#ifndef GC_API_H_ #define GC_API_H_ #include "gc-config.h" #include "gc-assert.h" #include "gc-attrs.h" #include "gc-inline.h" #include "gc-ref.h" #include "gc-edge.h" #include #include #include // FIXME: prefix with gc_ struct heap; struct mutator; enum { GC_OPTION_FIXED_HEAP_SIZE, GC_OPTION_PARALLELISM }; struct gc_option { int option; double value; }; struct gc_mutator { void *user_data; }; // FIXME: Conflict with bdw-gc GC_API. Switch prefix? #ifndef GC_API_ #define GC_API_ __attribute__((visibility("hidden"))) #endif GC_API_ int gc_option_from_string(const char *str); GC_API_ int gc_init(int argc, struct gc_option argv[], struct heap **heap, struct mutator **mutator); struct gc_mutator_roots; struct gc_heap_roots; GC_API_ void gc_mutator_set_roots(struct mutator *mut, struct gc_mutator_roots *roots); GC_API_ void gc_heap_set_roots(struct heap *heap, struct gc_heap_roots *roots); GC_API_ struct mutator* gc_init_for_thread(uintptr_t *stack_base, struct heap *heap); GC_API_ void gc_finish_for_thread(struct mutator *mut); GC_API_ void* gc_call_without_gc(struct mutator *mut, void* (*f)(void*), void *data) GC_NEVER_INLINE; GC_API_ void gc_print_stats(struct heap *heap); static inline void gc_clear_fresh_allocation(struct gc_ref obj, size_t size) GC_ALWAYS_INLINE; static inline void gc_clear_fresh_allocation(struct gc_ref obj, size_t size) { if (!gc_allocator_needs_clear()) return; memset(gc_ref_heap_object(obj), 0, size); } static inline void gc_update_alloc_table(struct mutator *mut, struct gc_ref obj, size_t size) GC_ALWAYS_INLINE; static inline void gc_update_alloc_table(struct mutator *mut, struct gc_ref obj, size_t size) { size_t alignment = gc_allocator_alloc_table_alignment(); if (!alignment) return; uintptr_t addr = gc_ref_value(obj); uintptr_t base = addr & ~(alignment - 1); size_t granule_size = gc_allocator_small_granule_size(); uintptr_t granule = (addr & (alignment - 1)) / granule_size; uint8_t *alloc = (uint8_t*)(base + granule); uint8_t begin_pattern = gc_allocator_alloc_table_begin_pattern(); uint8_t end_pattern = gc_allocator_alloc_table_end_pattern(); if (end_pattern) { size_t granules = size / granule_size; if (granules == 1) { alloc[0] = begin_pattern | end_pattern; } else { alloc[0] = begin_pattern; if (granules > 2) memset(alloc + 1, 0, granules - 2); alloc[granules - 1] = end_pattern; } } else { alloc[0] = begin_pattern; } } GC_API_ void* gc_allocate_small(struct mutator *mut, size_t bytes) GC_NEVER_INLINE; GC_API_ void* gc_allocate_large(struct mutator *mut, size_t bytes) GC_NEVER_INLINE; static inline void* gc_allocate_bump_pointer(struct mutator *mut, size_t size) GC_ALWAYS_INLINE; static inline void* gc_allocate_bump_pointer(struct mutator *mut, size_t size) { GC_ASSERT(size <= gc_allocator_large_threshold()); size_t granule_size = gc_allocator_small_granule_size(); size_t hp_offset = gc_allocator_allocation_pointer_offset(); size_t limit_offset = gc_allocator_allocation_limit_offset(); uintptr_t base_addr = (uintptr_t)mut; uintptr_t *hp_loc = (uintptr_t*)(base_addr + hp_offset); uintptr_t *limit_loc = (uintptr_t*)(base_addr + limit_offset); size = (size + granule_size - 1) & ~(granule_size - 1); uintptr_t hp = *hp_loc; uintptr_t limit = *limit_loc; uintptr_t new_hp = hp + size; if (GC_UNLIKELY (new_hp > limit)) return gc_allocate_small(mut, size); *hp_loc = new_hp; gc_clear_fresh_allocation(gc_ref(hp), size); gc_update_alloc_table(mut, gc_ref(hp), size); return (void*)hp; } static inline void* gc_allocate_freelist(struct mutator *mut, size_t size) GC_ALWAYS_INLINE; static inline void* gc_allocate_freelist(struct mutator *mut, size_t size) { GC_ASSERT(size <= gc_allocator_large_threshold()); size_t freelist_offset = gc_allocator_freelist_offset(size); uintptr_t base_addr = (uintptr_t)mut; void **freelist_loc = (void**)(base_addr + freelist_offset); void *head = *freelist_loc; if (GC_UNLIKELY(!head)) return gc_allocate_small(mut, size); *freelist_loc = *(void**)head; gc_clear_fresh_allocation(gc_ref_from_heap_object(head), size); gc_update_alloc_table(mut, gc_ref_from_heap_object(head), size); return head; } static inline void* gc_allocate(struct mutator *mut, size_t bytes) GC_ALWAYS_INLINE; static inline void* gc_allocate(struct mutator *mut, size_t size) { GC_ASSERT(size != 0); if (size > gc_allocator_large_threshold()) return gc_allocate_large(mut, size); switch (gc_allocator_kind()) { case GC_ALLOCATOR_INLINE_BUMP_POINTER: return gc_allocate_bump_pointer(mut, size); case GC_ALLOCATOR_INLINE_FREELIST: return gc_allocate_freelist(mut, size); case GC_ALLOCATOR_INLINE_NONE: return gc_allocate_small(mut, size); default: GC_CRASH(); } } // FIXME: remove :P GC_API_ void* gc_allocate_pointerless(struct mutator *mut, size_t bytes); static inline void gc_small_write_barrier(struct gc_ref obj, struct gc_edge edge, struct gc_ref new_val) GC_ALWAYS_INLINE; static inline void gc_small_write_barrier(struct gc_ref obj, struct gc_edge edge, struct gc_ref new_val) { switch (gc_small_write_barrier_kind()) { case GC_WRITE_BARRIER_NONE: return; case GC_WRITE_BARRIER_CARD: { size_t card_table_alignment = gc_small_write_barrier_card_table_alignment(); size_t card_size = gc_small_write_barrier_card_size(); uintptr_t addr = gc_ref_value(obj); uintptr_t base = addr & ~(card_table_alignment - 1); uintptr_t card = (addr & (card_table_alignment - 1)) / card_size; atomic_store_explicit((uint8_t*)(base + card), 1, memory_order_relaxed); return; } default: GC_CRASH(); } } #endif // GC_API_H_