#include #include #include #include #include #include "precise-roots.h" struct context { uintptr_t hp; uintptr_t limit; uintptr_t base; size_t size; struct handle *roots; long count; }; static const uintptr_t ALIGNMENT = 8; static uintptr_t align_up(uintptr_t addr, size_t align) { return (addr + align - 1) & ~(align-1); } #define GC_HEADER uintptr_t _gc_header static inline void clear_memory(uintptr_t addr, size_t size) { memset((char*)addr, 0, size); } static void collect(struct context *cx, size_t bytes) NEVER_INLINE; static void visit(void **loc, void *visit_data); static void flip(struct context *cx) { uintptr_t split = cx->base + (cx->size >> 1); if (cx->hp <= split) { cx->hp = split; cx->limit = cx->base + cx->size; } else { cx->hp = cx->base; cx->limit = split; } cx->count++; } static void* copy(struct context *cx, uintptr_t kind, void *obj) { size_t size; switch (kind) { #define COMPUTE_SIZE(name, Name, NAME) \ case ALLOC_KIND_##NAME: \ size = name##_size(obj); \ break; FOR_EACH_HEAP_OBJECT_KIND(COMPUTE_SIZE) #undef COMPUTE_SIZE default: abort (); } void *new_obj = (void*)cx->hp; memcpy(new_obj, obj, size); *(uintptr_t*) obj = cx->hp; cx->hp += align_up (size, ALIGNMENT); return new_obj; } static uintptr_t scan(struct context *cx, uintptr_t grey) { void *obj = (void*)grey; uintptr_t kind = *(uintptr_t*) obj; switch (kind) { #define SCAN_OBJECT(name, Name, NAME) \ case ALLOC_KIND_##NAME: \ visit_##name##_fields((Name*)obj, visit, cx); \ return grey + align_up(name##_size((Name*)obj), ALIGNMENT); FOR_EACH_HEAP_OBJECT_KIND(SCAN_OBJECT) #undef SCAN_OBJECT default: abort (); } } static void* forward(struct context *cx, void *obj) { uintptr_t header_word = *(uintptr_t*)obj; switch (header_word) { #define CASE_ALLOC_KIND(name, Name, NAME) \ case ALLOC_KIND_##NAME: FOR_EACH_HEAP_OBJECT_KIND(CASE_ALLOC_KIND) #undef CASE_ALLOC_KIND return copy(cx, header_word, obj); default: return (void*)header_word; } } static void visit(void **loc, void *visit_data) { struct context *cx = visit_data; void *obj = *loc; if (obj != NULL) *loc = forward(cx, obj); } static void collect(struct context *cx, size_t bytes) { // fprintf(stderr, "start collect #%ld:\n", cx->count); flip(cx); uintptr_t grey = cx->hp; for (struct handle *h = cx->roots; h; h = h->next) visit(&h->v, cx); // fprintf(stderr, "pushed %zd bytes in roots\n", cx->hp - grey); while(grey < cx->hp) grey = scan(cx, grey); // fprintf(stderr, "%zd bytes copied\n", (cx->size>>1)-(cx->limit-cx->hp)); if (cx->limit - cx->hp < bytes) { fprintf(stderr, "ran out of space, heap size %zu\n", cx->size); abort(); } } static inline void* allocate(struct context *cx, enum alloc_kind kind, size_t size) { while (1) { uintptr_t addr = cx->hp; uintptr_t new_hp = align_up (addr + size, ALIGNMENT); if (cx->limit < new_hp) { collect(cx, size); continue; } cx->hp = new_hp; void *ret = (void *)addr; uintptr_t *header_word = ret; *header_word = kind; // FIXME: Allow allocator to avoid initializing pointerless memory? // if (kind == NODE) clear_memory(addr + sizeof(uintptr_t), size - sizeof(uintptr_t)); return ret; } } static inline void init_field(void **addr, void *val) { *addr = val; } static inline void set_field(void **addr, void *val) { *addr = val; } static inline void* get_field(void **addr) { return *addr; } static inline void initialize_gc(struct context *cx, size_t size) { size = align_up(size, getpagesize()); void *mem = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); if (mem == MAP_FAILED) { perror("mmap failed"); abort(); } cx->hp = cx->base = (uintptr_t) mem; cx->size = size; cx->count = -1; flip(cx); cx->roots = NULL; } static inline void print_start_gc_stats(struct context *cx) { } static inline void print_end_gc_stats(struct context *cx) { printf("Completed %ld collections\n", cx->count); printf("Heap size is %zd\n", cx->size); }