#ifndef GC_BARRIER_H_ #define GC_BARRIER_H_ #include "gc-api.h" GC_API_ int gc_object_is_old_generation_slow(struct gc_mutator *mut, struct gc_ref obj) GC_NEVER_INLINE; static inline int gc_object_is_old_generation(struct gc_mutator *mut, struct gc_ref obj, size_t obj_size) GC_ALWAYS_INLINE; GC_API_ void gc_write_barrier_slow(struct gc_mutator *mut, struct gc_ref obj, size_t obj_size, struct gc_edge edge, struct gc_ref new_val) GC_NEVER_INLINE; static inline int gc_write_barrier_fast(struct gc_mutator *mut, struct gc_ref obj, size_t obj_size, struct gc_edge edge, struct gc_ref new_val) GC_ALWAYS_INLINE; static inline void gc_write_barrier(struct gc_mutator *mut, struct gc_ref obj, size_t obj_size, struct gc_edge edge, struct gc_ref new_val) GC_ALWAYS_INLINE; static inline int gc_object_is_old_generation(struct gc_mutator *mut, struct gc_ref obj, size_t obj_size) { switch (gc_old_generation_check_kind(obj_size)) { case GC_OLD_GENERATION_CHECK_ALLOC_TABLE: { size_t alignment = gc_allocator_alloc_table_alignment(); GC_ASSERT(alignment); uintptr_t addr = gc_ref_value(obj); uintptr_t base = addr & ~(alignment - 1); size_t granule_size = gc_allocator_small_granule_size(); uintptr_t granule = (addr & (alignment - 1)) / granule_size; uint8_t *byte_loc = (uint8_t*)(base + granule); uint8_t byte = atomic_load_explicit(byte_loc, memory_order_relaxed); uint8_t mask = gc_old_generation_check_alloc_table_tag_mask(); uint8_t young = gc_old_generation_check_alloc_table_young_tag(); return (byte & mask) != young; } case GC_OLD_GENERATION_CHECK_SMALL_OBJECT_NURSERY: { struct gc_heap *heap = gc_mutator_heap(mut); // Note that these addresses are fixed and that the embedder might // want to store them somewhere or inline them into the output of // JIT-generated code. They may also be power-of-two aligned. uintptr_t low_addr = gc_small_object_nursery_low_address(heap); uintptr_t high_addr = gc_small_object_nursery_high_address(heap); uintptr_t size = high_addr - low_addr; uintptr_t addr = gc_ref_value(obj); return addr - low_addr >= size; } case GC_OLD_GENERATION_CHECK_SLOW: return gc_object_is_old_generation_slow(mut, obj); default: GC_CRASH(); } } static inline int gc_write_barrier_fast(struct gc_mutator *mut, struct gc_ref obj, size_t obj_size, struct gc_edge edge, struct gc_ref new_val) { switch (gc_write_barrier_kind(obj_size)) { case GC_WRITE_BARRIER_NONE: return 0; case GC_WRITE_BARRIER_FIELD: { if (!gc_object_is_old_generation(mut, obj, obj_size)) return 0; size_t field_table_alignment = gc_write_barrier_field_table_alignment(); size_t fields_per_byte = gc_write_barrier_field_fields_per_byte(); uint8_t first_bit_pattern = gc_write_barrier_field_first_bit_pattern(); ssize_t table_offset = gc_write_barrier_field_table_offset(); uintptr_t addr = gc_edge_address(edge); uintptr_t base = addr & ~(field_table_alignment - 1); uintptr_t field = (addr & (field_table_alignment - 1)) / sizeof(uintptr_t); uintptr_t log_byte = field / fields_per_byte; uint8_t log_bit = first_bit_pattern << (field % fields_per_byte); uint8_t *byte_loc = (uint8_t*)(base + table_offset + log_byte); uint8_t byte = atomic_load_explicit(byte_loc, memory_order_relaxed); return !(byte & log_bit); } case GC_WRITE_BARRIER_SLOW: return 1; default: GC_CRASH(); } } static inline void gc_write_barrier(struct gc_mutator *mut, struct gc_ref obj, size_t obj_size, struct gc_edge edge, struct gc_ref new_val) { if (GC_UNLIKELY(gc_write_barrier_fast(mut, obj, obj_size, edge, new_val))) gc_write_barrier_slow(mut, obj, obj_size, edge, new_val); } #endif // GC_BARRIER_H_