl(0.0, res); } switch (str[i++]) { case '-': lead_sgn = -1.0; break; case '+': lead_sgn = 1.0; break; case '@': { /* polar input for complex number */ /* get a `real' for scm_angle */ second = scm_istr2flo(&str[i], (long)(len-i), radix); if (!(SCM_INEXP(second))) return SCM_BOOL_F; /* not `real' */ if (SCM_CPLXP(second)) return SCM_BOOL_F; /* not `real' */ tmp = SCM_REALPART(second); return scm_makdbl(res*cos(tmp), res*sin(tmp)); } default: return SCM_BOOL_F; } /* at this point, last char must be `i' */ if (str[len-1] != 'i' && str[len-1] != 'I') return SCM_BOOL_F; /* handles `x+i' and `x-i' */ if (i==(len-1)) return scm_makdbl(res, lead_sgn); /* get a `ureal' for complex part */ second = scm_istr2flo(&str[i], (long)((len-i)-1), radix); if (!(SCM_INEXP(second))) return SCM_BOOL_F; /* not `ureal' */ if (SCM_CPLXP(second)) return SCM_BOOL_F; /* not `ureal' */ tmp = SCM_REALPART(second); if (tmp < 0.0) return SCM_BOOL_F; /* not `ureal' */ return scm_makdbl(res, (lead_sgn*tmp)); } #endif /* SCM_FLOATS */ #ifdef __STDC__ SCM scm_istring2number(char *str, long len, long radix) #else SCM scm_istring2number(str, len, radix) char *str; long len; long radix; #endif { int i = 0; char ex = 0; char ex_p = 0, rx_p = 0; /* Only allow 1 exactness and 1 radix prefix */ SCM res; if (len==1) if (*str=='+' || *str=='-') /* Catches lone `+' and `-' for speed */ return SCM_BOOL_F; while ((len-i) >= 2 && str[i]=='#' && ++i) switch (str[i++]) { case 'b': case 'B': if (rx_p++) return SCM_BOOL_F; radix = 2; break; case 'o': case 'O': if (rx_p++) return SCM_BOOL_F; radix = 8; break; case 'd': case 'D': if (rx_p++) return SCM_BOOL_F; radix = 10; break; case 'x': case 'X': if (rx_p++) return SCM_BOOL_F; radix = 16; break; case 'i': case 'I': if (ex_p++) return SCM_BOOL_F; ex = 2; break; case 'e': case 'E': if (ex_p++) return SCM_BOOL_F; ex = 1; break; default: return SCM_BOOL_F; } switch (ex) { case 1: return scm_istr2int(&str[i], len-i, radix); case 0: res = scm_istr2int(&str[i], len-i, radix); if SCM_NFALSEP(res) return res; #ifdef SCM_FLOATS case 2: return scm_istr2flo(&str[i], len-i, radix); #endif } return SCM_BOOL_F; } SCM_PROC(s_string_to_number, "string->number", 1, 1, 0, scm_string_to_number); #ifdef __STDC__ SCM scm_string_to_number(SCM str, SCM radix) #else SCM scm_string_to_number(str, radix) SCM str; SCM radix; #endif { SCM answer; if SCM_UNBNDP(radix) radix=SCM_MAKINUM(10L); else SCM_ASSERT(SCM_INUMP(radix), radix, SCM_ARG2, s_string_to_number); SCM_ASSERT(SCM_NIMP(str) && SCM_ROSTRINGP(str), str, SCM_ARG1, s_string_to_number); answer = scm_istring2number(SCM_ROCHARS(str), SCM_ROLENGTH(str), SCM_INUM(radix)); return scm_return_first (answer, str); } /*** END strs->nums ***/ #ifdef SCM_FLOATS #ifdef __STDC__ SCM scm_makdbl (double x, double y) #else SCM scm_makdbl (x, y) double x; double y; #endif { SCM z; if ((y==0.0) && (x==0.0)) return scm_flo0; SCM_NEWCELL(z); SCM_DEFER_INTS; if (y==0.0) { # ifdef SCM_SINGLES float fx = x; # ifndef SCM_SINGLESONLY if ((-FLTMAX < x) && (x < FLTMAX) && (fx==x)) # endif { SCM_CAR(z) = scm_tc_flo; SCM_FLO(z) = x; SCM_ALLOW_INTS; return z; } # endif/* def SCM_SINGLES */ SCM_CDR(z) = (SCM)scm_must_malloc(1L*sizeof(double), "real"); SCM_CAR(z) = scm_tc_dblr; } else { SCM_CDR(z) = (SCM)scm_must_malloc(2L*sizeof(double), "complex"); SCM_CAR(z) = scm_tc_dblc; SCM_IMAG(z) = y; } SCM_REAL(z) = x; SCM_ALLOW_INTS; return z; } #endif #ifdef __STDC__ SCM scm_bigequal(SCM x, SCM y) #else SCM scm_bigequal(x, y) SCM x; SCM y; #endif { #ifdef SCM_BIGDIG if (0==scm_bigcomp(x, y)) return SCM_BOOL_T; #endif return SCM_BOOL_F; } #ifdef __STDC__ SCM scm_floequal(SCM x, SCM y) #else SCM scm_floequal(x, y) SCM x; SCM y; #endif { #ifdef SCM_FLOATS if (SCM_REALPART(x) != SCM_REALPART(y)) return SCM_BOOL_F; if (!(SCM_CPLXP(x) && (SCM_IMAG(x) != SCM_IMAG(y)))) return SCM_BOOL_T; #endif return SCM_BOOL_F; } SCM_PROC(s_number_p, "number?", 1, 0, 0, scm_number_p); SCM_PROC(s_complex_p, "complex?", 1, 0, 0, scm_number_p); #ifdef __STDC__ SCM scm_number_p(SCM x) #else SCM scm_number_p(x) SCM x; #endif { if SCM_INUMP(x) return SCM_BOOL_T; #ifdef SCM_FLOATS if (SCM_NIMP(x) && SCM_NUMP(x)) return SCM_BOOL_T; #else # ifdef SCM_BIGDIG if (SCM_NIMP(x) && SCM_NUMP(x)) return SCM_BOOL_T; # endif #endif return SCM_BOOL_F; } #ifdef SCM_FLOATS SCM_PROC(s_real_p, "real?", 1, 0, 0, scm_real_p); SCM_PROC(s_rational_p, "rational?", 1, 0, 0, scm_real_p); #ifdef __STDC__ SCM scm_real_p(SCM x) #else SCM scm_real_p(x) SCM x; #endif { if (SCM_INUMP(x)) return SCM_BOOL_T; if (SCM_IMP(x)) return SCM_BOOL_F; if (SCM_REALP(x)) return SCM_BOOL_T; # ifdef SCM_BIGDIG if (SCM_BIGP(x)) return SCM_BOOL_T; # endif return SCM_BOOL_F; } SCM_PROC(s_int_p, "int?", 1, 0, 0, scm_int_p); #ifdef __STDC__ SCM scm_int_p(SCM x) #else SCM scm_int_p(x) SCM x; #endif { double r; if SCM_INUMP(x) return SCM_BOOL_T; if SCM_IMP(x) return SCM_BOOL_F; # ifdef SCM_BIGDIG if SCM_BIGP(x) return SCM_BOOL_T; # endif if (!SCM_INEXP(x)) return SCM_BOOL_F; if SCM_CPLXP(x) return SCM_BOOL_F; r = SCM_REALPART(x); if (r==floor(r)) return SCM_BOOL_T; return SCM_BOOL_F; } #endif /* SCM_FLOATS */ SCM_PROC(s_inexact_p, "inexact?", 1, 0, 0, scm_inexact_p); #ifdef __STDC__ SCM scm_inexact_p(SCM x) #else SCM scm_inexact_p(x) SCM x; #endif { #ifdef SCM_FLOATS if (SCM_NIMP(x) && SCM_INEXP(x)) return SCM_BOOL_T; #endif return SCM_BOOL_F; } SCM_PROC1 (s_eq_p, "=?", scm_tc7_rpsubr, scm_num_eq_p); #ifdef __STDC__ SCM scm_num_eq_p (SCM x, SCM y) #else SCM scm_num_eq_p (x, y) SCM x; SCM y; #endif { #ifdef SCM_FLOATS SCM t; if SCM_NINUMP(x) { # ifdef SCM_BIGDIG # ifndef RECKLESS if (!(SCM_NIMP(x))) badx: scm_wta(x, (char *)SCM_ARG1, s_eq_p); # endif if SCM_BIGP(x) { if SCM_INUMP(y) return SCM_BOOL_F; SCM_ASRTGO(SCM_NIMP(y), bady); if SCM_BIGP(y) return (0==scm_bigcomp(x, y)) ? SCM_BOOL_T : SCM_BOOL_F; SCM_ASRTGO(SCM_INEXP(y), bady); bigreal: return (SCM_REALP(y) && (scm_big2dbl(x)==SCM_REALPART(y))) ? SCM_BOOL_T : SCM_BOOL_F; } SCM_ASRTGO(SCM_INEXP(x), badx); # else SCM_ASSERT(SCM_NIMP(x) && SCM_INEXP(x), x, SCM_ARG1, s_eq_p); # endif if SCM_INUMP(y) {t = x; x = y; y = t; goto realint;} # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(y), bady); if SCM_BIGP(y) {t = x; x = y; y = t; goto bigreal;} SCM_ASRTGO(SCM_INEXP(y), bady); # else SCM_ASRTGO(SCM_NIMP(y) && SCM_INEXP(y), bady); # endif if (SCM_REALPART(x) != SCM_REALPART(y)) return SCM_BOOL_F; if SCM_CPLXP(x) return (SCM_CPLXP(y) && (SCM_IMAG(x)==SCM_IMAG(y))) ? SCM_BOOL_T : SCM_BOOL_F; return SCM_CPLXP(y) ? SCM_BOOL_F : SCM_BOOL_T; } if SCM_NINUMP(y) { # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(y), bady); if SCM_BIGP(y) return SCM_BOOL_F; # ifndef RECKLESS if (!(SCM_INEXP(y))) bady: scm_wta(y, (char *)SCM_ARG2, s_eq_p); # endif # else # ifndef RECKLESS if (!(SCM_NIMP(y) && SCM_INEXP(y))) bady: scm_wta(y, (char *)SCM_ARG2, s_eq_p); # endif # endif realint: return (SCM_REALP(y) && (((double)SCM_INUM(x))==SCM_REALPART(y))) ? SCM_BOOL_T : SCM_BOOL_F; } #else # ifdef SCM_BIGDIG if SCM_NINUMP(x) { SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_eq_p); if SCM_INUMP(y) return SCM_BOOL_F; SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady); return (0==scm_bigcomp(x, y)) ? SCM_BOOL_T : SCM_BOOL_F; } if SCM_NINUMP(y) { # ifndef RECKLESS if (!(SCM_NIMP(y) && SCM_BIGP(y))) bady: scm_wta(y, (char *)SCM_ARG2, s_eq_p); # endif return SCM_BOOL_F; } # else SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_eq_p); SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_eq_p); # endif #endif return ((long)x==(long)y) ? SCM_BOOL_T : SCM_BOOL_F; } SCM_PROC1 (s_less_p, "?", scm_tc7_rpsubr, scm_gr_p); #ifdef __STDC__ SCM scm_gr_p(SCM x, SCM y) #else SCM scm_gr_p(x, y) SCM x; SCM y; #endif { return scm_less_p(y, x); } SCM_PROC1 (s_leq_p, "<=?", scm_tc7_rpsubr, scm_leq_p); #ifdef __STDC__ SCM scm_leq_p(SCM x, SCM y) #else SCM scm_leq_p(x, y) SCM x; SCM y; #endif { return SCM_BOOL_NOT(scm_less_p(y, x)); } SCM_PROC1 (s_geq_p, ">=?", scm_tc7_rpsubr, scm_geq_p); #ifdef __STDC__ SCM scm_geq_p(SCM x, SCM y) #else SCM scm_geq_p(x, y) SCM x; SCM y; #endif { return SCM_BOOL_NOT(scm_less_p(x, y)); } SCM_PROC(s_zero_p, "zero?", 1, 0, 0, scm_zero_p); #ifdef __STDC__ SCM scm_zero_p(SCM z) #else SCM scm_zero_p(z) SCM z; #endif { #ifdef SCM_FLOATS if SCM_NINUMP(z) { # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(z), badz); if SCM_BIGP(z) return SCM_BOOL_F; # ifndef RECKLESS if (!(SCM_INEXP(z))) badz: scm_wta(z, (char *)SCM_ARG1, s_zero_p); # endif # else SCM_ASSERT(SCM_NIMP(z) && SCM_INEXP(z), z, SCM_ARG1, s_zero_p); # endif return (z==scm_flo0) ? SCM_BOOL_T : SCM_BOOL_F; } #else # ifdef SCM_BIGDIG if SCM_NINUMP(z) { SCM_ASSERT(SCM_NIMP(z) && SCM_BIGP(z), z, SCM_ARG1, s_zero_p); return SCM_BOOL_F; } # else SCM_ASSERT(SCM_INUMP(z), z, SCM_ARG1, s_zero_p); # endif #endif return (z==SCM_INUM0) ? SCM_BOOL_T: SCM_BOOL_F; } SCM_PROC(s_positive_p, "positive?", 1, 0, 0, scm_positive_p); #ifdef __STDC__ SCM scm_positive_p(SCM x) #else SCM scm_positive_p(x) SCM x; #endif { #ifdef SCM_FLOATS if SCM_NINUMP(x) { # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(x), badx); if SCM_BIGP(x) return SCM_TYP16(x)==scm_tc16_bigpos ? SCM_BOOL_T : SCM_BOOL_F; # ifndef RECKLESS if (!(SCM_REALP(x))) badx: scm_wta(x, (char *)SCM_ARG1, s_positive_p); # endif # else SCM_ASSERT(SCM_NIMP(x) && SCM_REALP(x), x, SCM_ARG1, s_positive_p); # endif return (SCM_REALPART(x) > 0.0) ? SCM_BOOL_T : SCM_BOOL_F; } #else # ifdef SCM_BIGDIG if SCM_NINUMP(x) { SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_positive_p); return SCM_TYP16(x)==scm_tc16_bigpos ? SCM_BOOL_T : SCM_BOOL_F; } # else SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_positive_p); # endif #endif return (x > SCM_INUM0) ? SCM_BOOL_T : SCM_BOOL_F; } SCM_PROC(s_negative_p, "negative?", 1, 0, 0, scm_negative_p); #ifdef __STDC__ SCM scm_negative_p(SCM x) #else SCM scm_negative_p(x) SCM x; #endif { #ifdef SCM_FLOATS if SCM_NINUMP(x) { # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(x), badx); if SCM_BIGP(x) return SCM_TYP16(x)==scm_tc16_bigpos ? SCM_BOOL_F : SCM_BOOL_T; # ifndef RECKLESS if (!(SCM_REALP(x))) badx: scm_wta(x, (char *)SCM_ARG1, s_negative_p); # endif # else SCM_ASSERT(SCM_NIMP(x) && SCM_REALP(x), x, SCM_ARG1, s_negative_p); # endif return (SCM_REALPART(x) < 0.0) ? SCM_BOOL_T : SCM_BOOL_F; } #else # ifdef SCM_BIGDIG if SCM_NINUMP(x) { SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_negative_p); return (SCM_TYP16(x)==scm_tc16_bigneg) ? SCM_BOOL_T : SCM_BOOL_F; } # else SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_negative_p); # endif #endif return (x < SCM_INUM0) ? SCM_BOOL_T : SCM_BOOL_F; } SCM_PROC1 (s_max, "max", scm_tc7_asubr, scm_max); #ifdef __STDC__ SCM scm_max(SCM x, SCM y) #else SCM scm_max(x, y) SCM x; SCM y; #endif { #ifdef SCM_FLOATS double z; #endif if SCM_UNBNDP(y) { #ifndef RECKLESS if (!(SCM_NUMBERP(x))) badx: scm_wta(x, (char *)SCM_ARG1, s_max); #endif return x; } #ifdef SCM_FLOATS if SCM_NINUMP(x) { # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(x), badx); if SCM_BIGP(x) { if SCM_INUMP(y) return SCM_BIGSIGN(x) ? y : x; SCM_ASRTGO(SCM_NIMP(y), bady); if SCM_BIGP(y) return (1==scm_bigcomp(x, y)) ? y : x; SCM_ASRTGO(SCM_REALP(y), bady); z = scm_big2dbl(x); return (z < SCM_REALPART(y)) ? y : scm_makdbl(z, 0.0); } SCM_ASRTGO(SCM_REALP(x), badx); # else SCM_ASSERT(SCM_NIMP(x) && SCM_REALP(x), x, SCM_ARG1, s_max); # endif if (SCM_INUMP(y)) return (SCM_REALPART(x) < (z = SCM_INUM(y))) ? scm_makdbl(z, 0.0) : x; # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(y), bady); if (SCM_BIGP(y)) return (SCM_REALPART(x) < (z = scm_big2dbl(y))) ? scm_makdbl(z, 0.0) : x; SCM_ASRTGO(SCM_REALP(y), bady); # else SCM_ASRTGO(SCM_NIMP(y) && SCM_REALP(y), bady); # endif return (SCM_REALPART(x) < SCM_REALPART(y)) ? y : x; } if SCM_NINUMP(y) { # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(y), bady); if SCM_BIGP(y) return SCM_BIGSIGN(y) ? x : y; # ifndef RECKLESS if (!(SCM_REALP(y))) bady: scm_wta(y, (char *)SCM_ARG2, s_max); # endif # else # ifndef RECKLESS if (!(SCM_NIMP(y) && SCM_REALP(y))) bady: scm_wta(y, (char *)SCM_ARG2, s_max); # endif # endif return ((z = SCM_INUM(x)) < SCM_REALPART(y)) ? y : scm_makdbl(z, 0.0); } #else # ifdef SCM_BIGDIG if SCM_NINUMP(x) { SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_max); if SCM_INUMP(y) return SCM_BIGSIGN(x) ? y : x; SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady); return (1==scm_bigcomp(x, y)) ? y : x; } if SCM_NINUMP(y) { # ifndef RECKLESS if (!(SCM_NIMP(y) && SCM_BIGP(y))) bady: scm_wta(y, (char *)SCM_ARG2, s_max); # endif return SCM_BIGSIGN(y) ? x : y; } # else SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_max); SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_max); # endif #endif return ((long)x < (long)y) ? y : x; } SCM_PROC1 (s_min, "min", scm_tc7_asubr, scm_min); #ifdef __STDC__ SCM scm_min(SCM x, SCM y) #else SCM scm_min(x, y) SCM x; SCM y; #endif { #ifdef SCM_FLOATS double z; #endif if SCM_UNBNDP(y) { #ifndef RECKLESS if (!(SCM_NUMBERP(x))) badx:scm_wta(x, (char *)SCM_ARG1, s_min); #endif return x; } #ifdef SCM_FLOATS if SCM_NINUMP(x) { # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(x), badx); if SCM_BIGP(x) { if SCM_INUMP(y) return SCM_BIGSIGN(x) ? x : y; SCM_ASRTGO(SCM_NIMP(y), bady); if SCM_BIGP(y) return (-1==scm_bigcomp(x, y)) ? y : x; SCM_ASRTGO(SCM_REALP(y), bady); z = scm_big2dbl(x); return (z > SCM_REALPART(y)) ? y : scm_makdbl(z, 0.0); } SCM_ASRTGO(SCM_REALP(x), badx); # else SCM_ASSERT(SCM_NIMP(x) && SCM_REALP(x), x, SCM_ARG1, s_min); # endif if SCM_INUMP(y) return (SCM_REALPART(x) > (z = SCM_INUM(y))) ? scm_makdbl(z, 0.0) : x; # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(y), bady); if SCM_BIGP(y) return (SCM_REALPART(x) > (z = scm_big2dbl(y))) ? scm_makdbl(z, 0.0) : x; SCM_ASRTGO(SCM_REALP(y), bady); # else SCM_ASRTGO(SCM_NIMP(y) && SCM_REALP(y), bady); # endif return (SCM_REALPART(x) > SCM_REALPART(y)) ? y : x; } if SCM_NINUMP(y) { # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(y), bady); if SCM_BIGP(y) return SCM_BIGSIGN(y) ? y : x; # ifndef RECKLESS if (!(SCM_REALP(y))) bady: scm_wta(y, (char *)SCM_ARG2, s_min); # endif # else # ifndef RECKLESS if (!(SCM_NIMP(y) && SCM_REALP(y))) bady: scm_wta(y, (char *)SCM_ARG2, s_min); # endif # endif return ((z = SCM_INUM(x)) > SCM_REALPART(y)) ? y : scm_makdbl(z, 0.0); } #else # ifdef SCM_BIGDIG if SCM_NINUMP(x) { SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_min); if SCM_INUMP(y) return SCM_BIGSIGN(x) ? x : y; SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady); return (-1==scm_bigcomp(x, y)) ? y : x; } if SCM_NINUMP(y) { # ifndef RECKLESS if (!(SCM_NIMP(y) && SCM_BIGP(y))) bady: scm_wta(y, (char *)SCM_ARG2, s_min); # endif return SCM_BIGSIGN(y) ? y : x; } # else SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_min); SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_min); # endif #endif return ((long)x > (long)y) ? y : x; } SCM_PROC1 (s_sum, "+", scm_tc7_asubr, scm_sum); #ifdef __STDC__ SCM scm_sum(SCM x, SCM y) #else SCM scm_sum(x, y) SCM x; SCM y; #endif { if SCM_UNBNDP(y) { if SCM_UNBNDP(x) return SCM_INUM0; #ifndef RECKLESS if (!(SCM_NUMBERP(x))) badx: scm_wta(x, (char *)SCM_ARG1, s_sum); #endif return x; } #ifdef SCM_FLOATS if SCM_NINUMP(x) { SCM t; # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(x), badx); if SCM_BIGP(x) { if SCM_INUMP(y) {t = x; x = y; y = t; goto intbig;} SCM_ASRTGO(SCM_NIMP(y), bady); if SCM_BIGP(y) { if (SCM_NUMDIGS(x) > SCM_NUMDIGS(y)) {t = x; x = y; y = t;} return scm_addbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BIGSIGN(x), y, 0); } SCM_ASRTGO(SCM_INEXP(y), bady); bigreal: return scm_makdbl(scm_big2dbl(x)+SCM_REALPART(y), SCM_CPLXP(y)?SCM_IMAG(y):0.0); } SCM_ASRTGO(SCM_INEXP(x), badx); # else SCM_ASRTGO(SCM_NIMP(x) && SCM_INEXP(x), badx); # endif if SCM_INUMP(y) {t = x; x = y; y = t; goto intreal;} # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(y), bady); if SCM_BIGP(y) {t = x; x = y; y = t; goto bigreal;} # ifndef RECKLESS else if (!(SCM_INEXP(y))) bady: scm_wta(y, (char *)SCM_ARG2, s_sum); # endif # else # ifndef RECKLESS if (!(SCM_NIMP(y) && SCM_INEXP(y))) bady: scm_wta(y, (char *)SCM_ARG2, s_sum); # endif # endif { double i = 0.0; if SCM_CPLXP(x) i = SCM_IMAG(x); if SCM_CPLXP(y) i += SCM_IMAG(y); return scm_makdbl(SCM_REALPART(x)+SCM_REALPART(y), i); } } if SCM_NINUMP(y) { # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(y), bady); if SCM_BIGP(y) intbig: { # ifndef SCM_DIGSTOOBIG long z = scm_pseudolong(SCM_INUM(x)); return scm_addbig((SCM_BIGDIG *)&z, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0); # else SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; scm_longdigs(SCM_INUM(x), zdigs); return scm_addbig(zdigs, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0); # endif } SCM_ASRTGO(SCM_INEXP(y), bady); # else SCM_ASRTGO(SCM_NIMP(y) && SCM_INEXP(y), bady); # endif intreal: return scm_makdbl(SCM_INUM(x)+SCM_REALPART(y), SCM_CPLXP(y)?SCM_IMAG(y):0.0); } #else # ifdef SCM_BIGDIG if SCM_NINUMP(x) { SCM t; SCM_ASRTGO(SCM_NIMP(x) && SCM_BIGP(x), badx); if SCM_INUMP(y) {t = x; x = y; y = t; goto intbig;} SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady); if (SCM_NUMDIGS(x) > SCM_NUMDIGS(y)) {t = x; x = y; y = t;} return scm_addbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BIGSIGN(x), y, 0); } if SCM_NINUMP(y) { # ifndef RECKLESS if (!(SCM_NIMP(y) && SCM_BIGP(y))) bady: scm_wta(y, (char *)SCM_ARG2, s_sum); # endif intbig: { # ifndef SCM_DIGSTOOBIG long z = scm_pseudolong(SCM_INUM(x)); return scm_addbig(&z, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0); # else SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; scm_longdigs(SCM_INUM(x), zdigs); return scm_addbig(zdigs, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0); # endif } } # else SCM_ASRTGO(SCM_INUMP(x), badx); SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_sum); # endif #endif x = SCM_INUM(x)+SCM_INUM(y); if SCM_FIXABLE(x) return SCM_MAKINUM(x); #ifdef SCM_BIGDIG return scm_long2big(x); #else # ifdef SCM_FLOATS return scm_makdbl((double)x, 0.0); # else scm_num_overflow (s_sum); return SCM_UNSPECIFIED; # endif #endif } SCM_PROC1 (s_difference, "-", scm_tc7_asubr, scm_difference); #ifdef __STDC__ SCM scm_difference(SCM x, SCM y) #else SCM scm_difference(x, y) SCM x; SCM y; #endif { #ifdef SCM_FLOATS if SCM_NINUMP(x) { # ifndef RECKLESS if (!(SCM_NIMP(x))) badx: scm_wta(x, (char *)SCM_ARG1, s_difference); # endif if SCM_UNBNDP(y) { # ifdef SCM_BIGDIG if SCM_BIGP(x) { x = scm_copybig(x, !SCM_BIGSIGN(x)); return SCM_NUMDIGS(x) * SCM_BITSPERDIG/SCM_CHAR_BIT <= sizeof(SCM) ? scm_big2inum(x, SCM_NUMDIGS(x)) : x; } # endif SCM_ASRTGO(SCM_INEXP(x), badx); return scm_makdbl(-SCM_REALPART(x), SCM_CPLXP(x)?-SCM_IMAG(x):0.0); } if SCM_INUMP(y) return scm_sum(x, SCM_MAKINUM(-SCM_INUM(y))); # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(y), bady); if SCM_BIGP(x) { if SCM_BIGP(y) return (SCM_NUMDIGS(x) < SCM_NUMDIGS(y)) ? scm_addbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BIGSIGN(x), y, 0x0100) : scm_addbig(SCM_BDIGITS(y), SCM_NUMDIGS(y), SCM_BIGSIGN(y) ^ 0x0100, x, 0); SCM_ASRTGO(SCM_INEXP(y), bady); return scm_makdbl(scm_big2dbl(x)-SCM_REALPART(y), SCM_CPLXP(y)?-SCM_IMAG(y):0.0); } SCM_ASRTGO(SCM_INEXP(x), badx); if SCM_BIGP(y) return scm_makdbl(SCM_REALPART(x)-scm_big2dbl(y), SCM_CPLXP(x)?SCM_IMAG(x):0.0); SCM_ASRTGO(SCM_INEXP(y), bady); # else SCM_ASRTGO(SCM_INEXP(x), badx); SCM_ASRTGO(SCM_NIMP(y) && SCM_INEXP(y), bady); # endif if SCM_CPLXP(x) if SCM_CPLXP(y) return scm_makdbl(SCM_REAL(x)-SCM_REAL(y), SCM_IMAG(x)-SCM_IMAG(y)); else return scm_makdbl(SCM_REAL(x)-SCM_REALPART(y), SCM_IMAG(x)); return scm_makdbl(SCM_REALPART(x)-SCM_REALPART(y), SCM_CPLXP(y)?-SCM_IMAG(y):0.0); } if SCM_UNBNDP(y) {x = -SCM_INUM(x); goto checkx;} if SCM_NINUMP(y) { # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(y), bady); if SCM_BIGP(y) { # ifndef SCM_DIGSTOOBIG long z = scm_pseudolong(SCM_INUM(x)); return scm_addbig((SCM_BIGDIG *)&z, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0x0100); # else SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; scm_longdigs(SCM_INUM(x), zdigs); return scm_addbig(zdigs, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0x0100); # endif } # ifndef RECKLESS if (!(SCM_INEXP(y))) bady: scm_wta(y, (char *)SCM_ARG2, s_difference); # endif # else # ifndef RECKLESS if (!(SCM_NIMP(y) && SCM_INEXP(y))) bady: scm_wta(y, (char *)SCM_ARG2, s_difference); # endif # endif return scm_makdbl(SCM_INUM(x)-SCM_REALPART(y), SCM_CPLXP(y)?-SCM_IMAG(y):0.0); } #else # ifdef SCM_BIGDIG if SCM_NINUMP(x) { SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_difference); if SCM_UNBNDP(y) { x = scm_copybig(x, !SCM_BIGSIGN(x)); return SCM_NUMDIGS(x) * SCM_BITSPERDIG/SCM_CHAR_BIT <= sizeof(SCM) ? scm_big2inum(x, SCM_NUMDIGS(x)) : x; } if SCM_INUMP(y) { # ifndef SCM_DIGSTOOBIG long z = scm_pseudolong(SCM_INUM(y)); return scm_addbig(&z, SCM_DIGSPERLONG, (y < 0) ? 0 : 0x0100, x, 0); # else SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; scm_longdigs(SCM_INUM(x), zdigs); return scm_addbig(zdigs, SCM_DIGSPERLONG, (y < 0) ? 0 : 0x0100, x, 0); # endif } SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady); return (SCM_NUMDIGS(x) < SCM_NUMDIGS(y)) ? scm_addbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BIGSIGN(x), y, 0x0100) : scm_addbig(SCM_BDIGITS(y), SCM_NUMDIGS(y), SCM_BIGSIGN(y) ^ 0x0100, x, 0); } if SCM_UNBNDP(y) {x = -SCM_INUM(x); goto checkx;} if SCM_NINUMP(y) { # ifndef RECKLESS if (!(SCM_NIMP(y) && SCM_BIGP(y))) bady: scm_wta(y, (char *)SCM_ARG2, s_difference); # endif { # ifndef SCM_DIGSTOOBIG long z = scm_pseudolong(SCM_INUM(x)); return scm_addbig(&z, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0x0100); # else SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; scm_longdigs(SCM_INUM(x), zdigs); return scm_addbig(zdigs, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0x0100); # endif } } # else SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_difference); if SCM_UNBNDP(y) {x = -SCM_INUM(x); goto checkx;} SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_difference); # endif #endif x = SCM_INUM(x)-SCM_INUM(y); checkx: if SCM_FIXABLE(x) return SCM_MAKINUM(x); #ifdef SCM_BIGDIG return scm_long2big(x); #else # ifdef SCM_FLOATS return scm_makdbl((double)x, 0.0); # else scm_num_overflow (s_difference); return SCM_UNSPECIFIED; # endif #endif } SCM_PROC1 (s_product, "*", scm_tc7_asubr, scm_product); #ifdef __STDC__ SCM scm_product(SCM x, SCM y) #else SCM scm_product(x, y) SCM x; SCM y; #endif { if SCM_UNBNDP(y) { if SCM_UNBNDP(x) return SCM_MAKINUM(1L); #ifndef RECKLESS if (!(SCM_NUMBERP(x))) badx: scm_wta(x, (char *)SCM_ARG1, s_product); #endif return x; } #ifdef SCM_FLOATS if SCM_NINUMP(x) { SCM t; # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(x), badx); if SCM_BIGP(x) { if SCM_INUMP(y) {t = x; x = y; y = t; goto intbig;} SCM_ASRTGO(SCM_NIMP(y), bady); if SCM_BIGP(y) return scm_mulbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BDIGITS(y), SCM_NUMDIGS(y), SCM_BIGSIGN(x) ^ SCM_BIGSIGN(y)); SCM_ASRTGO(SCM_INEXP(y), bady); bigreal: { double bg = scm_big2dbl(x); return scm_makdbl(bg*SCM_REALPART(y), SCM_CPLXP(y)?bg*SCM_IMAG(y):0.0); } } SCM_ASRTGO(SCM_INEXP(x), badx); # else SCM_ASRTGO(SCM_NIMP(x) && SCM_INEXP(x), badx); # endif if SCM_INUMP(y) {t = x; x = y; y = t; goto intreal;} # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(y), bady); if SCM_BIGP(y) {t = x; x = y; y = t; goto bigreal;} # ifndef RECKLESS else if (!(SCM_INEXP(y))) bady: scm_wta(y, (char *)SCM_ARG2, s_product); # endif # else # ifndef RECKLESS if (!(SCM_NIMP(y) && SCM_INEXP(y))) bady: scm_wta(y, (char *)SCM_ARG2, s_product); # endif # endif if SCM_CPLXP(x) if SCM_CPLXP(y) return scm_makdbl(SCM_REAL(x)*SCM_REAL(y)-SCM_IMAG(x)*SCM_IMAG(y), SCM_REAL(x)*SCM_IMAG(y)+SCM_IMAG(x)*SCM_REAL(y)); else return scm_makdbl(SCM_REAL(x)*SCM_REALPART(y), SCM_IMAG(x)*SCM_REALPART(y)); return scm_makdbl(SCM_REALPART(x)*SCM_REALPART(y), SCM_CPLXP(y)?SCM_REALPART(x)*SCM_IMAG(y):0.0); } if SCM_NINUMP(y) { # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(y), bady); if SCM_BIGP(y) { intbig: if (SCM_INUM0==x) return x; if (SCM_MAKINUM(1L)==x) return y; { # ifndef SCM_DIGSTOOBIG long z = scm_pseudolong(SCM_INUM(x)); return scm_mulbig((SCM_BIGDIG *)&z, SCM_DIGSPERLONG, SCM_BDIGITS(y), SCM_NUMDIGS(y), SCM_BIGSIGN(y) ? (x>0) : (x<0)); # else SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; scm_longdigs(SCM_INUM(x), zdigs); return scm_mulbig(zdigs, SCM_DIGSPERLONG, SCM_BDIGITS(y), SCM_NUMDIGS(y), SCM_BIGSIGN(y) ? (x>0) : (x<0)); # endif } } SCM_ASRTGO(SCM_INEXP(y), bady); # else SCM_ASRTGO(SCM_NIMP(y) && SCM_INEXP(y), bady); # endif intreal: return scm_makdbl(SCM_INUM(x)*SCM_REALPART(y), SCM_CPLXP(y)?SCM_INUM(x)*SCM_IMAG(y):0.0); } #else # ifdef SCM_BIGDIG if SCM_NINUMP(x) { SCM_ASRTGO(SCM_NIMP(x) && SCM_BIGP(x), badx); if SCM_INUMP(y) {SCM t = x; x = y; y = t; goto intbig;} SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady); return scm_mulbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BDIGITS(y), SCM_NUMDIGS(y), SCM_BIGSIGN(x) ^ SCM_BIGSIGN(y)); } if SCM_NINUMP(y) { # ifndef RECKLESS if (!(SCM_NIMP(y) && SCM_BIGP(y))) bady: scm_wta(y, (char *)SCM_ARG2, s_product); # endif intbig: if (SCM_INUM0==x) return x; if (SCM_MAKINUM(1L)==x) return y; { # ifndef SCM_DIGSTOOBIG long z = scm_pseudolong(SCM_INUM(x)); return scm_mulbig(&z, SCM_DIGSPERLONG, SCM_BDIGITS(y), SCM_NUMDIGS(y), SCM_BIGSIGN(y) ? (x>0) : (x<0)); # else SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; scm_longdigs(SCM_INUM(x), zdigs); return scm_mulbig(zdigs, SCM_DIGSPERLONG, SCM_BDIGITS(y), SCM_NUMDIGS(y), SCM_BIGSIGN(y) ? (x>0) : (x<0)); # endif } } # else SCM_ASRTGO(SCM_INUMP(x), badx); SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_product); # endif #endif { long i, j, k; i = SCM_INUM(x); if (0==i) return x; j = SCM_INUM(y); k = i * j; y = SCM_MAKINUM(k); if (k != SCM_INUM(y) || k/i != j) #ifdef SCM_BIGDIG { int sgn = (i < 0) ^ (j < 0); # ifndef SCM_DIGSTOOBIG i = scm_pseudolong(i); j = scm_pseudolong(j); return scm_mulbig((SCM_BIGDIG *)&i, SCM_DIGSPERLONG, (SCM_BIGDIG *)&j, SCM_DIGSPERLONG, sgn); # else /* SCM_DIGSTOOBIG */ SCM_BIGDIG idigs[SCM_DIGSPERLONG]; SCM_BIGDIG jdigs[SCM_DIGSPERLONG]; scm_longdigs(i, idigs); scm_longdigs(j, jdigs); return scm_mulbig(idigs, SCM_DIGSPERLONG, jdigs, SCM_DIGSPERLONG, sgn); # endif } #else # ifdef SCM_FLOATS return scm_makdbl(((double)i)*((double)j), 0.0); # else scm_num_overflow (s_product); # endif #endif return y; } } #ifdef __STDC__ double scm_num2dbl (SCM a, char * why) #else double scm_num2dbl (a, why) SCM a; char * why; #endif { if (SCM_INUMP (a)) return (double) SCM_INUM (a); #ifdef SCM_FLOATS SCM_ASSERT (SCM_NIMP (a), a, "wrong type argument", why); if (SCM_REALP (a)) return (SCM_REALPART (a)); #endif #ifdef SCM_BIGDIG return scm_big2dbl (a); #endif SCM_ASSERT (0, a, "wrong type argument", why); return SCM_UNSPECIFIED; } SCM_PROC(s_fuck, "fuck", 1, 0, 0, scm_fuck); #ifdef __STDC__ SCM scm_fuck (SCM a) #else SCM scm_fuck (a) SCM a; #endif { return scm_makdbl (scm_num2dbl (a, "just because"), 0.0); } SCM_PROC1 (s_divide, "/", scm_tc7_asubr, scm_divide); #ifdef __STDC__ SCM scm_divide(SCM x, SCM y) #else SCM scm_divide(x, y) SCM x; SCM y; #endif { #ifdef SCM_FLOATS double d, r, i, a; if SCM_NINUMP(x) { # ifndef RECKLESS if (!(SCM_NIMP(x))) badx: scm_wta(x, (char *)SCM_ARG1, s_divide); # endif if SCM_UNBNDP(y) { # ifdef SCM_BIGDIG if SCM_BIGP(x) return scm_makdbl(1.0/scm_big2dbl(x), 0.0); # endif SCM_ASRTGO(SCM_INEXP(x), badx); if SCM_REALP(x) return scm_makdbl(1.0/SCM_REALPART(x), 0.0); r = SCM_REAL(x); i = SCM_IMAG(x); d = r*r+i*i; return scm_makdbl(r/d, -i/d); } # ifdef SCM_BIGDIG if SCM_BIGP(x) { SCM z; if SCM_INUMP(y) { z = SCM_INUM(y); #ifndef RECKLESS if (!z) scm_num_overflow (s_divide); #endif if (1==z) return x; if (z < 0) z = -z; if (z < SCM_BIGRAD) { SCM w = scm_copybig(x, SCM_BIGSIGN(x) ? (y>0) : (y<0)); return scm_divbigdig(SCM_BDIGITS(w), SCM_NUMDIGS(w), (SCM_BIGDIG)z) ? scm_makdbl(scm_big2dbl(x)/SCM_INUM(y), 0.0) : scm_normbig(w); } # ifndef SCM_DIGSTOOBIG z = scm_pseudolong(z); z = scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), (SCM_BIGDIG *)&z, SCM_DIGSPERLONG, SCM_BIGSIGN(x) ? (y>0) : (y<0), 3); # else { SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; scm_longdigs(z, zdigs); z = scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), zdigs, SCM_DIGSPERLONG, SCM_BIGSIGN(x) ? (y>0) : (y<0), 3);} # endif return z ? z : scm_makdbl(scm_big2dbl(x)/SCM_INUM(y), 0.0); } SCM_ASRTGO(SCM_NIMP(y), bady); if SCM_BIGP(y) { z = scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BDIGITS(y), SCM_NUMDIGS(y), SCM_BIGSIGN(x) ^ SCM_BIGSIGN(y), 3); return z ? z : scm_makdbl(scm_big2dbl(x)/scm_big2dbl(y), 0.0); } SCM_ASRTGO(SCM_INEXP(y), bady); if SCM_REALP(y) return scm_makdbl(scm_big2dbl(x)/SCM_REALPART(y), 0.0); a = scm_big2dbl(x); goto complex_div; } # endif SCM_ASRTGO(SCM_INEXP(x), badx); if SCM_INUMP(y) {d = SCM_INUM(y); goto basic_div;} # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(y), bady); if SCM_BIGP(y) {d = scm_big2dbl(y); goto basic_div;} SCM_ASRTGO(SCM_INEXP(y), bady); # else SCM_ASRTGO(SCM_NIMP(y) && SCM_INEXP(y), bady); # endif if SCM_REALP(y) { d = SCM_REALPART(y); basic_div: return scm_makdbl(SCM_REALPART(x)/d, SCM_CPLXP(x)?SCM_IMAG(x)/d:0.0); } a = SCM_REALPART(x); if SCM_REALP(x) goto complex_div; r = SCM_REAL(y); i = SCM_IMAG(y); d = r*r+i*i; return scm_makdbl((a*r+SCM_IMAG(x)*i)/d, (SCM_IMAG(x)*r-a*i)/d); } if SCM_UNBNDP(y) { if ((SCM_MAKINUM(1L)==x) || (SCM_MAKINUM(-1L)==x)) return x; return scm_makdbl(1.0/((double)SCM_INUM(x)), 0.0); } if SCM_NINUMP(y) { # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(y), bady); if SCM_BIGP(y) return scm_makdbl(SCM_INUM(x)/scm_big2dbl(y), 0.0); # ifndef RECKLESS if (!(SCM_INEXP(y))) bady: scm_wta(y, (char *)SCM_ARG2, s_divide); # endif # else # ifndef RECKLESS if (!(SCM_NIMP(y) && SCM_INEXP(y))) bady: scm_wta(y, (char *)SCM_ARG2, s_divide); # endif # endif if (SCM_REALP(y)) return scm_makdbl(SCM_INUM(x)/SCM_REALPART(y), 0.0); a = SCM_INUM(x); complex_div: r = SCM_REAL(y); i = SCM_IMAG(y); d = r*r+i*i; return scm_makdbl((a*r)/d, (-a*i)/d); } #else # ifdef SCM_BIGDIG if SCM_NINUMP(x) { SCM z; SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_divide); if SCM_UNBNDP(y) goto ov; if SCM_INUMP(y) { z = SCM_INUM(y); if (!z) goto ov; if (1==z) return x; if (z < 0) z = -z; if (z < SCM_BIGRAD) { SCM w = scm_copybig(x, SCM_BIGSIGN(x) ? (y>0) : (y<0)); if (scm_divbigdig(SCM_BDIGITS(w), SCM_NUMDIGS(w), (SCM_BIGDIG)z)) goto ov; return w; } # ifndef SCM_DIGSTOOBIG z = scm_pseudolong(z); z = scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), &z, SCM_DIGSPERLONG, SCM_BIGSIGN(x) ? (y>0) : (y<0), 3); # else { SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; scm_longdigs(z, zdigs); z = scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), zdigs, SCM_DIGSPERLONG, SCM_BIGSIGN(x) ? (y>0) : (y<0), 3);} # endif } else { SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady); z = scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BDIGITS(y), SCM_NUMDIGS(y), SCM_BIGSIGN(x) ^ SCM_BIGSIGN(y), 3); } if (!z) goto ov; return z; } if SCM_UNBNDP(y) { if ((SCM_MAKINUM(1L)==x) || (SCM_MAKINUM(-1L)==x)) return x; goto ov; } if SCM_NINUMP(y) { # ifndef RECKLESS if (!(SCM_NIMP(y) && SCM_BIGP(y))) bady: scm_wta(y, (char *)SCM_ARG2, s_divide); # endif goto ov; } # else SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_divide); if SCM_UNBNDP(y) { if ((SCM_MAKINUM(1L)==x) || (SCM_MAKINUM(-1L)==x)) return x; goto ov; } SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_divide); # endif #endif { long z = SCM_INUM(y); if ((0==z) || SCM_INUM(x)%z) goto ov; z = SCM_INUM(x)/z; if SCM_FIXABLE(z) return SCM_MAKINUM(z); #ifdef SCM_BIGDIG return scm_long2big(z); #endif #ifdef SCM_FLOATS ov: return scm_makdbl(((double)SCM_INUM(x))/((double)SCM_INUM(y)), 0.0); #else ov: scm_num_overflow (s_divide); return SCM_UNSPECIFIED; #endif } } #ifdef SCM_FLOATS SCM_PROC1 (s_asinh, "$asinh", scm_tc7_cxr, (SCM (*)()) scm_asinh); #ifdef __STDC__ double scm_asinh(double x) #else double scm_asinh(x) double x; #endif { return log(x+sqrt(x*x+1)); } SCM_PROC1 (s_acosh, "$acosh", scm_tc7_cxr, (SCM (*)()) scm_acosh); #ifdef __STDC__ double scm_acosh(double x) #else double scm_acosh(x) double x; #endif { return log(x+sqrt(x*x-1)); } SCM_PROC1 (s_atanh, "$atanh", scm_tc7_cxr, (SCM (*)()) scm_atanh); #ifdef __STDC__ double scm_atanh(double x) #else double scm_atanh(x) double x; #endif { return 0.5*log((1+x)/(1-x)); } SCM_PROC1 (s_truncate, "truncate", scm_tc7_cxr, (SCM (*)()) scm_truncate); #ifdef __STDC__ double scm_truncate(double x) #else double scm_truncate(x) double x; #endif { if (x < 0.0) return -floor(-x); return floor(x); } SCM_PROC1 (s_round, "round", scm_tc7_cxr, (SCM (*)()) scm_round); #ifdef __STDC__ double scm_round(double x) #else double scm_round(x) double x; #endif { double plus_half = x + 0.5; double result = floor(plus_half); /* Adjust so that the scm_round is towards even. */ return (plus_half == result && plus_half / 2 != floor(plus_half / 2)) ? result - 1 : result; } SCM_PROC1 (s_exact_to_inexact, "exact->inexact", scm_tc7_cxr, (SCM (*)()) scm_exact_to_inexact); #ifdef __STDC__ double scm_exact_to_inexact(double z) #else double scm_exact_to_inexact(z) double z; #endif { return z; } SCM_PROC1 (s_i_floor, "floor", scm_tc7_cxr, (SCM (*)()) floor); SCM_PROC1 (s_i_ceil, "ceiling", scm_tc7_cxr, (SCM (*)()) ceil); SCM_PROC1 (s_i_sqrt, "$sqrt", scm_tc7_cxr, (SCM (*)())sqrt); SCM_PROC1 (s_i_abs, "$abs", scm_tc7_cxr, (SCM (*)())fabs); SCM_PROC1 (s_i_exp, "$exp", scm_tc7_cxr, (SCM (*)())exp); SCM_PROC1 (s_i_log, "$log", scm_tc7_cxr, (SCM (*)())log); SCM_PROC1 (s_i_sin, "$sin", scm_tc7_cxr, (SCM (*)())sin); SCM_PROC1 (s_i_cos, "$cos", scm_tc7_cxr, (SCM (*)())cos); SCM_PROC1 (s_i_tan, "$tan", scm_tc7_cxr, (SCM (*)())tan); SCM_PROC1 (s_i_asin, "$asin", scm_tc7_cxr, (SCM (*)())asin); SCM_PROC1 (s_i_acos, "$acos", scm_tc7_cxr, (SCM (*)())acos); SCM_PROC1 (s_i_atan, "$atan", scm_tc7_cxr, (SCM (*)())atan); SCM_PROC1 (s_i_sinh, "$sinh", scm_tc7_cxr, (SCM (*)())sinh); SCM_PROC1 (s_i_cosh, "$cosh", scm_tc7_cxr, (SCM (*)())cosh); SCM_PROC1 (s_i_tanh, "$tanh", scm_tc7_cxr, (SCM (*)())tanh); struct dpair {double x, y;}; static void scm_two_doubles(z1, z2, sstring, xy) SCM z1, z2; char *sstring; struct dpair *xy; { if SCM_INUMP(z1) xy->x = SCM_INUM(z1); else { # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(z1), badz1); if SCM_BIGP(z1) xy->x = scm_big2dbl(z1); else { # ifndef RECKLESS if (!(SCM_REALP(z1))) badz1: scm_wta(z1, (char *)SCM_ARG1, sstring); # endif xy->x = SCM_REALPART(z1);} # else {SCM_ASSERT(SCM_NIMP(z1) && SCM_REALP(z1), z1, SCM_ARG1, sstring); xy->x = SCM_REALPART(z1);} # endif } if SCM_INUMP(z2) xy->y = SCM_INUM(z2); else { # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(z2), badz2); if SCM_BIGP(z2) xy->y = scm_big2dbl(z2); else { # ifndef RECKLESS if (!(SCM_REALP(z2))) badz2: scm_wta(z2, (char *)SCM_ARG2, sstring); # endif xy->y = SCM_REALPART(z2);} # else {SCM_ASSERT(SCM_NIMP(z2) && SCM_REALP(z2), z2, SCM_ARG2, sstring); xy->y = SCM_REALPART(z2);} # endif } } SCM_PROC(s_sys_expt, "$expt", 2, 0, 0, scm_sys_expt); #ifdef __STDC__ SCM scm_sys_expt(SCM z1, SCM z2) #else SCM scm_sys_expt(z1, z2) SCM z1; SCM z2; #endif { struct dpair xy; scm_two_doubles(z1, z2, s_sys_expt, &xy); return scm_makdbl(pow(xy.x, xy.y), 0.0); } SCM_PROC(s_sys_atan2, "$atan2", 2, 0, 0, scm_sys_atan2); #ifdef __STDC__ SCM scm_sys_atan2(SCM z1, SCM z2) #else SCM scm_sys_atan2(z1, z2) SCM z1; SCM z2; #endif { struct dpair xy; scm_two_doubles(z1, z2, s_sys_atan2, &xy); return scm_makdbl(atan2(xy.x, xy.y), 0.0); } SCM_PROC(s_make_rectangular, "make-rectangular", 2, 0, 0, scm_make_rectangular); #ifdef __STDC__ SCM scm_make_rectangular(SCM z1, SCM z2) #else SCM scm_make_rectangular(z1, z2) SCM z1; SCM z2; #endif { struct dpair xy; scm_two_doubles(z1, z2, s_make_rectangular, &xy); return scm_makdbl(xy.x, xy.y); } SCM_PROC(s_make_polar, "make-polar", 2, 0, 0, scm_make_polar); #ifdef __STDC__ SCM scm_make_polar(SCM z1, SCM z2) #else SCM scm_make_polar(z1, z2) SCM z1; SCM z2; #endif { struct dpair xy; scm_two_doubles(z1, z2, s_make_polar, &xy); return scm_makdbl(xy.x*cos(xy.y), xy.x*sin(xy.y)); } SCM_PROC(s_real_part, "real-part", 1, 0, 0, scm_real_part); #ifdef __STDC__ SCM scm_real_part(SCM z) #else SCM scm_real_part(z) SCM z; #endif { if SCM_NINUMP(z) { # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(z), badz); if SCM_BIGP(z) return z; # ifndef RECKLESS if (!(SCM_INEXP(z))) badz: scm_wta(z, (char *)SCM_ARG1, s_real_part); # endif # else SCM_ASSERT(SCM_NIMP(z) && SCM_INEXP(z), z, SCM_ARG1, s_real_part); # endif if SCM_CPLXP(z) return scm_makdbl(SCM_REAL(z), 0.0); } return z; } SCM_PROC(s_imag_part, "imag-part", 1, 0, 0, scm_imag_part); #ifdef __STDC__ SCM scm_imag_part(SCM z) #else SCM scm_imag_part(z) SCM z; #endif { if SCM_INUMP(z) return SCM_INUM0; # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(z), badz); if SCM_BIGP(z) return SCM_INUM0; # ifndef RECKLESS if (!(SCM_INEXP(z))) badz: scm_wta(z, (char *)SCM_ARG1, s_imag_part); # endif # else SCM_ASSERT(SCM_NIMP(z) && SCM_INEXP(z), z, SCM_ARG1, s_imag_part); # endif if SCM_CPLXP(z) return scm_makdbl(SCM_IMAG(z), 0.0); return scm_flo0; } SCM_PROC(s_magnitude, "magnitude", 1, 0, 0, scm_magnitude); #ifdef __STDC__ SCM scm_magnitude(SCM z) #else SCM scm_magnitude(z) SCM z; #endif { if SCM_INUMP(z) return scm_abs(z); # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(z), badz); if SCM_BIGP(z) return scm_abs(z); # ifndef RECKLESS if (!(SCM_INEXP(z))) badz: scm_wta(z, (char *)SCM_ARG1, s_magnitude); # endif # else SCM_ASSERT(SCM_NIMP(z) && SCM_INEXP(z), z, SCM_ARG1, s_magnitude); # endif if SCM_CPLXP(z) { double i = SCM_IMAG(z), r = SCM_REAL(z); return scm_makdbl(sqrt(i*i+r*r), 0.0); } return scm_makdbl(fabs(SCM_REALPART(z)), 0.0); } SCM_PROC(s_angle, "angle", 1, 0, 0, scm_angle); #ifdef __STDC__ SCM scm_angle(SCM z) #else SCM scm_angle(z) SCM z; #endif { double x, y = 0.0; if SCM_INUMP(z) {x = (z>=SCM_INUM0) ? 1.0 : -1.0; goto do_angle;} # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(z), badz); if SCM_BIGP(z) {x = (SCM_TYP16(z)==scm_tc16_bigpos) ? 1.0 : -1.0; goto do_angle;} # ifndef RECKLESS if (!(SCM_INEXP(z))) { badz: scm_wta(z, (char *)SCM_ARG1, s_angle);} # endif # else SCM_ASSERT(SCM_NIMP(z) && SCM_INEXP(z), z, SCM_ARG1, s_angle); # endif if (SCM_REALP(z)) { x = SCM_REALPART(z); goto do_angle; } x = SCM_REAL(z); y = SCM_IMAG(z); do_angle: return scm_makdbl(atan2(y, x), 0.0); } SCM_PROC(s_inexact_to_exact, "inexact->exact", 1, 0, 0, scm_inexact_to_exact); #ifdef __STDC__ SCM scm_inexact_to_exact(SCM z) #else SCM scm_inexact_to_exact(z) SCM z; #endif { if SCM_INUMP(z) return z; # ifdef SCM_BIGDIG SCM_ASRTGO(SCM_NIMP(z), badz); if SCM_BIGP(z) return z; # ifndef RECKLESS if (!(SCM_REALP(z))) badz: scm_wta(z, (char *)SCM_ARG1, s_inexact_to_exact); # endif # else SCM_ASSERT(SCM_NIMP(z) && SCM_REALP(z), z, SCM_ARG1, s_inexact_to_exact); # endif # ifdef SCM_BIGDIG { double u = floor(SCM_REALPART(z)+0.5); if ((u <= SCM_MOST_POSITIVE_FIXNUM) && (-u <= -SCM_MOST_NEGATIVE_FIXNUM)) { /* Negation is a workaround for HP700 cc bug */ SCM ans = SCM_MAKINUM((long)u); if (SCM_INUM(ans)==(long)u) return ans; } SCM_ASRTGO(!IS_INF(u), badz); /* problem? */ return scm_dbl2big(u); } # else return SCM_MAKINUM((long)floor(SCM_REALPART(z)+0.5)); # endif } #else /* ~SCM_FLOATS */ SCM_PROC(s_trunc, "truncate", 1, 0, 0, scm_trunc); #ifdef __STDC__ SCM scm_trunc(SCM x) #else SCM scm_trunc(x) SCM x; #endif { SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_truncate); return x; } #endif /* SCM_FLOATS */ #ifdef SCM_BIGDIG # ifdef SCM_FLOATS /* d must be integer */ #ifdef __STDC__ SCM scm_dbl2big(double d) #else SCM scm_dbl2big(d) double d; #endif { scm_sizet i = 0; long c; SCM_BIGDIG *digits; SCM ans; double u = (d < 0)?-d:d; while (0 != floor(u)) {u /= SCM_BIGRAD;i++;} ans = scm_mkbig(i, d < 0); digits = SCM_BDIGITS(ans); while (i--) { u *= SCM_BIGRAD; c = floor(u); u -= c; digits[i] = c; } #ifndef RECKLESS if (u != 0) scm_num_overflow ("dbl2big"); #endif return ans; } #ifdef __STDC__ double scm_big2dbl(SCM b) #else double scm_big2dbl(b) SCM b; #endif { double ans = 0.0; scm_sizet i = SCM_NUMDIGS(b); SCM_BIGDIG *digits = SCM_BDIGITS(b); while (i--) ans = digits[i] + SCM_BIGRAD*ans; if (scm_tc16_bigneg==SCM_TYP16(b)) return -ans; return ans; } # endif #endif #ifdef __STDC__ SCM scm_long2num(long sl) #else SCM scm_long2num(sl) long sl; #endif { if (!SCM_FIXABLE(sl)) { #ifdef SCM_BIGDIG return scm_long2big(sl); #else # ifdef SCM_FLOATS return scm_makdbl((double) sl, 0.0); # else return SCM_BOOL_F; # endif #endif } return SCM_MAKINUM(sl); } #ifdef LONGLONGS #ifdef __STDC__ SCM scm_long_long2num(long_long sl) #else SCM scm_long_long2num(sl) long_long sl; #endif { if (!SCM_FIXABLE(sl)) { #ifdef SCM_BIGDIG return scm_long_long2big(sl); #else # ifdef SCM_FLOATS return scm_makdbl((double) sl, 0.0); # else return SCM_BOOL_F; # endif #endif } return SCM_MAKINUM(sl); } #endif #ifdef __STDC__ SCM scm_ulong2num(unsigned long sl) #else SCM scm_ulong2num(sl) unsigned long sl; #endif { if (!SCM_POSFIXABLE(sl)) { #ifdef SCM_BIGDIG return scm_ulong2big(sl); #else # ifdef SCM_FLOATS return scm_makdbl((double) sl, 0.0); # else return SCM_BOOL_F; # endif #endif } return SCM_MAKINUM(sl); } #ifdef __STDC__ long scm_num2long(SCM num, char *pos, char *s_caller) #else long scm_num2long(num, pos, s_caller) SCM num; char *pos; char *s_caller; #endif { long res; if (SCM_INUMP(num)) { res = SCM_INUM(num); return res; } SCM_ASRTGO(SCM_NIMP(num), errout); #ifdef SCM_FLOATS if (SCM_REALP(num)) { double u = SCM_REALPART(num); res = u; if ((double)res == u) { return res; } } #endif #ifdef SCM_BIGDIG if (SCM_BIGP(num)) { long oldres; scm_sizet l; res = 0; oldres = 0; for(l = SCM_NUMDIGS(num);l--;) { res = SCM_BIGUP(res) + SCM_BDIGITS(num)[l]; if (res < oldres) goto errout; oldres = res; } if (SCM_TYP16 (num) == scm_tc16_bigpos) return res; else return -res; } #endif errout: scm_wta(num, pos, s_caller); return SCM_UNSPECIFIED; } #ifdef __STDC__ long num2long(SCM num, char *pos, char *s_caller) #else long num2long(num, pos, s_caller) SCM num; char *pos; char *s_caller; #endif { long res; if SCM_INUMP(num) { res = SCM_INUM((long)num); return res; } SCM_ASRTGO(SCM_NIMP(num), errout); #ifdef SCM_FLOATS if SCM_REALP(num) { double u = SCM_REALPART(num); if (((SCM_MOST_NEGATIVE_FIXNUM * 4) <= u) && (u <= (SCM_MOST_POSITIVE_FIXNUM * 4 + 3))) { res = u; return res; } } #endif #ifdef SCM_BIGDIG if SCM_BIGP(num) { scm_sizet l = SCM_NUMDIGS(num); SCM_ASRTGO(SCM_DIGSPERLONG >= l, errout); res = 0; for(;l--;) res = SCM_BIGUP(res) + SCM_BDIGITS(num)[l]; return res; } #endif errout: scm_wta(num, pos, s_caller); return SCM_UNSPECIFIED; } #ifdef LONGLONGS #ifdef __STDC__ long_long scm_num2long_long(SCM num, char *pos, char *s_caller) #else long_long scm_num2long_long(num, pos, s_caller) SCM num; char *pos; char *s_caller; #endif { long_long res; if SCM_INUMP(num) { res = SCM_INUM((long_long)num); return res; } SCM_ASRTGO(SCM_NIMP(num), errout); #ifdef SCM_FLOATS if SCM_REALP(num) { double u = SCM_REALPART(num); if (((SCM_MOST_NEGATIVE_FIXNUM * 4) <= u) && (u <= (SCM_MOST_POSITIVE_FIXNUM * 4 + 3))) { res = u; return res; } } #endif #ifdef SCM_BIGDIG if SCM_BIGP(num) { scm_sizet l = SCM_NUMDIGS(num); SCM_ASRTGO(SCM_DIGSPERLONGLONG >= l, errout); res = 0; for(;l--;) res = SCM_LONGLONGBIGUP(res) + SCM_BDIGITS(num)[l]; return res; } #endif errout: scm_wta(num, pos, s_caller); return SCM_UNSPECIFIED; } #endif #ifdef __STDC__ unsigned long scm_num2ulong(SCM num, char *pos, char *s_caller) #else unsigned long scm_num2ulong(num, pos, s_caller) SCM num; char *pos; char *s_caller; #endif { unsigned long res; if (SCM_INUMP(num)) { res = SCM_INUM((unsigned long)num); return res; } SCM_ASRTGO(SCM_NIMP(num), errout); #ifdef SCM_FLOATS if (SCM_REALP(num)) { double u = SCM_REALPART(num); if ((0 <= u) && (u <= (unsigned long)~0L)) { res = u; return res; } } #endif #ifdef SCM_BIGDIG if (SCM_BIGP(num)) { unsigned long oldres; scm_sizet l; res = 0; oldres = 0; for(l = SCM_NUMDIGS(num);l--;) { res = SCM_BIGUP(res) + SCM_BDIGITS(num)[l]; if (res < oldres) goto errout; oldres = res; } return res; } #endif errout: scm_wta(num, pos, s_caller); return SCM_UNSPECIFIED; } #ifdef SCM_FLOATS # ifndef DBL_DIG static void add1(f, fsum) double f, *fsum; { *fsum = f + 1.0; } # endif #endif #ifdef __STDC__ void scm_init_numbers (void) #else void scm_init_numbers () #endif { #ifdef SCM_FLOATS SCM_NEWCELL(scm_flo0); # ifdef SCM_SINGLES SCM_CAR(scm_flo0) = scm_tc_flo; SCM_FLO(scm_flo0) = 0.0; # else SCM_CDR(scm_flo0) = (SCM)scm_must_malloc(1L*sizeof(double), "real"); SCM_REAL(scm_flo0) = 0.0; SCM_CAR(scm_flo0) = scm_tc_dblr; # endif # ifdef DBL_DIG scm_dblprec = (DBL_DIG > 20) ? 20 : DBL_DIG; # else { /* determine floating point precision */ double f = 0.1; double fsum = 1.0+f; while (fsum != 1.0) { f /= 10.0; if (++scm_dblprec > 20) break; add1(f, &fsum); } scm_dblprec = scm_dblprec-1; } # endif /* DBL_DIG */ #endif #include "numbers.x" }