1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-30 11:50:28 +02:00
guile/libguile/numbers.c
2006-12-05 00:04:37 +00:00

4721 lines
116 KiB
C
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Copyright (C) 1995,1996,1997,1998,1999,2000,2001, 2002, 2003, 2004, 2005, 2006
* Free Software Foundation, Inc.
*
* Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
* and Bellcore. See scm_divide.
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301 USA
*
* As a special exception, the Free Software Foundation gives permission
* for additional uses of the text contained in its release of GUILE.
*
* The exception is that, if you link the GUILE library with other files
* to produce an executable, this does not by itself cause the
* resulting executable to be covered by the GNU General Public License.
* Your use of that executable is in no way restricted on account of
* linking the GUILE library code into it.
*
* This exception does not however invalidate any other reasons why
* the executable file might be covered by the GNU General Public License.
*
* This exception applies only to the code released by the
* Free Software Foundation under the name GUILE. If you copy
* code from other Free Software Foundation releases into a copy of
* GUILE, as the General Public License permits, the exception does
* not apply to the code that you add in this way. To avoid misleading
* anyone as to the status of such modified files, you must delete
* this exception notice from them.
*
* If you write modifications of your own for GUILE, it is your choice
* whether to permit this exception to apply to your modifications.
* If you do not wish that, delete this exception notice. */
#include <math.h>
#include "libguile/_scm.h"
#include "libguile/feature.h"
#include "libguile/ports.h"
#include "libguile/root.h"
#include "libguile/smob.h"
#include "libguile/strings.h"
#include "libguile/validate.h"
#include "libguile/numbers.h"
#include "libguile/deprecation.h"
static SCM scm_divbigbig (SCM_BIGDIG *x, size_t nx, SCM_BIGDIG *y, size_t ny, int sgn, int modes);
static SCM scm_divbigint (SCM x, long z, int sgn, int mode);
#define DIGITS '0':case '1':case '2':case '3':case '4':\
case '5':case '6':case '7':case '8':case '9'
#define SCM_SWAP(x,y) do { SCM __t = x; x = y; y = __t; } while (0)
/* FLOBUFLEN is the maximum number of characters neccessary for the
* printed or scm_string representation of an inexact number.
*/
#define FLOBUFLEN (10+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
/* IS_INF tests its floating point number for infiniteness
Dirk:FIXME:: This test does not work if x == 0
*/
#ifndef IS_INF
#define IS_INF(x) ((x) == (x) / 2)
#endif
/* Return true if X is not infinite and is not a NaN
Dirk:FIXME:: Since IS_INF is broken, this test does not work if x == 0
*/
#ifndef isfinite
#define isfinite(x) (!IS_INF (x) && (x) == (x))
#endif
static SCM abs_most_negative_fixnum;
SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
(SCM x),
"Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
"otherwise.")
#define FUNC_NAME s_scm_exact_p
{
if (SCM_INUMP (x)) {
return SCM_BOOL_T;
} else if (SCM_BIGP (x)) {
return SCM_BOOL_T;
} else {
return SCM_BOOL_F;
}
}
#undef FUNC_NAME
SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
(SCM n),
"Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
"otherwise.")
#define FUNC_NAME s_scm_odd_p
{
if (SCM_INUMP (n)) {
return SCM_BOOL ((4 & SCM_UNPACK (n)) != 0);
} else if (SCM_BIGP (n)) {
return SCM_BOOL ((1 & SCM_BDIGITS (n) [0]) != 0);
} else {
SCM_WRONG_TYPE_ARG (1, n);
}
}
#undef FUNC_NAME
SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
(SCM n),
"Return @code{#t} if @var{n} is an even number, @code{#f}\n"
"otherwise.")
#define FUNC_NAME s_scm_even_p
{
if (SCM_INUMP (n)) {
return SCM_BOOL ((4 & SCM_UNPACK (n)) == 0);
} else if (SCM_BIGP (n)) {
return SCM_BOOL ((1 & SCM_BDIGITS (n) [0]) == 0);
} else {
SCM_WRONG_TYPE_ARG (1, n);
}
}
#undef FUNC_NAME
SCM_GPROC (s_abs, "abs", 1, 0, 0, scm_abs, g_abs);
/* "Return the absolute value of @var{x}."
*/
SCM
scm_abs (SCM x)
{
if (SCM_INUMP (x)) {
long int xx = SCM_INUM (x);
if (xx >= 0) {
return x;
} else if (SCM_POSFIXABLE (-xx)) {
return SCM_MAKINUM (-xx);
} else {
#ifdef SCM_BIGDIG
return scm_i_long2big (-xx);
#else
scm_num_overflow (s_abs);
#endif
}
} else if (SCM_BIGP (x)) {
if (!SCM_BIGSIGN (x)) {
return x;
} else {
return scm_i_copybig (x, 0);
}
} else if (SCM_REALP (x)) {
return scm_make_real (fabs (SCM_REAL_VALUE (x)));
} else {
SCM_WTA_DISPATCH_1 (g_abs, x, 1, s_abs);
}
}
SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
/* "Return the quotient of the numbers @var{x} and @var{y}."
*/
SCM
scm_quotient (SCM x, SCM y)
{
if (SCM_INUMP (x)) {
long xx = SCM_INUM (x);
if (SCM_INUMP (y)) {
long yy = SCM_INUM (y);
if (yy == 0) {
scm_num_overflow (s_quotient);
} else {
long z = xx / yy;
if (SCM_FIXABLE (z)) {
return SCM_MAKINUM (z);
} else {
#ifdef SCM_BIGDIG
return scm_i_long2big (z);
#else
scm_num_overflow (s_quotient);
#endif
}
}
} else if (SCM_BIGP (y)) {
if (SCM_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM
&& scm_bigcomp (abs_most_negative_fixnum, y) == 0)
{
/* Special case: x == fixnum-min && y == abs (fixnum-min) */
return SCM_MAKINUM (-1);
}
else
return SCM_MAKINUM (0);
} else {
SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
}
} else if (SCM_BIGP (x)) {
if (SCM_INUMP (y)) {
long yy = SCM_INUM (y);
if (yy == 0) {
scm_num_overflow (s_quotient);
} else if (yy == 1) {
return x;
} else {
long z = yy < 0 ? -yy : yy;
if (z < SCM_BIGRAD) {
SCM sw = scm_i_copybig (x, SCM_BIGSIGN (x) ? (yy > 0) : (yy < 0));
scm_divbigdig (SCM_BDIGITS (sw), SCM_NUMDIGS (sw), (SCM_BIGDIG) z);
return scm_i_normbig (sw);
} else {
#ifndef SCM_DIGSTOOBIG
long w = scm_pseudolong (z);
return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
(SCM_BIGDIG *) & w, SCM_DIGSPERLONG,
SCM_BIGSIGN (x) ? (yy > 0) : (yy < 0), 2);
#else
SCM_BIGDIG zdigs[SCM_DIGSPERLONG];
scm_longdigs (z, zdigs);
return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
zdigs, SCM_DIGSPERLONG,
SCM_BIGSIGN (x) ? (yy > 0) : (yy < 0), 2);
#endif
}
}
} else if (SCM_BIGP (y)) {
return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
SCM_BDIGITS (y), SCM_NUMDIGS (y),
SCM_BIGSIGN (x) ^ SCM_BIGSIGN (y), 2);
} else {
SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
}
} else {
SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
}
}
SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
/* "Return the remainder of the numbers @var{x} and @var{y}.\n"
* "@lisp\n"
* "(remainder 13 4) @result{} 1\n"
* "(remainder -13 4) @result{} -1\n"
* "@end lisp"
*/
SCM
scm_remainder (SCM x, SCM y)
{
if (SCM_INUMP (x)) {
if (SCM_INUMP (y)) {
long yy = SCM_INUM (y);
if (yy == 0) {
scm_num_overflow (s_remainder);
} else {
long z = SCM_INUM (x) % yy;
return SCM_MAKINUM (z);
}
} else if (SCM_BIGP (y)) {
if (SCM_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM
&& scm_bigcomp (abs_most_negative_fixnum, y) == 0)
{
/* Special case: x == fixnum-min && y == abs (fixnum-min) */
return SCM_MAKINUM (0);
}
else
return x;
} else {
SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
}
} else if (SCM_BIGP (x)) {
if (SCM_INUMP (y)) {
long yy = SCM_INUM (y);
if (yy == 0) {
scm_num_overflow (s_remainder);
} else {
return scm_divbigint (x, yy, SCM_BIGSIGN (x), 0);
}
} else if (SCM_BIGP (y)) {
return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
SCM_BDIGITS (y), SCM_NUMDIGS (y),
SCM_BIGSIGN (x), 0);
} else {
SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
}
} else {
SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
}
}
SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
/* "Return the modulo of the numbers @var{x} and @var{y}.\n"
* "@lisp\n"
* "(modulo 13 4) @result{} 1\n"
* "(modulo -13 4) @result{} 3\n"
* "@end lisp"
*/
SCM
scm_modulo (SCM x, SCM y)
{
if (SCM_INUMP (x)) {
long xx = SCM_INUM (x);
if (SCM_INUMP (y)) {
long yy = SCM_INUM (y);
if (yy == 0) {
scm_num_overflow (s_modulo);
} else {
long z = xx % yy;
return SCM_MAKINUM (((yy < 0) ? (z > 0) : (z < 0)) ? z + yy : z);
}
} else if (SCM_BIGP (y)) {
return (SCM_BIGSIGN (y) ? (xx > 0) : (xx < 0)) ? scm_sum (x, y) : x;
} else {
SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
}
} else if (SCM_BIGP (x)) {
if (SCM_INUMP (y)) {
long yy = SCM_INUM (y);
if (yy == 0) {
scm_num_overflow (s_modulo);
} else {
return scm_divbigint (x, yy, yy < 0,
(SCM_BIGSIGN (x) ? (yy > 0) : (yy < 0)) ? 1 : 0);
}
} else if (SCM_BIGP (y)) {
return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
SCM_BDIGITS (y), SCM_NUMDIGS (y),
SCM_BIGSIGN (y),
(SCM_BIGSIGN (x) ^ SCM_BIGSIGN (y)) ? 1 : 0);
} else {
SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
}
} else {
SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
}
}
SCM_GPROC1 (s_gcd, "gcd", scm_tc7_asubr, scm_gcd, g_gcd);
/* "Return the greatest common divisor of all arguments.\n"
* "If called without arguments, 0 is returned."
*/
SCM
scm_gcd (SCM x, SCM y)
{
if (SCM_UNBNDP (y)) {
if (SCM_UNBNDP (x)) {
return SCM_INUM0;
} else {
return x;
}
}
tailrec:
if (SCM_INUMP (x)) {
if (SCM_INUMP (y)) {
long xx = SCM_INUM (x);
long yy = SCM_INUM (y);
long u = xx < 0 ? -xx : xx;
long v = yy < 0 ? -yy : yy;
long result;
if (xx == 0) {
result = v;
} else if (yy == 0) {
result = u;
} else {
long k = 1;
long t;
/* Determine a common factor 2^k */
while (!(1 & (u | v))) {
k <<= 1;
u >>= 1;
v >>= 1;
}
/* Now, any factor 2^n can be eliminated */
if (u & 1) {
t = -v;
} else {
t = u;
b3:
t = SCM_SRS (t, 1);
}
if (!(1 & t))
goto b3;
if (t > 0)
u = t;
else
v = -t;
t = u - v;
if (t != 0)
goto b3;
result = u * k;
}
if (SCM_POSFIXABLE (result)) {
return SCM_MAKINUM (result);
} else {
#ifdef SCM_BIGDIG
return scm_i_long2big (result);
#else
scm_num_overflow (s_gcd);
#endif
}
} else if (SCM_BIGP (y)) {
SCM_SWAP (x, y);
goto big_gcd;
} else {
SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
}
} else if (SCM_BIGP (x)) {
big_gcd:
if (SCM_BIGSIGN (x))
x = scm_i_copybig (x, 0);
newy:
if (SCM_INUMP (y)) {
if (SCM_EQ_P (y, SCM_INUM0)) {
return x;
} else {
goto swaprec;
}
} else if (SCM_BIGP (y)) {
if (SCM_BIGSIGN (y))
y = scm_i_copybig (y, 0);
switch (scm_bigcomp (x, y))
{
case -1: /* x > y */
swaprec:
{
SCM t = scm_remainder (x, y);
x = y;
y = t;
}
goto tailrec;
case 1: /* x < y */
y = scm_remainder (y, x);
goto newy;
default: /* x == y */
return x;
}
/* instead of the switch, we could just
return scm_gcd (y, scm_modulo (x, y)); */
} else {
SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
}
} else {
SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
}
}
SCM_GPROC1 (s_lcm, "lcm", scm_tc7_asubr, scm_lcm, g_lcm);
/* "Return the least common multiple of the arguments.\n"
* "If called without arguments, 1 is returned."
*/
SCM
scm_lcm (SCM n1, SCM n2)
{
if (SCM_UNBNDP (n2)) {
if (SCM_UNBNDP (n1)) {
return SCM_MAKINUM (1L);
} else {
n2 = SCM_MAKINUM (1L);
}
};
#ifndef SCM_BIGDIG
SCM_GASSERT2 (SCM_INUMP (n1), g_lcm, n1, n2, SCM_ARG1, s_lcm);
SCM_GASSERT2 (SCM_INUMP (n2), g_lcm, n1, n2, SCM_ARGn, s_lcm);
#else
SCM_GASSERT2 (SCM_INUMP (n1) || SCM_BIGP (n1),
g_lcm, n1, n2, SCM_ARG1, s_lcm);
SCM_GASSERT2 (SCM_INUMP (n2) || SCM_BIGP (n2),
g_lcm, n1, n2, SCM_ARGn, s_lcm);
#endif
{
SCM d = scm_gcd (n1, n2);
if (SCM_EQ_P (d, SCM_INUM0)) {
return d;
} else {
return scm_abs (scm_product (n1, scm_quotient (n2, d)));
}
}
}
#ifndef scm_long2num
#define SCM_LOGOP_RETURN(x) scm_ulong2num(x)
#else
#define SCM_LOGOP_RETURN(x) SCM_MAKINUM(x)
#endif
/* Emulating 2's complement bignums with sign magnitude arithmetic:
Logand:
X Y Result Method:
(len)
+ + + x (map digit:logand X Y)
+ - + x (map digit:logand X (lognot (+ -1 Y)))
- + + y (map digit:logand (lognot (+ -1 X)) Y)
- - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
Logior:
X Y Result Method:
+ + + (map digit:logior X Y)
+ - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
- + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
- - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
Logxor:
X Y Result Method:
+ + + (map digit:logxor X Y)
+ - - (+ 1 (map digit:logxor X (+ -1 Y)))
- + - (+ 1 (map digit:logxor (+ -1 X) Y))
- - + (map digit:logxor (+ -1 X) (+ -1 Y))
Logtest:
X Y Result
+ + (any digit:logand X Y)
+ - (any digit:logand X (lognot (+ -1 Y)))
- + (any digit:logand (lognot (+ -1 X)) Y)
- - #t
*/
#ifdef SCM_BIGDIG
SCM scm_copy_big_dec(SCM b, int sign);
SCM scm_copy_smaller(SCM_BIGDIG *x, size_t nx, int zsgn);
SCM scm_big_ior(SCM_BIGDIG *x, size_t nx, int xsgn, SCM bigy);
SCM scm_big_xor(SCM_BIGDIG *x, size_t nx, int xsgn, SCM bigy);
SCM scm_big_and(SCM_BIGDIG *x, size_t nx, int xsgn, SCM bigy, int zsgn);
SCM scm_big_test(SCM_BIGDIG *x, size_t nx, int xsgn, SCM bigy);
SCM scm_copy_big_dec(SCM b, int sign)
{
long num = -1;
size_t nx = SCM_NUMDIGS(b);
size_t i = 0;
SCM ans = scm_i_mkbig(nx, sign);
SCM_BIGDIG *src = SCM_BDIGITS(b), *dst = SCM_BDIGITS(ans);
if SCM_BIGSIGN(b) do {
num += src[i];
if (num < 0) {dst[i] = num + SCM_BIGRAD; num = -1;}
else {dst[i] = SCM_BIGLO(num); num = 0;}
} while (++i < nx);
else
while (nx--) dst[nx] = src[nx];
return ans;
}
SCM scm_copy_smaller(SCM_BIGDIG *x, size_t nx, int zsgn)
{
long num = -1;
size_t i = 0;
SCM z = scm_i_mkbig(nx, zsgn);
SCM_BIGDIG *zds = SCM_BDIGITS(z);
if (zsgn) do {
num += x[i];
if (num < 0) {zds[i] = num + SCM_BIGRAD; num = -1;}
else {zds[i] = SCM_BIGLO(num); num = 0;}
} while (++i < nx);
else do zds[i] = x[i]; while (++i < nx);
return z;
}
SCM scm_big_ior(SCM_BIGDIG *x, size_t nx, int xsgn, SCM bigy)
/* Assumes nx <= SCM_NUMDIGS(bigy) */
/* Assumes xsgn equals either 0 or SCM_BIGSIGNFLAG */
{
long num = -1;
size_t i = 0, ny = SCM_NUMDIGS(bigy);
SCM z = scm_copy_big_dec (bigy, xsgn & SCM_BIGSIGN (bigy));
SCM_BIGDIG *zds = SCM_BDIGITS(z);
if (xsgn) {
do {
num += x[i];
if (num < 0) {zds[i] |= num + SCM_BIGRAD; num = -1;}
else {zds[i] |= SCM_BIGLO(num); num = 0;}
} while (++i < nx);
/* ========= Need to increment zds now =========== */
i = 0; num = 1;
while (i < ny) {
num += zds[i];
zds[i++] = SCM_BIGLO(num);
num = SCM_BIGDN(num);
if (!num) return z;
}
scm_i_adjbig(z, 1 + ny); /* OOPS, overflowed into next digit. */
SCM_BDIGITS(z)[ny] = 1;
return z;
}
else do zds[i] = zds[i] | x[i]; while (++i < nx);
return z;
}
SCM scm_big_xor(SCM_BIGDIG *x, size_t nx, int xsgn, SCM bigy)
/* Assumes nx <= SCM_NUMDIGS(bigy) */
/* Assumes xsgn equals either 0 or SCM_BIGSIGNFLAG */
{
long num = -1;
size_t i = 0, ny = SCM_NUMDIGS(bigy);
SCM z = scm_copy_big_dec(bigy, xsgn ^ SCM_BIGSIGN(bigy));
SCM_BIGDIG *zds = SCM_BDIGITS(z);
if (xsgn) do {
num += x[i];
if (num < 0) {zds[i] ^= num + SCM_BIGRAD; num = -1;}
else {zds[i] ^= SCM_BIGLO(num); num = 0;}
} while (++i < nx);
else do {
zds[i] = zds[i] ^ x[i];
} while (++i < nx);
if (xsgn ^ SCM_BIGSIGN(bigy)) {
/* ========= Need to increment zds now =========== */
i = 0; num = 1;
while (i < ny) {
num += zds[i];
zds[i++] = SCM_BIGLO(num);
num = SCM_BIGDN(num);
if (!num) return scm_i_normbig(z);
}
}
return scm_i_normbig(z);
}
SCM scm_big_and(SCM_BIGDIG *x, size_t nx, int xsgn, SCM bigy, int zsgn)
/* Assumes nx <= SCM_NUMDIGS(bigy) */
/* Assumes xsgn equals either 0 or SCM_BIGSIGNFLAG */
/* return sign equals either 0 or SCM_BIGSIGNFLAG */
{
long num = -1;
size_t i = 0;
SCM z;
SCM_BIGDIG *zds;
if (xsgn==zsgn) {
z = scm_copy_smaller(x, nx, zsgn);
x = SCM_BDIGITS(bigy);
xsgn = SCM_BIGSIGN(bigy);
}
else z = scm_copy_big_dec(bigy, zsgn);
zds = SCM_BDIGITS(z);
if (zsgn) {
if (xsgn) do {
num += x[i];
if (num < 0) {zds[i] &= num + SCM_BIGRAD; num = -1;}
else {zds[i] &= SCM_BIGLO(num); num = 0;}
} while (++i < nx);
else do zds[i] = zds[i] & ~x[i]; while (++i < nx);
/* ========= need to increment zds now =========== */
i = 0; num = 1;
while (i < nx) {
num += zds[i];
zds[i++] = SCM_BIGLO(num);
num = SCM_BIGDN(num);
if (!num) return scm_i_normbig(z);
}
}
else if (xsgn) {
unsigned long int carry = 1;
do {
unsigned long int mask = (SCM_BIGDIG) ~x[i] + carry;
zds[i] = zds[i] & (SCM_BIGDIG) mask;
carry = (mask >= SCM_BIGRAD) ? 1 : 0;
} while (++i < nx);
} else do zds[i] = zds[i] & x[i]; while (++i < nx);
return scm_i_normbig(z);
}
SCM scm_big_test(SCM_BIGDIG *x, size_t nx, int xsgn, SCM bigy)
/* Assumes nx <= SCM_NUMDIGS(bigy) */
/* Assumes xsgn equals either 0 or SCM_BIGSIGNFLAG */
{
SCM_BIGDIG *y;
size_t i = 0;
long num = -1;
if (SCM_BIGSIGN(bigy) & xsgn) return SCM_BOOL_T;
if (SCM_NUMDIGS(bigy) != nx && xsgn) return SCM_BOOL_T;
y = SCM_BDIGITS(bigy);
if (xsgn)
do {
num += x[i];
if (num < 0) {
if (y[i] & ~(num + SCM_BIGRAD)) return SCM_BOOL_T;
num = -1;
}
else {
if (y[i] & ~SCM_BIGLO(num)) return SCM_BOOL_T;
num = 0;
}
} while (++i < nx);
else if SCM_BIGSIGN(bigy)
do {
num += y[i];
if (num < 0) {
if (x[i] & ~(num + SCM_BIGRAD)) return SCM_BOOL_T;
num = -1;
}
else {
if (x[i] & ~SCM_BIGLO(num)) return SCM_BOOL_T;
num = 0;
}
} while (++i < nx);
else
do if (x[i] & y[i]) return SCM_BOOL_T;
while (++i < nx);
return SCM_BOOL_F;
}
#endif
SCM_DEFINE1 (scm_logand, "logand", scm_tc7_asubr,
(SCM n1, SCM n2),
"Return the bitwise AND of the integer arguments.\n\n"
"@lisp\n"
"(logand) @result{} -1\n"
"(logand 7) @result{} 7\n"
"(logand #b111 #b011 #\b001) @result{} 1\n"
"@end lisp")
#define FUNC_NAME s_scm_logand
{
long int nn1;
if (SCM_UNBNDP (n2)) {
if (SCM_UNBNDP (n1)) {
return SCM_MAKINUM (-1);
} else if (!SCM_NUMBERP (n1)) {
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
#ifndef SCM_RECKLESS
} else if (SCM_NUMBERP (n1)) {
return n1;
} else {
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
#else
} else {
return n1;
#endif
}
}
if (SCM_INUMP (n1)) {
nn1 = SCM_INUM (n1);
if (SCM_INUMP (n2)) {
long nn2 = SCM_INUM (n2);
return SCM_MAKINUM (nn1 & nn2);
} else if SCM_BIGP (n2) {
intbig:
{
# ifndef SCM_DIGSTOOBIG
long z = scm_pseudolong (nn1);
if ((nn1 < 0) && SCM_BIGSIGN (n2)) {
return scm_big_ior ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG,
SCM_BIGSIGNFLAG, n2);
} else {
return scm_big_and ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG,
(nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2, 0);
}
# else
SCM_BIGDIG zdigs [SCM_DIGSPERLONG];
scm_longdigs (nn1, zdigs);
if ((nn1 < 0) && SCM_BIGSIGN (n2)) {
return scm_big_ior (zdigs, SCM_DIGSPERLONG, SCM_BIGSIGNFLAG, n2);
} else {
return scm_big_and (zdigs, SCM_DIGSPERLONG,
(nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2, 0);
}
# endif
}
} else {
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
}
} else if (SCM_BIGP (n1)) {
if (SCM_INUMP (n2)) {
SCM_SWAP (n1, n2);
nn1 = SCM_INUM (n1);
goto intbig;
} else if (SCM_BIGP (n2)) {
if (SCM_NUMDIGS (n1) > SCM_NUMDIGS (n2)) {
SCM_SWAP (n1, n2);
};
if ((SCM_BIGSIGN (n1)) && SCM_BIGSIGN (n2)) {
return scm_big_ior (SCM_BDIGITS (n1), SCM_NUMDIGS (n1),
SCM_BIGSIGNFLAG, n2);
} else {
return scm_big_and (SCM_BDIGITS (n1), SCM_NUMDIGS (n1),
SCM_BIGSIGN (n1), n2, 0);
}
} else {
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
}
} else {
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
}
}
#undef FUNC_NAME
SCM_DEFINE1 (scm_logior, "logior", scm_tc7_asubr,
(SCM n1, SCM n2),
"Return the bitwise OR of the integer arguments.\n\n"
"@lisp\n"
"(logior) @result{} 0\n"
"(logior 7) @result{} 7\n"
"(logior #b000 #b001 #b011) @result{} 3\n"
"@end lisp")
#define FUNC_NAME s_scm_logior
{
long int nn1;
if (SCM_UNBNDP (n2)) {
if (SCM_UNBNDP (n1)) {
return SCM_INUM0;
#ifndef SCM_RECKLESS
} else if (SCM_NUMBERP (n1)) {
return n1;
} else {
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
#else
} else {
return n1;
#endif
}
}
if (SCM_INUMP (n1)) {
nn1 = SCM_INUM (n1);
if (SCM_INUMP (n2)) {
long nn2 = SCM_INUM (n2);
return SCM_MAKINUM (nn1 | nn2);
} else if (SCM_BIGP (n2)) {
intbig:
{
# ifndef SCM_DIGSTOOBIG
long z = scm_pseudolong (nn1);
if ((!(nn1 < 0)) && !SCM_BIGSIGN (n2)) {
return scm_big_ior ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG,
(nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2);
} else {
return scm_big_and ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG,
(nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2, SCM_BIGSIGNFLAG);
}
# else
SCM_BIGDIG zdigs [SCM_DIGSPERLONG];
scm_longdigs (nn1, zdigs);
if ((!(nn1 < 0)) && !SCM_BIGSIGN (n2)) {
return scm_big_ior (zdigs, SCM_DIGSPERLONG,
(nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2);
} else {
return scm_big_and (zdigs, SCM_DIGSPERLONG,
(nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2, SCM_BIGSIGNFLAG);
}
# endif
}
} else {
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
}
} else if (SCM_BIGP (n1)) {
if (SCM_INUMP (n2)) {
SCM_SWAP (n1, n2);
nn1 = SCM_INUM (n1);
goto intbig;
} else if (SCM_BIGP (n2)) {
if (SCM_NUMDIGS (n1) > SCM_NUMDIGS (n2)) {
SCM_SWAP (n1, n2);
};
if ((!SCM_BIGSIGN (n1)) && !SCM_BIGSIGN (n2)) {
return scm_big_ior (SCM_BDIGITS (n1), SCM_NUMDIGS (n1),
SCM_BIGSIGN (n1), n2);
} else {
return scm_big_and (SCM_BDIGITS (n1), SCM_NUMDIGS (n1),
SCM_BIGSIGN (n1), n2, SCM_BIGSIGNFLAG);
}
} else {
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
}
} else {
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
}
}
#undef FUNC_NAME
SCM_DEFINE1 (scm_logxor, "logxor", scm_tc7_asubr,
(SCM n1, SCM n2),
"Return the bitwise XOR of the integer arguments. A bit is\n"
"set in the result if it is set in an odd number of arguments.\n"
"@lisp\n"
"(logxor) @result{} 0\n"
"(logxor 7) @result{} 7\n"
"(logxor #b000 #b001 #b011) @result{} 2\n"
"(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
"@end lisp")
#define FUNC_NAME s_scm_logxor
{
long int nn1;
if (SCM_UNBNDP (n2)) {
if (SCM_UNBNDP (n1)) {
return SCM_INUM0;
#ifndef SCM_RECKLESS
} else if (SCM_NUMBERP (n1)) {
return n1;
} else {
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
#else
} else {
return n1;
#endif
}
}
if (SCM_INUMP (n1)) {
nn1 = SCM_INUM (n1);
if (SCM_INUMP (n2)) {
long nn2 = SCM_INUM (n2);
return SCM_MAKINUM (nn1 ^ nn2);
} else if (SCM_BIGP (n2)) {
intbig:
{
# ifndef SCM_DIGSTOOBIG
long z = scm_pseudolong (nn1);
return scm_big_xor ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG,
(nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2);
# else
SCM_BIGDIG zdigs [SCM_DIGSPERLONG];
scm_longdigs (nn1, zdigs);
return scm_big_xor (zdigs, SCM_DIGSPERLONG,
(nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2);
# endif
}
} else {
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
}
} else if (SCM_BIGP (n1)) {
if (SCM_INUMP (n2)) {
SCM_SWAP (n1, n2);
nn1 = SCM_INUM (n1);
goto intbig;
} else if (SCM_BIGP (n2)) {
if (SCM_NUMDIGS(n1) > SCM_NUMDIGS(n2)) {
SCM_SWAP (n1, n2);
}
return scm_big_xor (SCM_BDIGITS (n1), SCM_NUMDIGS (n1),
SCM_BIGSIGN (n1), n2);
} else {
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
}
} else {
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
}
}
#undef FUNC_NAME
SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
(SCM j, SCM k),
"@lisp\n"
"(logtest j k) @equiv{} (not (zero? (logand j k)))\n\n"
"(logtest #b0100 #b1011) @result{} #f\n"
"(logtest #b0100 #b0111) @result{} #t\n"
"@end lisp")
#define FUNC_NAME s_scm_logtest
{
long int nj;
if (SCM_INUMP (j)) {
nj = SCM_INUM (j);
if (SCM_INUMP (k)) {
long nk = SCM_INUM (k);
return SCM_BOOL (nj & nk);
} else if (SCM_BIGP (k)) {
intbig:
{
# ifndef SCM_DIGSTOOBIG
long z = scm_pseudolong (nj);
return scm_big_test ((SCM_BIGDIG *)&z, SCM_DIGSPERLONG,
(nj < 0) ? SCM_BIGSIGNFLAG : 0, k);
# else
SCM_BIGDIG zdigs [SCM_DIGSPERLONG];
scm_longdigs (nj, zdigs);
return scm_big_test (zdigs, SCM_DIGSPERLONG,
(nj < 0) ? SCM_BIGSIGNFLAG : 0, k);
# endif
}
} else {
SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
}
} else if (SCM_BIGP (j)) {
if (SCM_INUMP (k)) {
SCM_SWAP (j, k);
nj = SCM_INUM (j);
goto intbig;
} else if (SCM_BIGP (k)) {
if (SCM_NUMDIGS (j) > SCM_NUMDIGS (k)) {
SCM_SWAP (j, k);
}
return scm_big_test (SCM_BDIGITS (j), SCM_NUMDIGS (j),
SCM_BIGSIGN (j), k);
} else {
SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
}
} else {
SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
}
}
#undef FUNC_NAME
SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
(SCM index, SCM j),
"@lisp\n"
"(logbit? index j) @equiv{} (logtest (integer-expt 2 index) j)\n\n"
"(logbit? 0 #b1101) @result{} #t\n"
"(logbit? 1 #b1101) @result{} #f\n"
"(logbit? 2 #b1101) @result{} #t\n"
"(logbit? 3 #b1101) @result{} #t\n"
"(logbit? 4 #b1101) @result{} #f\n"
"@end lisp")
#define FUNC_NAME s_scm_logbit_p
{
unsigned long int iindex;
SCM_VALIDATE_INUM_MIN (SCM_ARG1, index, 0);
iindex = (unsigned long int) SCM_INUM (index);
if (SCM_INUMP (j)) {
{
/* bits above what's in an inum follow the sign bit */
iindex = min (iindex, SCM_LONG_BIT - 1);
return SCM_BOOL ((1L << iindex) & SCM_INUM (j));
}
} else if (SCM_BIGP (j)) {
if (SCM_NUMDIGS (j) * SCM_BITSPERDIG < iindex) {
return SCM_BOOL_F;
} else if (SCM_BIGSIGN (j)) {
long num = -1;
size_t i = 0;
SCM_BIGDIG * x = SCM_BDIGITS (j);
size_t nx = iindex / SCM_BITSPERDIG;
while (1) {
num += x[i];
if (nx == i++) {
return SCM_BOOL (((1L << (iindex % SCM_BITSPERDIG)) & num) == 0);
} else if (num < 0) {
num = -1;
} else {
num = 0;
}
}
} else {
return SCM_BOOL (SCM_BDIGITS (j) [iindex / SCM_BITSPERDIG]
& (1L << (iindex % SCM_BITSPERDIG)));
}
} else {
SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
}
}
#undef FUNC_NAME
SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
(SCM n),
"Return the integer which is the ones-complement of the integer\n"
"argument.\n"
"\n"
"@lisp\n"
"(number->string (lognot #b10000000) 2)\n"
" @result{} \"-10000001\"\n"
"(number->string (lognot #b0) 2)\n"
" @result{} \"-1\"\n"
"@end lisp")
#define FUNC_NAME s_scm_lognot
{
return scm_difference (SCM_MAKINUM (-1L), n);
}
#undef FUNC_NAME
SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
(SCM n, SCM k),
"Return @var{n} raised to the non-negative integer exponent\n"
"@var{k}.\n"
"\n"
"@lisp\n"
"(integer-expt 2 5)\n"
" @result{} 32\n"
"(integer-expt -3 3)\n"
" @result{} -27\n"
"@end lisp")
#define FUNC_NAME s_scm_integer_expt
{
SCM acc = SCM_MAKINUM (1L);
int i2;
#ifdef SCM_BIGDIG
/* 0^0 == 1 according to R5RS */
if (SCM_EQ_P (n, SCM_INUM0) || SCM_EQ_P (n, acc))
return SCM_FALSEP (scm_zero_p(k)) ? n : acc;
else if (SCM_EQ_P (n, SCM_MAKINUM (-1L)))
return SCM_FALSEP (scm_even_p (k)) ? n : acc;
#endif
if (SCM_REALP (k))
{
double r = SCM_REAL_VALUE (k);
i2 = r;
if (i2 != r)
SCM_WRONG_TYPE_ARG (2, k);
}
else
SCM_VALIDATE_ULONG_COPY (2,k,i2);
if (i2 < 0)
{
i2 = -i2;
n = scm_divide (n, SCM_UNDEFINED);
}
while (1)
{
if (0 == i2)
return acc;
if (1 == i2)
return scm_product (acc, n);
if (i2 & 1)
acc = scm_product (acc, n);
n = scm_product (n, n);
i2 >>= 1;
}
}
#undef FUNC_NAME
SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
(SCM n, SCM cnt),
"The function ash performs an arithmetic shift left by @var{cnt}\n"
"bits (or shift right, if @var{cnt} is negative). 'Arithmetic'\n"
"means, that the function does not guarantee to keep the bit\n"
"structure of @var{n}, but rather guarantees that the result\n"
"will always be rounded towards minus infinity. Therefore, the\n"
"results of ash and a corresponding bitwise shift will differ if\n"
"@var{n} is negative.\n"
"\n"
"Formally, the function returns an integer equivalent to\n"
"@code{(inexact->exact (floor (* @var{n} (expt 2 @var{cnt}))))}.\n"
"\n"
"@lisp\n"
"(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
"(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
"@end lisp")
#define FUNC_NAME s_scm_ash
{
long bits_to_shift;
#ifndef SCM_BIGDIG
SCM_VALIDATE_INUM (1, n)
#endif
SCM_VALIDATE_INUM (2, cnt);
bits_to_shift = SCM_INUM (cnt);
#ifdef SCM_BIGDIG
if (bits_to_shift < 0) {
/* Shift right by abs(cnt) bits. This is realized as a division by
div:=2^abs(cnt). However, to guarantee the floor rounding, negative
values require some special treatment.
*/
SCM div = scm_integer_expt (SCM_MAKINUM (2), SCM_MAKINUM (-bits_to_shift));
if (SCM_FALSEP (scm_negative_p (n)))
return scm_quotient (n, div);
else
return scm_sum (SCM_MAKINUM (-1L),
scm_quotient (scm_sum (SCM_MAKINUM (1L), n), div));
} else
/* Shift left is done by multiplication with 2^CNT */
return scm_product (n, scm_integer_expt (SCM_MAKINUM (2), cnt));
#else
if (bits_to_shift < 0)
/* Signed right shift (SCM_SRS does it right) by abs(cnt) bits. */
return SCM_MAKINUM (SCM_SRS (SCM_INUM (n), -bits_to_shift));
else {
/* Shift left, but make sure not to leave the range of inums */
SCM res = SCM_MAKINUM (SCM_INUM (n) << cnt);
if (SCM_INUM (res) >> cnt != SCM_INUM (n))
scm_num_overflow (FUNC_NAME);
return res;
}
#endif
}
#undef FUNC_NAME
SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
(SCM n, SCM start, SCM end),
"Return the integer composed of the @var{start} (inclusive)\n"
"through @var{end} (exclusive) bits of @var{n}. The\n"
"@var{start}th bit becomes the 0-th bit in the result.\n"
"\n"
"@lisp\n"
"(number->string (bit-extract #b1101101010 0 4) 2)\n"
" @result{} \"1010\"\n"
"(number->string (bit-extract #b1101101010 4 9) 2)\n"
" @result{} \"10110\"\n"
"@end lisp")
#define FUNC_NAME s_scm_bit_extract
{
unsigned long int istart, iend;
SCM_VALIDATE_INUM_MIN_COPY (2,start,0,istart);
SCM_VALIDATE_INUM_MIN_COPY (3, end, 0, iend);
SCM_ASSERT_RANGE (3, end, (iend >= istart));
if (SCM_INUMP (n)) {
long int in = SCM_INUM (n);
unsigned long int bits = iend - istart;
if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
{
/* Since we emulate two's complement encoded numbers, this special
* case requires us to produce a result that has more bits than can be
* stored in a fixnum. Thus, we fall back to the more general
* algorithm that is used for bignums.
*/
goto generalcase;
}
if (istart < SCM_I_FIXNUM_BIT)
{
in = in >> istart;
if (bits < SCM_I_FIXNUM_BIT)
return SCM_MAKINUM (in & ((1L << bits) - 1));
else /* we know: in >= 0 */
return SCM_MAKINUM (in);
}
else if (in < 0)
{
return SCM_MAKINUM (-1L & ((1L << bits) - 1));
}
else
{
return SCM_MAKINUM (0);
}
} else if (SCM_BIGP (n)) {
generalcase:
{
SCM num1 = SCM_MAKINUM (1L);
SCM num2 = SCM_MAKINUM (2L);
SCM bits = SCM_MAKINUM (iend - istart);
SCM mask = scm_difference (scm_integer_expt (num2, bits), num1);
return scm_logand (mask, scm_ash (n, SCM_MAKINUM (-istart)));
}
} else {
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
}
}
#undef FUNC_NAME
static const char scm_logtab[] = {
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
};
SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
(SCM n),
"Return the number of bits in integer @var{n}. If integer is\n"
"positive, the 1-bits in its binary representation are counted.\n"
"If negative, the 0-bits in its two's-complement binary\n"
"representation are counted. If 0, 0 is returned.\n"
"\n"
"@lisp\n"
"(logcount #b10101010)\n"
" @result{} 4\n"
"(logcount 0)\n"
" @result{} 0\n"
"(logcount -2)\n"
" @result{} 1\n"
"@end lisp")
#define FUNC_NAME s_scm_logcount
{
if (SCM_INUMP (n)) {
unsigned long int c = 0;
long int nn = SCM_INUM (n);
if (nn < 0) {
nn = -1 - nn;
};
while (nn) {
c += scm_logtab[15 & nn];
nn >>= 4;
};
return SCM_MAKINUM (c);
} else if (SCM_BIGP (n)) {
if (SCM_BIGSIGN (n)) {
return scm_logcount (scm_difference (SCM_MAKINUM (-1L), n));
} else {
unsigned long int c = 0;
size_t i = SCM_NUMDIGS (n);
SCM_BIGDIG * ds = SCM_BDIGITS (n);
while (i--) {
SCM_BIGDIG d;
for (d = ds[i]; d; d >>= 4) {
c += scm_logtab[15 & d];
}
}
return SCM_MAKINUM (c);
}
} else {
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
}
}
#undef FUNC_NAME
static const char scm_ilentab[] = {
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
};
SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
(SCM n),
"Return the number of bits necessary to represent @var{n}.\n"
"\n"
"@lisp\n"
"(integer-length #b10101010)\n"
" @result{} 8\n"
"(integer-length 0)\n"
" @result{} 0\n"
"(integer-length #b1111)\n"
" @result{} 4\n"
"@end lisp")
#define FUNC_NAME s_scm_integer_length
{
if (SCM_INUMP (n)) {
unsigned long int c = 0;
unsigned int l = 4;
long int nn = SCM_INUM (n);
if (nn < 0) {
nn = -1 - nn;
};
while (nn) {
c += 4;
l = scm_ilentab [15 & nn];
nn >>= 4;
};
return SCM_MAKINUM (c - 4 + l);
} else if (SCM_BIGP (n)) {
if (SCM_BIGSIGN (n)) {
return scm_integer_length (scm_difference (SCM_MAKINUM (-1L), n));
} else {
unsigned long int digs = SCM_NUMDIGS (n) - 1;
unsigned long int c = digs * SCM_BITSPERDIG;
unsigned int l = 4;
SCM_BIGDIG * ds = SCM_BDIGITS (n);
SCM_BIGDIG d = ds [digs];
while (d) {
c += 4;
l = scm_ilentab [15 & d];
d >>= 4;
};
return SCM_MAKINUM (c - 4 + l);
}
} else {
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
}
}
#undef FUNC_NAME
#ifdef SCM_BIGDIG
static const char s_bignum[] = "bignum";
SCM
scm_i_mkbig (size_t nlen, int sign)
{
SCM v;
SCM_BIGDIG *base;
if (((nlen << SCM_BIGSIZEFIELD) >> SCM_BIGSIZEFIELD) != nlen)
scm_memory_error (s_bignum);
base = scm_must_malloc (nlen * sizeof (SCM_BIGDIG), s_bignum);
SCM_NEWCELL (v);
SCM_SET_BIGNUM_BASE (v, base);
SCM_SETNUMDIGS (v, nlen, sign);
return v;
}
SCM
scm_i_big2inum (SCM b, size_t l)
{
unsigned long num = 0;
SCM_BIGDIG *tmp = SCM_BDIGITS (b);
while (l--)
num = SCM_BIGUP (num) + tmp[l];
if (!SCM_BIGSIGN (b))
{
if (SCM_POSFIXABLE (num))
return SCM_MAKINUM (num);
}
else if (num <= -SCM_MOST_NEGATIVE_FIXNUM)
return SCM_MAKINUM (-num);
return b;
}
static const char s_adjbig[] = "scm_i_adjbig";
SCM
scm_i_adjbig (SCM b, size_t nlen)
{
size_t nsiz = nlen;
if (((nsiz << SCM_BIGSIZEFIELD) >> SCM_BIGSIZEFIELD) != nlen)
scm_memory_error (s_adjbig);
SCM_DEFER_INTS;
{
SCM_BIGDIG *digits
= ((SCM_BIGDIG *)
scm_must_realloc ((char *) SCM_BDIGITS (b),
(long) (SCM_NUMDIGS (b) * sizeof (SCM_BIGDIG)),
(long) (nsiz * sizeof (SCM_BIGDIG)), s_bignum));
SCM_SET_BIGNUM_BASE (b, digits);
SCM_SETNUMDIGS (b, nsiz, SCM_BIGSIGN (b));
}
SCM_ALLOW_INTS;
return b;
}
SCM
scm_i_normbig (SCM b)
{
#ifndef _UNICOS
size_t nlen = SCM_NUMDIGS (b);
#else
int nlen = SCM_NUMDIGS (b); /* unsigned nlen breaks on Cray when nlen => 0 */
#endif
SCM_BIGDIG *zds = SCM_BDIGITS (b);
while (nlen-- && !zds[nlen]);
nlen++;
if (nlen * SCM_BITSPERDIG / SCM_CHAR_BIT <= sizeof (SCM))
if (SCM_INUMP (b = scm_i_big2inum (b, (size_t) nlen)))
return b;
if (SCM_NUMDIGS (b) == nlen)
return b;
return scm_i_adjbig (b, (size_t) nlen);
}
SCM
scm_i_copybig (SCM b, int sign)
{
size_t i = SCM_NUMDIGS (b);
SCM ans = scm_i_mkbig (i, sign);
SCM_BIGDIG *src = SCM_BDIGITS (b), *dst = SCM_BDIGITS (ans);
while (i--)
dst[i] = src[i];
return ans;
}
int
scm_bigcomp (SCM x, SCM y)
{
int xsign = SCM_BIGSIGN (x);
int ysign = SCM_BIGSIGN (y);
size_t xlen, ylen;
/* Look at the signs, first. */
if (ysign < xsign)
return 1;
if (ysign > xsign)
return -1;
/* They're the same sign, so see which one has more digits. Note
that, if they are negative, the longer number is the lesser. */
ylen = SCM_NUMDIGS (y);
xlen = SCM_NUMDIGS (x);
if (ylen > xlen)
return (xsign) ? -1 : 1;
if (ylen < xlen)
return (xsign) ? 1 : -1;
/* They have the same number of digits, so find the most significant
digit where they differ. */
while (xlen)
{
--xlen;
if (SCM_BDIGITS (y)[xlen] != SCM_BDIGITS (x)[xlen])
/* Make the discrimination based on the digit that differs. */
return ((SCM_BDIGITS (y)[xlen] > SCM_BDIGITS (x)[xlen])
? (xsign ? -1 : 1)
: (xsign ? 1 : -1));
}
/* The numbers are identical. */
return 0;
}
#ifndef SCM_DIGSTOOBIG
long
scm_pseudolong (long x)
{
union
{
long l;
SCM_BIGDIG bd[SCM_DIGSPERLONG];
}
p;
size_t i = 0;
if (x < 0)
x = -x;
while (i < SCM_DIGSPERLONG)
{
p.bd[i++] = SCM_BIGLO (x);
x = SCM_BIGDN (x);
}
/* p.bd[0] = SCM_BIGLO(x); p.bd[1] = SCM_BIGDN(x); */
return p.l;
}
#else
void
scm_longdigs (long x, SCM_BIGDIG digs[])
{
size_t i = 0;
if (x < 0)
x = -x;
while (i < SCM_DIGSPERLONG)
{
digs[i++] = SCM_BIGLO (x);
x = SCM_BIGDN (x);
}
}
#endif
SCM
scm_addbig (SCM_BIGDIG *x, size_t nx, int xsgn, SCM bigy, int sgny)
{
/* Assumes nx <= SCM_NUMDIGS(bigy) */
/* Assumes xsgn and sgny scm_equal either 0 or SCM_BIGSIGNFLAG */
long num = 0;
size_t i = 0, ny = SCM_NUMDIGS (bigy);
SCM z = scm_i_copybig (bigy, SCM_BIGSIGN (bigy) ^ sgny);
SCM_BIGDIG *zds = SCM_BDIGITS (z);
if (xsgn ^ SCM_BIGSIGN (z))
{
do
{
num += (long) zds[i] - x[i];
if (num < 0)
{
zds[i] = num + SCM_BIGRAD;
num = -1;
}
else
{
zds[i] = SCM_BIGLO (num);
num = 0;
}
}
while (++i < nx);
if (num && nx == ny)
{
num = 1;
i = 0;
SCM_SET_CELL_WORD_0 (z, SCM_CELL_WORD_0 (z) ^ SCM_BIGSIGNFLAG);
do
{
num += (SCM_BIGRAD - 1) - zds[i];
zds[i++] = SCM_BIGLO (num);
num = SCM_BIGDN (num);
}
while (i < ny);
}
else
while (i < ny)
{
num += zds[i];
if (num < 0)
{
zds[i++] = num + SCM_BIGRAD;
num = -1;
}
else
{
zds[i++] = SCM_BIGLO (num);
num = 0;
}
}
}
else
{
do
{
num += (long) zds[i] + x[i];
zds[i++] = SCM_BIGLO (num);
num = SCM_BIGDN (num);
}
while (i < nx);
if (!num)
return z;
while (i < ny)
{
num += zds[i];
zds[i++] = SCM_BIGLO (num);
num = SCM_BIGDN (num);
if (!num)
return z;
}
if (num)
{
z = scm_i_adjbig (z, ny + 1);
SCM_BDIGITS (z)[ny] = num;
return z;
}
}
return scm_i_normbig (z);
}
SCM
scm_mulbig (SCM_BIGDIG *x, size_t nx, SCM_BIGDIG *y, size_t ny, int sgn)
{
size_t i = 0, j = nx + ny;
unsigned long n = 0;
SCM z = scm_i_mkbig (j, sgn);
SCM_BIGDIG *zds = SCM_BDIGITS (z);
while (j--)
zds[j] = 0;
do
{
j = 0;
if (x[i])
{
do
{
n += zds[i + j] + ((unsigned long) x[i] * y[j]);
zds[i + j++] = SCM_BIGLO (n);
n = SCM_BIGDN (n);
}
while (j < ny);
if (n)
{
zds[i + j] = n;
n = 0;
}
}
}
while (++i < nx);
return scm_i_normbig (z);
}
unsigned int
scm_divbigdig (SCM_BIGDIG * ds, size_t h, SCM_BIGDIG div)
{
register unsigned long t2 = 0;
while (h--)
{
t2 = SCM_BIGUP (t2) + ds[h];
ds[h] = t2 / div;
t2 %= div;
}
return t2;
}
static SCM
scm_divbigint (SCM x, long z, int sgn, int mode)
{
if (z < 0)
z = -z;
if (z < SCM_BIGRAD)
{
register unsigned long t2 = 0;
register SCM_BIGDIG *ds = SCM_BDIGITS (x);
size_t nd = SCM_NUMDIGS (x);
while (nd--)
t2 = (SCM_BIGUP (t2) + ds[nd]) % z;
if (mode && t2)
t2 = z - t2;
return SCM_MAKINUM (sgn ? -t2 : t2);
}
{
#ifndef SCM_DIGSTOOBIG
unsigned long t2 = scm_pseudolong (z);
return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
(SCM_BIGDIG *) & t2, SCM_DIGSPERLONG,
sgn, mode);
#else
SCM_BIGDIG t2[SCM_DIGSPERLONG];
scm_longdigs (z, t2);
return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
t2, SCM_DIGSPERLONG,
sgn, mode);
#endif
}
}
static SCM
scm_divbigbig (SCM_BIGDIG *x, size_t nx, SCM_BIGDIG *y, size_t ny, int sgn, int modes)
{
/* modes description
0 remainder
1 scm_modulo
2 quotient
3 quotient but returns SCM_UNDEFINED if division is not exact. */
size_t i = 0, j = 0;
long num = 0;
unsigned long t2 = 0;
SCM z, newy;
SCM_BIGDIG d = 0, qhat, *zds, *yds;
/* algorithm requires nx >= ny */
if (nx < ny)
switch (modes)
{
case 0: /* remainder -- just return x */
z = scm_i_mkbig (nx, sgn);
zds = SCM_BDIGITS (z);
do
{
zds[i] = x[i];
}
while (++i < nx);
return z;
case 1: /* scm_modulo -- return y-x */
z = scm_i_mkbig (ny, sgn);
zds = SCM_BDIGITS (z);
do
{
num += (long) y[i] - x[i];
if (num < 0)
{
zds[i] = num + SCM_BIGRAD;
num = -1;
}
else
{
zds[i] = num;
num = 0;
}
}
while (++i < nx);
while (i < ny)
{
num += y[i];
if (num < 0)
{
zds[i++] = num + SCM_BIGRAD;
num = -1;
}
else
{
zds[i++] = num;
num = 0;
}
}
goto doadj;
case 2:
return SCM_INUM0; /* quotient is zero */
case 3:
return SCM_UNDEFINED; /* the division is not exact */
}
z = scm_i_mkbig (nx == ny ? nx + 2 : nx + 1, sgn);
zds = SCM_BDIGITS (z);
if (nx == ny)
zds[nx + 1] = 0;
while (!y[ny - 1])
ny--; /* in case y came in as a psuedolong */
if (y[ny - 1] < (SCM_BIGRAD >> 1))
{ /* normalize operands */
d = SCM_BIGRAD / (y[ny - 1] + 1);
newy = scm_i_mkbig (ny, 0);
yds = SCM_BDIGITS (newy);
while (j < ny)
{
t2 += (unsigned long) y[j] * d;
yds[j++] = SCM_BIGLO (t2);
t2 = SCM_BIGDN (t2);
}
y = yds;
j = 0;
t2 = 0;
while (j < nx)
{
t2 += (unsigned long) x[j] * d;
zds[j++] = SCM_BIGLO (t2);
t2 = SCM_BIGDN (t2);
}
zds[j] = t2;
}
else
{
zds[j = nx] = 0;
while (j--)
zds[j] = x[j];
}
j = nx == ny ? nx + 1 : nx; /* dividend needs more digits than divisor */
do
{ /* loop over digits of quotient */
if (zds[j] == y[ny - 1])
qhat = SCM_BIGRAD - 1;
else
qhat = (SCM_BIGUP (zds[j]) + zds[j - 1]) / y[ny - 1];
if (!qhat)
continue;
i = 0;
num = 0;
t2 = 0;
do
{ /* multiply and subtract */
t2 += (unsigned long) y[i] * qhat;
num += zds[j - ny + i] - SCM_BIGLO (t2);
if (num < 0)
{
zds[j - ny + i] = num + SCM_BIGRAD;
num = -1;
}
else
{
zds[j - ny + i] = num;
num = 0;
}
t2 = SCM_BIGDN (t2);
}
while (++i < ny);
num += zds[j - ny + i] - t2; /* borrow from high digit; don't update */
while (num)
{ /* "add back" required */
i = 0;
num = 0;
qhat--;
do
{
num += (long) zds[j - ny + i] + y[i];
zds[j - ny + i] = SCM_BIGLO (num);
num = SCM_BIGDN (num);
}
while (++i < ny);
num--;
}
if (modes & 2)
zds[j] = qhat;
}
while (--j >= ny);
switch (modes)
{
case 3: /* check that remainder==0 */
for (j = ny; j && !zds[j - 1]; --j);
if (j)
return SCM_UNDEFINED;
case 2: /* move quotient down in z */
j = (nx == ny ? nx + 2 : nx + 1) - ny;
for (i = 0; i < j; i++)
zds[i] = zds[i + ny];
ny = i;
break;
case 1: /* subtract for scm_modulo */
i = 0;
num = 0;
j = 0;
do
{
num += y[i] - zds[i];
j = j | zds[i];
if (num < 0)
{
zds[i] = num + SCM_BIGRAD;
num = -1;
}
else
{
zds[i] = num;
num = 0;
}
}
while (++i < ny);
if (!j)
return SCM_INUM0;
case 0: /* just normalize remainder */
if (d)
scm_divbigdig (zds, ny, d);
}
doadj:
for (j = ny; j && !zds[j - 1]; --j);
if (j * SCM_BITSPERDIG <= sizeof (SCM) * SCM_CHAR_BIT)
if (SCM_INUMP (z = scm_i_big2inum (z, j)))
return z;
return scm_i_adjbig (z, j);
}
#endif
/*** NUMBERS -> STRINGS ***/
int scm_dblprec;
static const double fx[] =
{ 0.0, 5e-1, 5e-2, 5e-3, 5e-4, 5e-5,
5e-6, 5e-7, 5e-8, 5e-9, 5e-10,
5e-11, 5e-12, 5e-13, 5e-14, 5e-15,
5e-16, 5e-17, 5e-18, 5e-19, 5e-20};
static size_t
idbl2str (double f, char *a)
{
int efmt, dpt, d, i, wp = scm_dblprec;
size_t ch = 0;
int exp = 0;
if (f == 0.0)
goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
if (f < 0.0)
{
f = -f;
a[ch++] = '-';
}
else if (f > 0.0);
else
goto funny;
if (IS_INF (f))
{
if (ch == 0)
a[ch++] = '+';
funny:
a[ch++] = '#';
a[ch++] = '.';
a[ch++] = '#';
return ch;
}
#ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
make-uniform-vector, from causing infinite loops. */
while (f < 1.0)
{
f *= 10.0;
if (exp-- < DBL_MIN_10_EXP)
goto funny;
}
while (f > 10.0)
{
f *= 0.10;
if (exp++ > DBL_MAX_10_EXP)
goto funny;
}
#else
while (f < 1.0)
{
f *= 10.0;
exp--;
}
while (f > 10.0)
{
f /= 10.0;
exp++;
}
#endif
if (f + fx[wp] >= 10.0)
{
f = 1.0;
exp++;
}
zero:
#ifdef ENGNOT
dpt = (exp + 9999) % 3;
exp -= dpt++;
efmt = 1;
#else
efmt = (exp < -3) || (exp > wp + 2);
if (!efmt)
{
if (exp < 0)
{
a[ch++] = '0';
a[ch++] = '.';
dpt = exp;
while (++dpt)
a[ch++] = '0';
}
else
dpt = exp + 1;
}
else
dpt = 1;
#endif
do
{
d = f;
f -= d;
a[ch++] = d + '0';
if (f < fx[wp])
break;
if (f + fx[wp] >= 1.0)
{
a[ch - 1]++;
break;
}
f *= 10.0;
if (!(--dpt))
a[ch++] = '.';
}
while (wp--);
if (dpt > 0)
{
#ifndef ENGNOT
if ((dpt > 4) && (exp > 6))
{
d = (a[0] == '-' ? 2 : 1);
for (i = ch++; i > d; i--)
a[i] = a[i - 1];
a[d] = '.';
efmt = 1;
}
else
#endif
{
while (--dpt)
a[ch++] = '0';
a[ch++] = '.';
}
}
if (a[ch - 1] == '.')
a[ch++] = '0'; /* trailing zero */
if (efmt && exp)
{
a[ch++] = 'e';
if (exp < 0)
{
exp = -exp;
a[ch++] = '-';
}
for (i = 10; i <= exp; i *= 10);
for (i /= 10; i; i /= 10)
{
a[ch++] = exp / i + '0';
exp %= i;
}
}
return ch;
}
static size_t
iflo2str (SCM flt, char *str)
{
size_t i;
if (SCM_SLOPPY_REALP (flt))
i = idbl2str (SCM_REAL_VALUE (flt), str);
else
{
i = idbl2str (SCM_COMPLEX_REAL (flt), str);
if (SCM_COMPLEX_IMAG (flt) != 0.0)
{
if (0 <= SCM_COMPLEX_IMAG (flt))
str[i++] = '+';
i += idbl2str (SCM_COMPLEX_IMAG (flt), &str[i]);
str[i++] = 'i';
}
}
return i;
}
/* convert a long to a string (unterminated). returns the number of
characters in the result.
rad is output base
p is destination: worst case (base 2) is SCM_INTBUFLEN */
size_t
scm_iint2str (long num, int rad, char *p)
{
size_t j = 1;
size_t i;
unsigned long n = (num < 0) ? -num : num;
for (n /= rad; n > 0; n /= rad)
j++;
i = j;
if (num < 0)
{
*p++ = '-';
j++;
n = -num;
}
else
n = num;
while (i--)
{
int d = n % rad;
n /= rad;
p[i] = d + ((d < 10) ? '0' : 'a' - 10);
}
return j;
}
#ifdef SCM_BIGDIG
static SCM
big2str (SCM b, unsigned int radix)
{
SCM t = scm_i_copybig (b, 0); /* sign of temp doesn't matter */
register SCM_BIGDIG *ds = SCM_BDIGITS (t);
size_t i = SCM_NUMDIGS (t);
size_t j = radix == 16 ? (SCM_BITSPERDIG * i) / 4 + 2
: radix >= 10 ? (SCM_BITSPERDIG * i * 241L) / 800 + 2
: (SCM_BITSPERDIG * i) + 2;
size_t k = 0;
size_t radct = 0;
SCM_BIGDIG radpow = 1, radmod = 0;
SCM ss = scm_allocate_string (j);
char *s = SCM_STRING_CHARS (ss), c;
while ((long) radpow * radix < SCM_BIGRAD)
{
radpow *= radix;
radct++;
}
while ((i || radmod) && j)
{
if (k == 0)
{
radmod = (SCM_BIGDIG) scm_divbigdig (ds, i, radpow);
k = radct;
if (!ds[i - 1])
i--;
}
c = radmod % radix;
radmod /= radix;
k--;
s[--j] = c < 10 ? c + '0' : c + 'a' - 10;
}
if (SCM_BIGSIGN (b))
s[--j] = '-';
if (j > 0)
{
/* The pre-reserved string length was too large. */
unsigned long int length = SCM_STRING_LENGTH (ss);
ss = scm_substring (ss, SCM_MAKINUM (j), SCM_MAKINUM (length));
}
return scm_return_first (ss, t);
}
#endif
SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
(SCM n, SCM radix),
"Return a string holding the external representation of the\n"
"number @var{n} in the given @var{radix}. If @var{n} is\n"
"inexact, a radix of 10 will be used.")
#define FUNC_NAME s_scm_number_to_string
{
int base;
if (SCM_UNBNDP (radix)) {
base = 10;
} else {
SCM_VALIDATE_INUM (2, radix);
base = SCM_INUM (radix);
SCM_ASSERT_RANGE (2, radix, base >= 2);
}
if (SCM_INUMP (n)) {
char num_buf [SCM_INTBUFLEN];
size_t length = scm_iint2str (SCM_INUM (n), base, num_buf);
return scm_mem2string (num_buf, length);
} else if (SCM_BIGP (n)) {
return big2str (n, (unsigned int) base);
} else if (SCM_INEXACTP (n)) {
char num_buf [FLOBUFLEN];
return scm_mem2string (num_buf, iflo2str (n, num_buf));
} else {
SCM_WRONG_TYPE_ARG (1, n);
}
}
#undef FUNC_NAME
/* These print routines are stubbed here so that scm_repl.c doesn't need
SCM_BIGDIG conditionals */
int
scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
{
char num_buf[FLOBUFLEN];
scm_lfwrite (num_buf, iflo2str (sexp, num_buf), port);
return !0;
}
int
scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
{
char num_buf[FLOBUFLEN];
scm_lfwrite (num_buf, iflo2str (sexp, num_buf), port);
return !0;
}
int
scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
{
#ifdef SCM_BIGDIG
exp = big2str (exp, (unsigned int) 10);
scm_lfwrite (SCM_STRING_CHARS (exp), (size_t) SCM_STRING_LENGTH (exp), port);
#else
scm_ipruk ("bignum", exp, port);
#endif
return !0;
}
/*** END nums->strs ***/
/*** STRINGS -> NUMBERS ***/
static SCM
scm_small_istr2int (char *str, long len, long radix)
{
register long n = 0, ln;
register int c;
register int i = 0;
int lead_neg = 0;
if (0 >= len)
return SCM_BOOL_F; /* zero scm_length */
switch (*str)
{ /* leading sign */
case '-':
lead_neg = 1;
case '+':
if (++i == len)
return SCM_BOOL_F; /* bad if lone `+' or `-' */
}
do
{
switch (c = str[i++])
{
case DIGITS:
c = c - '0';
goto accumulate;
case 'A':
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
c = c - 'A' + 10;
goto accumulate;
case 'a':
case 'b':
case 'c':
case 'd':
case 'e':
case 'f':
c = c - 'a' + 10;
accumulate:
if (c >= radix)
return SCM_BOOL_F; /* bad digit for radix */
ln = n;
n = n * radix - c;
/* Negation is a workaround for HP700 cc bug */
if (n > ln || (-n > -SCM_MOST_NEGATIVE_FIXNUM))
goto ovfl;
break;
default:
return SCM_BOOL_F; /* not a digit */
}
}
while (i < len);
if (!lead_neg)
if ((n = -n) > SCM_MOST_POSITIVE_FIXNUM)
goto ovfl;
return SCM_MAKINUM (n);
ovfl: /* overflow scheme integer */
return SCM_BOOL_F;
}
SCM
scm_istr2int (char *str, long len, long radix)
{
size_t j;
register size_t k, blen = 1;
size_t i = 0;
int c;
SCM res;
register SCM_BIGDIG *ds;
register unsigned long t2;
if (0 >= len)
return SCM_BOOL_F; /* zero scm_length */
/* Short numbers we parse directly into an int, to avoid the overhead
of creating a bignum. */
if (len < 6)
return scm_small_istr2int (str, len, radix);
/* table[] is the number of bits used by each digit in the given base,
ie. log(base)/log(2). A scale factor of 25 is applied, so eg. base 8
has 75 for 3 bits per digit. When the number is not exact (any non
power-of-2 base) it's rounded up, ensuring the size calculated will be
no less than what's needed. Eg. 25*log(10)/log(2) is 83.04 which gets
rounded up to 84. The following spot of perl generates the table
use POSIX;
foreach $i (2 .. 16) {
print POSIX::ceil(log($i)/log(2)*25),", /","* $i *","/\n";
}
The factor 25 is more or less arbitrary, it gives enough precision and
is what the code had in the past for base 10. */
{
static const unsigned table[] = {
25, /* 2 */
40, /* 3 */
50, /* 4 */
59, /* 5 */
65, /* 6 */
71, /* 7 */
75, /* 8 */
80, /* 9 */
84, /* 10 */
87, /* 11 */
90, /* 12 */
93, /* 13 */
96, /* 14 */
98, /* 15 */
100, /* 16 */
};
/* FIXME: What is sizeof(char) for? */
j = 1 + (table[radix-2] * len * sizeof (char)) / (SCM_BITSPERDIG * 25);
}
switch (str[0])
{ /* leading sign */
case '-':
case '+':
if (++i == (unsigned) len)
return SCM_BOOL_F; /* bad if lone `+' or `-' */
}
res = scm_i_mkbig (j, '-' == str[0]);
ds = SCM_BDIGITS (res);
for (k = j; k--;)
ds[k] = 0;
do
{
switch (c = str[i++])
{
case DIGITS:
c = c - '0';
goto accumulate;
case 'A':
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
c = c - 'A' + 10;
goto accumulate;
case 'a':
case 'b':
case 'c':
case 'd':
case 'e':
case 'f':
c = c - 'a' + 10;
accumulate:
if (c >= radix)
return SCM_BOOL_F; /* bad digit for radix */
k = 0;
t2 = c;
moretodo:
while (k < blen)
{
/* printf ("k = %d, blen = %d, t2 = %ld, ds[k] = %d\n", k, blen, t2, ds[k]); */
t2 += ds[k] * radix;
ds[k++] = SCM_BIGLO (t2);
t2 = SCM_BIGDN (t2);
}
if (t2)
{
if (blen >= j)
scm_num_overflow ("bignum");
blen++;
goto moretodo;
}
break;
default:
return SCM_BOOL_F; /* not a digit */
}
}
while (i < (unsigned) len);
if (blen * SCM_BITSPERDIG / SCM_CHAR_BIT <= sizeof (SCM))
if (SCM_INUMP (res = scm_i_big2inum (res, blen)))
return res;
if (j == blen)
return res;
return scm_i_adjbig (res, blen);
}
SCM
scm_istr2flo (char *str, long len, long radix)
{
register int c, i = 0;
double lead_sgn;
double res = 0.0, tmp = 0.0;
int flg = 0;
int point = 0;
SCM second;
if (i >= len)
return SCM_BOOL_F; /* zero scm_length */
switch (*str)
{ /* leading sign */
case '-':
lead_sgn = -1.0;
i++;
break;
case '+':
lead_sgn = 1.0;
i++;
break;
default:
lead_sgn = 0.0;
}
if (i == len)
return SCM_BOOL_F; /* bad if lone `+' or `-' */
if (str[i] == 'i' || str[i] == 'I')
{ /* handle `+i' and `-i' */
if (lead_sgn == 0.0)
return SCM_BOOL_F; /* must have leading sign */
if (++i < len)
return SCM_BOOL_F; /* `i' not last character */
return scm_make_complex (0.0, lead_sgn);
}
do
{ /* check initial digits */
switch (c = str[i])
{
case DIGITS:
c = c - '0';
goto accum1;
case 'D':
case 'E':
case 'F':
if (radix == 10)
goto out1; /* must be exponent */
case 'A':
case 'B':
case 'C':
c = c - 'A' + 10;
goto accum1;
case 'd':
case 'e':
case 'f':
if (radix == 10)
goto out1;
case 'a':
case 'b':
case 'c':
c = c - 'a' + 10;
accum1:
if (c >= radix)
return SCM_BOOL_F; /* bad digit for radix */
res = res * radix + c;
flg = 1; /* res is valid */
break;
default:
goto out1;
}
}
while (++i < len);
out1:
/* if true, then we did see a digit above, and res is valid */
if (i == len)
goto done;
/* By here, must have seen a digit,
or must have next char be a `.' with radix==10 */
if (!flg)
if (!(str[i] == '.' && radix == 10))
return SCM_BOOL_F;
while (str[i] == '#')
{ /* optional sharps */
res *= radix;
if (++i == len)
goto done;
}
if (str[i] == '/')
{
while (++i < len)
{
switch (c = str[i])
{
case DIGITS:
c = c - '0';
goto accum2;
case 'A':
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
c = c - 'A' + 10;
goto accum2;
case 'a':
case 'b':
case 'c':
case 'd':
case 'e':
case 'f':
c = c - 'a' + 10;
accum2:
if (c >= radix)
return SCM_BOOL_F;
tmp = tmp * radix + c;
break;
default:
goto out2;
}
}
out2:
if (tmp == 0.0)
return SCM_BOOL_F; /* `slash zero' not allowed */
if (i < len)
while (str[i] == '#')
{ /* optional sharps */
tmp *= radix;
if (++i == len)
break;
}
res /= tmp;
goto done;
}
if (str[i] == '.')
{ /* decimal point notation */
if (radix != 10)
return SCM_BOOL_F; /* must be radix 10 */
while (++i < len)
{
switch (c = str[i])
{
case DIGITS:
point--;
res = res * 10.0 + c - '0';
flg = 1;
break;
default:
goto out3;
}
}
out3:
if (!flg)
return SCM_BOOL_F; /* no digits before or after decimal point */
if (i == len)
goto adjust;
while (str[i] == '#')
{ /* ignore remaining sharps */
if (++i == len)
goto adjust;
}
}
switch (str[i])
{ /* exponent */
case 'd':
case 'D':
case 'e':
case 'E':
case 'f':
case 'F':
case 'l':
case 'L':
case 's':
case 'S':
{
int expsgn = 1, expon = 0;
if (radix != 10)
return SCM_BOOL_F; /* only in radix 10 */
if (++i == len)
return SCM_BOOL_F; /* bad exponent */
switch (str[i])
{
case '-':
expsgn = (-1);
case '+':
if (++i == len)
return SCM_BOOL_F; /* bad exponent */
}
if (str[i] < '0' || str[i] > '9')
return SCM_BOOL_F; /* bad exponent */
do
{
switch (c = str[i])
{
case DIGITS:
expon = expon * 10 + c - '0';
if (expon > SCM_MAXEXP)
scm_out_of_range ("string->number", SCM_MAKINUM (expon));
break;
default:
goto out4;
}
}
while (++i < len);
out4:
point += expsgn * expon;
}
}
adjust:
if (point >= 0)
while (point--)
res *= 10.0;
else
#ifdef _UNICOS
while (point++)
res *= 0.1;
#else
while (point++)
res /= 10.0;
#endif
done:
/* at this point, we have a legitimate floating point result */
if (lead_sgn == -1.0)
res = -res;
if (i == len)
return scm_make_real (res);
if (str[i] == 'i' || str[i] == 'I')
{ /* pure imaginary number */
if (lead_sgn == 0.0)
return SCM_BOOL_F; /* must have leading sign */
if (++i < len)
return SCM_BOOL_F; /* `i' not last character */
return scm_make_complex (0.0, res);
}
switch (str[i++])
{
case '-':
lead_sgn = -1.0;
break;
case '+':
lead_sgn = 1.0;
break;
case '@':
{ /* polar input for complex number */
/* get a `real' for scm_angle */
second = scm_istr2flo (&str[i], (long) (len - i), radix);
if (!SCM_INEXACTP (second))
return SCM_BOOL_F; /* not `real' */
if (SCM_SLOPPY_COMPLEXP (second))
return SCM_BOOL_F; /* not `real' */
tmp = SCM_REAL_VALUE (second);
return scm_make_complex (res * cos (tmp), res * sin (tmp));
}
default:
return SCM_BOOL_F;
}
/* at this point, last char must be `i' */
if (str[len - 1] != 'i' && str[len - 1] != 'I')
return SCM_BOOL_F;
/* handles `x+i' and `x-i' */
if (i == (len - 1))
return scm_make_complex (res, lead_sgn);
/* get a `ureal' for complex part */
second = scm_istr2flo (&str[i], (long) ((len - i) - 1), radix);
if (!SCM_INEXACTP (second))
return SCM_BOOL_F; /* not `ureal' */
if (SCM_SLOPPY_COMPLEXP (second))
return SCM_BOOL_F; /* not `ureal' */
tmp = SCM_REAL_VALUE (second);
if (tmp < 0.0)
return SCM_BOOL_F; /* not `ureal' */
return scm_make_complex (res, (lead_sgn * tmp));
}
SCM
scm_istring2number (char *str, long len, long radix)
{
int i = 0;
char ex = 0;
char ex_p = 0, rx_p = 0; /* Only allow 1 exactness and 1 radix prefix */
SCM res;
if (len == 1)
if (*str == '+' || *str == '-') /* Catches lone `+' and `-' for speed */
return SCM_BOOL_F;
while ((len - i) >= 2 && str[i] == '#' && ++i)
switch (str[i++])
{
case 'b':
case 'B':
if (rx_p++)
return SCM_BOOL_F;
radix = 2;
break;
case 'o':
case 'O':
if (rx_p++)
return SCM_BOOL_F;
radix = 8;
break;
case 'd':
case 'D':
if (rx_p++)
return SCM_BOOL_F;
radix = 10;
break;
case 'x':
case 'X':
if (rx_p++)
return SCM_BOOL_F;
radix = 16;
break;
case 'i':
case 'I':
if (ex_p++)
return SCM_BOOL_F;
ex = 2;
break;
case 'e':
case 'E':
if (ex_p++)
return SCM_BOOL_F;
ex = 1;
break;
default:
return SCM_BOOL_F;
}
switch (ex)
{
case 1:
return scm_istr2int (&str[i], len - i, radix);
case 0:
res = scm_istr2int (&str[i], len - i, radix);
if (!SCM_FALSEP (res))
return res;
case 2:
return scm_istr2flo (&str[i], len - i, radix);
}
return SCM_BOOL_F;
}
SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
(SCM string, SCM radix),
"Return a number of the maximally precise representation\n"
"expressed by the given @var{string}. @var{radix} must be an\n"
"exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
"is a default radix that may be overridden by an explicit radix\n"
"prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
"supplied, then the default radix is 10. If string is not a\n"
"syntactically valid notation for a number, then\n"
"@code{string->number} returns @code{#f}.")
#define FUNC_NAME s_scm_string_to_number
{
SCM answer;
int base;
SCM_VALIDATE_STRING (1, string);
SCM_VALIDATE_INUM_MIN_DEF_COPY (2,radix,2,10,base);
answer = scm_istring2number (SCM_STRING_CHARS (string),
SCM_STRING_LENGTH (string),
base);
return scm_return_first (answer, string);
}
#undef FUNC_NAME
/*** END strs->nums ***/
SCM
scm_make_real (double x)
{
SCM z;
SCM_NEWCELL2 (z);
SCM_SET_CELL_TYPE (z, scm_tc16_real);
SCM_REAL_VALUE (z) = x;
return z;
}
SCM
scm_make_complex (double x, double y)
{
if (y == 0.0) {
return scm_make_real (x);
} else {
SCM z;
SCM_NEWSMOB (z, scm_tc16_complex, scm_must_malloc (2L * sizeof (double), "complex"));
SCM_COMPLEX_REAL (z) = x;
SCM_COMPLEX_IMAG (z) = y;
return z;
}
}
SCM
scm_bigequal (SCM x, SCM y)
{
#ifdef SCM_BIGDIG
if (0 == scm_bigcomp (x, y))
return SCM_BOOL_T;
#endif
return SCM_BOOL_F;
}
SCM
scm_real_equalp (SCM x, SCM y)
{
return SCM_BOOL (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
}
SCM
scm_complex_equalp (SCM x, SCM y)
{
return SCM_BOOL (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
&& SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
}
SCM_REGISTER_PROC (s_number_p, "number?", 1, 0, 0, scm_number_p);
/* "Return @code{#t} if @var{x} is a number, @code{#f}\n"
* "else. Note that the sets of complex, real, rational and\n"
* "integer values form subsets of the set of numbers, i. e. the\n"
* "predicate will be fulfilled for any number."
*/
SCM_DEFINE (scm_number_p, "complex?", 1, 0, 0,
(SCM x),
"Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
"otherwise. Note that the sets of real, rational and integer\n"
"values form subsets of the set of complex numbers, i. e. the\n"
"predicate will also be fulfilled if @var{x} is a real,\n"
"rational or integer number.")
#define FUNC_NAME s_scm_number_p
{
return SCM_BOOL (SCM_NUMBERP (x));
}
#undef FUNC_NAME
SCM_REGISTER_PROC (s_real_p, "real?", 1, 0, 0, scm_real_p);
/* "Return @code{#t} if @var{x} is a real number, @code{#f} else.\n"
* "Note that the sets of integer and rational values form a subset\n"
* "of the set of real numbers, i. e. the predicate will also\n"
* "be fulfilled if @var{x} is an integer or a rational number."
*/
SCM_DEFINE (scm_real_p, "rational?", 1, 0, 0,
(SCM x),
"Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
"otherwise. Note that the set of integer values forms a subset of\n"
"the set of rational numbers, i. e. the predicate will also be\n"
"fulfilled if @var{x} is an integer number. Real numbers\n"
"will also satisfy this predicate, because of their limited\n"
"precision.")
#define FUNC_NAME s_scm_real_p
{
if (SCM_INUMP (x)) {
return SCM_BOOL_T;
} else if (SCM_IMP (x)) {
return SCM_BOOL_F;
} else if (SCM_SLOPPY_REALP (x)) {
return SCM_BOOL_T;
} else if (SCM_BIGP (x)) {
return SCM_BOOL_T;
} else {
return SCM_BOOL_F;
}
}
#undef FUNC_NAME
SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
(SCM x),
"Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
"else.")
#define FUNC_NAME s_scm_integer_p
{
double r;
if (SCM_INUMP (x))
return SCM_BOOL_T;
if (SCM_IMP (x))
return SCM_BOOL_F;
if (SCM_BIGP (x))
return SCM_BOOL_T;
if (!SCM_SLOPPY_INEXACTP (x))
return SCM_BOOL_F;
if (SCM_SLOPPY_COMPLEXP (x))
return SCM_BOOL_F;
r = SCM_REAL_VALUE (x);
if (r == floor (r))
return SCM_BOOL_T;
return SCM_BOOL_F;
}
#undef FUNC_NAME
SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
(SCM x),
"Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
"else.")
#define FUNC_NAME s_scm_inexact_p
{
return SCM_BOOL (SCM_INEXACTP (x));
}
#undef FUNC_NAME
SCM_GPROC1 (s_eq_p, "=", scm_tc7_rpsubr, scm_num_eq_p, g_eq_p);
/* "Return @code{#t} if all parameters are numerically equal." */
SCM
scm_num_eq_p (SCM x, SCM y)
{
if (SCM_INUMP (x)) {
long xx = SCM_INUM (x);
if (SCM_INUMP (y)) {
long yy = SCM_INUM (y);
return SCM_BOOL (xx == yy);
} else if (SCM_BIGP (y)) {
return SCM_BOOL_F;
} else if (SCM_REALP (y)) {
return SCM_BOOL ((double) xx == SCM_REAL_VALUE (y));
} else if (SCM_COMPLEXP (y)) {
return SCM_BOOL (((double) xx == SCM_COMPLEX_REAL (y))
&& (0.0 == SCM_COMPLEX_IMAG (y)));
} else {
SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
}
} else if (SCM_BIGP (x)) {
if (SCM_INUMP (y)) {
return SCM_BOOL_F;
} else if (SCM_BIGP (y)) {
return SCM_BOOL (0 == scm_bigcomp (x, y));
} else if (SCM_REALP (y)) {
return SCM_BOOL (scm_i_big2dbl (x) == SCM_REAL_VALUE (y));
} else if (SCM_COMPLEXP (y)) {
return SCM_BOOL ((scm_i_big2dbl (x) == SCM_COMPLEX_REAL (y))
&& (0.0 == SCM_COMPLEX_IMAG (y)));
} else {
SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
}
} else if (SCM_REALP (x)) {
if (SCM_INUMP (y)) {
return SCM_BOOL (SCM_REAL_VALUE (x) == (double) SCM_INUM (y));
} else if (SCM_BIGP (y)) {
return SCM_BOOL (SCM_REAL_VALUE (x) == scm_i_big2dbl (y));
} else if (SCM_REALP (y)) {
return SCM_BOOL (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
} else if (SCM_COMPLEXP (y)) {
return SCM_BOOL ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
&& (0.0 == SCM_COMPLEX_IMAG (y)));
} else {
SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
}
} else if (SCM_COMPLEXP (x)) {
if (SCM_INUMP (y)) {
return SCM_BOOL ((SCM_COMPLEX_REAL (x) == (double) SCM_INUM (y))
&& (SCM_COMPLEX_IMAG (x) == 0.0));
} else if (SCM_BIGP (y)) {
return SCM_BOOL ((SCM_COMPLEX_REAL (x) == scm_i_big2dbl (y))
&& (SCM_COMPLEX_IMAG (x) == 0.0));
} else if (SCM_REALP (y)) {
return SCM_BOOL ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
&& (SCM_COMPLEX_IMAG (x) == 0.0));
} else if (SCM_COMPLEXP (y)) {
return SCM_BOOL ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
&& (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
} else {
SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
}
} else {
SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARG1, s_eq_p);
}
}
SCM_GPROC1 (s_less_p, "<", scm_tc7_rpsubr, scm_less_p, g_less_p);
/* "Return @code{#t} if the list of parameters is monotonically\n"
* "increasing."
*/
SCM
scm_less_p (SCM x, SCM y)
{
if (SCM_INUMP (x)) {
long xx = SCM_INUM (x);
if (SCM_INUMP (y)) {
long yy = SCM_INUM (y);
return SCM_BOOL (xx < yy);
} else if (SCM_BIGP (y)) {
return SCM_BOOL (!SCM_BIGSIGN (y));
} else if (SCM_REALP (y)) {
return SCM_BOOL ((double) xx < SCM_REAL_VALUE (y));
} else {
SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
}
} else if (SCM_BIGP (x)) {
if (SCM_INUMP (y)) {
return SCM_BOOL (SCM_BIGSIGN (x));
} else if (SCM_BIGP (y)) {
return SCM_BOOL (1 == scm_bigcomp (x, y));
} else if (SCM_REALP (y)) {
return SCM_BOOL (scm_i_big2dbl (x) < SCM_REAL_VALUE (y));
} else {
SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
}
} else if (SCM_REALP (x)) {
if (SCM_INUMP (y)) {
return SCM_BOOL (SCM_REAL_VALUE (x) < (double) SCM_INUM (y));
} else if (SCM_BIGP (y)) {
return SCM_BOOL (SCM_REAL_VALUE (x) < scm_i_big2dbl (y));
} else if (SCM_REALP (y)) {
return SCM_BOOL (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
} else {
SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
}
} else {
SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARG1, s_less_p);
}
}
SCM_GPROC1 (s_scm_gr_p, ">", scm_tc7_rpsubr, scm_gr_p, g_gr_p);
/* "Return @code{#t} if the list of parameters is monotonically\n"
* "decreasing."
*/
#define FUNC_NAME s_scm_gr_p
SCM
scm_gr_p (SCM x, SCM y)
{
if (!SCM_NUMBERP (x))
SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG1, FUNC_NAME);
else if (!SCM_NUMBERP (y))
SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG2, FUNC_NAME);
else
return scm_less_p (y, x);
}
#undef FUNC_NAME
SCM_GPROC1 (s_scm_leq_p, "<=", scm_tc7_rpsubr, scm_leq_p, g_leq_p);
/* "Return @code{#t} if the list of parameters is monotonically\n"
* "non-decreasing."
*/
#define FUNC_NAME s_scm_leq_p
SCM
scm_leq_p (SCM x, SCM y)
{
if (!SCM_NUMBERP (x))
SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG1, FUNC_NAME);
else if (!SCM_NUMBERP (y))
SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG2, FUNC_NAME);
else
return SCM_BOOL_NOT (scm_less_p (y, x));
}
#undef FUNC_NAME
SCM_GPROC1 (s_scm_geq_p, ">=", scm_tc7_rpsubr, scm_geq_p, g_geq_p);
/* "Return @code{#t} if the list of parameters is monotonically\n"
* "non-increasing."
*/
#define FUNC_NAME s_scm_geq_p
SCM
scm_geq_p (SCM x, SCM y)
{
if (!SCM_NUMBERP (x))
SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG1, FUNC_NAME);
else if (!SCM_NUMBERP (y))
SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG2, FUNC_NAME);
else
return SCM_BOOL_NOT (scm_less_p (x, y));
}
#undef FUNC_NAME
SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
/* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
* "zero."
*/
SCM
scm_zero_p (SCM z)
{
if (SCM_INUMP (z)) {
return SCM_BOOL (SCM_EQ_P (z, SCM_INUM0));
} else if (SCM_BIGP (z)) {
return SCM_BOOL_F;
} else if (SCM_REALP (z)) {
return SCM_BOOL (SCM_REAL_VALUE (z) == 0.0);
} else if (SCM_COMPLEXP (z)) {
return SCM_BOOL (SCM_COMPLEX_REAL (z) == 0.0
&& SCM_COMPLEX_IMAG (z) == 0.0);
} else {
SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
}
}
SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
/* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
* "zero."
*/
SCM
scm_positive_p (SCM x)
{
if (SCM_INUMP (x)) {
return SCM_BOOL (SCM_INUM (x) > 0);
} else if (SCM_BIGP (x)) {
return SCM_BOOL (!SCM_BIGSIGN (x));
} else if (SCM_REALP (x)) {
return SCM_BOOL(SCM_REAL_VALUE (x) > 0.0);
} else {
SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
}
}
SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
/* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
* "zero."
*/
SCM
scm_negative_p (SCM x)
{
if (SCM_INUMP (x)) {
return SCM_BOOL (SCM_INUM (x) < 0);
} else if (SCM_BIGP (x)) {
return SCM_BOOL (SCM_BIGSIGN (x));
} else if (SCM_REALP (x)) {
return SCM_BOOL(SCM_REAL_VALUE (x) < 0.0);
} else {
SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
}
}
SCM_GPROC1 (s_max, "max", scm_tc7_asubr, scm_max, g_max);
/* "Return the maximum of all parameter values."
*/
SCM
scm_max (SCM x, SCM y)
{
if (SCM_UNBNDP (y)) {
if (SCM_UNBNDP (x)) {
SCM_WTA_DISPATCH_0 (g_max, s_max);
} else if (SCM_NUMBERP (x)) {
return x;
} else {
SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
}
}
if (SCM_INUMP (x)) {
long xx = SCM_INUM (x);
if (SCM_INUMP (y)) {
long yy = SCM_INUM (y);
return (xx < yy) ? y : x;
} else if (SCM_BIGP (y)) {
return SCM_BIGSIGN (y) ? x : y;
} else if (SCM_REALP (y)) {
double z = xx;
return (z <= SCM_REAL_VALUE (y)) ? y : scm_make_real (z);
} else {
SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
}
} else if (SCM_BIGP (x)) {
if (SCM_INUMP (y)) {
return SCM_BIGSIGN (x) ? y : x;
} else if (SCM_BIGP (y)) {
return (1 == scm_bigcomp (x, y)) ? y : x;
} else if (SCM_REALP (y)) {
double z = scm_i_big2dbl (x);
return (z <= SCM_REAL_VALUE (y)) ? y : scm_make_real (z);
} else {
SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
}
} else if (SCM_REALP (x)) {
if (SCM_INUMP (y)) {
double z = SCM_INUM (y);
return (SCM_REAL_VALUE (x) < z) ? scm_make_real (z) : x;
} else if (SCM_BIGP (y)) {
double z = scm_i_big2dbl (y);
return (SCM_REAL_VALUE (x) < z) ? scm_make_real (z) : x;
} else if (SCM_REALP (y)) {
return (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y)) ? y : x;
} else {
SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
}
} else {
SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
}
}
SCM_GPROC1 (s_min, "min", scm_tc7_asubr, scm_min, g_min);
/* "Return the minium of all parameter values."
*/
SCM
scm_min (SCM x, SCM y)
{
if (SCM_UNBNDP (y)) {
if (SCM_UNBNDP (x)) {
SCM_WTA_DISPATCH_0 (g_min, s_min);
} else if (SCM_NUMBERP (x)) {
return x;
} else {
SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
}
}
if (SCM_INUMP (x)) {
long xx = SCM_INUM (x);
if (SCM_INUMP (y)) {
long yy = SCM_INUM (y);
return (xx < yy) ? x : y;
} else if (SCM_BIGP (y)) {
return SCM_BIGSIGN (y) ? y : x;
} else if (SCM_REALP (y)) {
double z = xx;
return (z < SCM_REAL_VALUE (y)) ? scm_make_real (z) : y;
} else {
SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
}
} else if (SCM_BIGP (x)) {
if (SCM_INUMP (y)) {
return SCM_BIGSIGN (x) ? x : y;
} else if (SCM_BIGP (y)) {
return (-1 == scm_bigcomp (x, y)) ? y : x;
} else if (SCM_REALP (y)) {
double z = scm_i_big2dbl (x);
return (z < SCM_REAL_VALUE (y)) ? scm_make_real (z) : y;
} else {
SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
}
} else if (SCM_REALP (x)) {
if (SCM_INUMP (y)) {
double z = SCM_INUM (y);
return (SCM_REAL_VALUE (x) <= z) ? x : scm_make_real (z);
} else if (SCM_BIGP (y)) {
double z = scm_i_big2dbl (y);
return (SCM_REAL_VALUE (x) <= z) ? x : scm_make_real (z);
} else if (SCM_REALP (y)) {
return (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y)) ? x : y;
} else {
SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
}
} else {
SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
}
}
SCM_GPROC1 (s_sum, "+", scm_tc7_asubr, scm_sum, g_sum);
/* "Return the sum of all parameter values. Return 0 if called without\n"
* "any parameters."
*/
SCM
scm_sum (SCM x, SCM y)
{
if (SCM_UNBNDP (y)) {
if (SCM_UNBNDP (x)) {
return SCM_INUM0;
} else if (SCM_NUMBERP (x)) {
return x;
} else {
SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
}
}
if (SCM_INUMP (x)) {
long int xx = SCM_INUM (x);
if (SCM_INUMP (y)) {
long int yy = SCM_INUM (y);
long int z = xx + yy;
if (SCM_FIXABLE (z)) {
return SCM_MAKINUM (z);
} else {
#ifdef SCM_BIGDIG
return scm_i_long2big (z);
#else /* SCM_BIGDIG */
return scm_make_real ((double) z);
#endif /* SCM_BIGDIG */
}
} else if (SCM_BIGP (y)) {
intbig:
{
long int xx = SCM_INUM (x);
#ifndef SCM_DIGSTOOBIG
long z = scm_pseudolong (xx);
return scm_addbig ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG,
(xx < 0) ? SCM_BIGSIGNFLAG : 0, y, 0);
#else /* SCM_DIGSTOOBIG */
SCM_BIGDIG zdigs [SCM_DIGSPERLONG];
scm_longdigs (xx, zdigs);
return scm_addbig (zdigs, SCM_DIGSPERLONG,
(xx < 0) ? SCM_BIGSIGNFLAG : 0, y, 0);
#endif /* SCM_DIGSTOOBIG */
}
} else if (SCM_REALP (y)) {
return scm_make_real (xx + SCM_REAL_VALUE (y));
} else if (SCM_COMPLEXP (y)) {
return scm_make_complex (xx + SCM_COMPLEX_REAL (y),
SCM_COMPLEX_IMAG (y));
} else {
SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
}
} else if (SCM_BIGP (x)) {
if (SCM_INUMP (y)) {
SCM_SWAP (x, y);
goto intbig;
} else if (SCM_BIGP (y)) {
if (SCM_NUMDIGS (x) > SCM_NUMDIGS (y)) {
SCM_SWAP (x, y);
}
return scm_addbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
SCM_BIGSIGN (x), y, 0);
} else if (SCM_REALP (y)) {
return scm_make_real (scm_i_big2dbl (x) + SCM_REAL_VALUE (y));
} else if (SCM_COMPLEXP (y)) {
return scm_make_complex (scm_i_big2dbl (x) + SCM_COMPLEX_REAL (y),
SCM_COMPLEX_IMAG (y));
} else {
SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
}
} else if (SCM_REALP (x)) {
if (SCM_INUMP (y)) {
return scm_make_real (SCM_REAL_VALUE (x) + SCM_INUM (y));
} else if (SCM_BIGP (y)) {
return scm_make_real (SCM_REAL_VALUE (x) + scm_i_big2dbl (y));
} else if (SCM_REALP (y)) {
return scm_make_real (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
} else if (SCM_COMPLEXP (y)) {
return scm_make_complex (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
SCM_COMPLEX_IMAG (y));
} else {
SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
}
} else if (SCM_COMPLEXP (x)) {
if (SCM_INUMP (y)) {
return scm_make_complex (SCM_COMPLEX_REAL (x) + SCM_INUM (y),
SCM_COMPLEX_IMAG (x));
} else if (SCM_BIGP (y)) {
return scm_make_complex (SCM_COMPLEX_REAL (x) + scm_i_big2dbl (y),
SCM_COMPLEX_IMAG (x));
} else if (SCM_REALP (y)) {
return scm_make_complex (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
SCM_COMPLEX_IMAG (x));
} else if (SCM_COMPLEXP (y)) {
return scm_make_complex (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
} else {
SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
}
} else {
SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
}
}
SCM_GPROC1 (s_difference, "-", scm_tc7_asubr, scm_difference, g_difference);
/* If called with one argument @var{z1}, -@var{z1} returned. Otherwise
* the sum of all but the first argument are subtracted from the first
* argument. */
#define FUNC_NAME s_difference
SCM
scm_difference (SCM x, SCM y)
{
if (SCM_UNBNDP (y)) {
if (SCM_UNBNDP (x)) {
SCM_WTA_DISPATCH_0 (g_difference, s_difference);
} else if (SCM_INUMP (x)) {
long xx = -SCM_INUM (x);
if (SCM_FIXABLE (xx)) {
return SCM_MAKINUM (xx);
} else {
#ifdef SCM_BIGDIG
return scm_i_long2big (xx);
#else
return scm_make_real ((double) xx);
#endif
}
} else if (SCM_BIGP (x)) {
SCM z = scm_i_copybig (x, !SCM_BIGSIGN (x));
unsigned int digs = SCM_NUMDIGS (z);
unsigned int size = digs * SCM_BITSPERDIG / SCM_CHAR_BIT;
return size <= sizeof (SCM) ? scm_i_big2inum (z, digs) : z;
} else if (SCM_REALP (x)) {
return scm_make_real (-SCM_REAL_VALUE (x));
} else if (SCM_COMPLEXP (x)) {
return scm_make_complex (-SCM_COMPLEX_REAL (x), -SCM_COMPLEX_IMAG (x));
} else {
SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
}
}
if (SCM_INUMP (x)) {
long int xx = SCM_INUM (x);
if (SCM_INUMP (y)) {
long int yy = SCM_INUM (y);
long int z = xx - yy;
if (SCM_FIXABLE (z)) {
return SCM_MAKINUM (z);
} else {
#ifdef SCM_BIGDIG
return scm_i_long2big (z);
#else
return scm_make_real ((double) z);
#endif
}
} else if (SCM_BIGP (y)) {
#ifndef SCM_DIGSTOOBIG
long z = scm_pseudolong (xx);
return scm_addbig ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG,
(xx < 0) ? SCM_BIGSIGNFLAG : 0, y, SCM_BIGSIGNFLAG);
#else
SCM_BIGDIG zdigs [SCM_DIGSPERLONG];
scm_longdigs (xx, zdigs);
return scm_addbig (zdigs, SCM_DIGSPERLONG,
(xx < 0) ? SCM_BIGSIGNFLAG : 0, y, SCM_BIGSIGNFLAG);
#endif
} else if (SCM_REALP (y)) {
return scm_make_real (xx - SCM_REAL_VALUE (y));
} else if (SCM_COMPLEXP (y)) {
return scm_make_complex (xx - SCM_COMPLEX_REAL (y),
-SCM_COMPLEX_IMAG (y));
} else {
SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
}
} else if (SCM_BIGP (x)) {
if (SCM_INUMP (y)) {
long int yy = SCM_INUM (y);
#ifndef SCM_DIGSTOOBIG
long z = scm_pseudolong (yy);
return scm_addbig ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG,
(yy < 0) ? 0 : SCM_BIGSIGNFLAG, x, 0);
#else
SCM_BIGDIG zdigs [SCM_DIGSPERLONG];
scm_longdigs (yy, zdigs);
return scm_addbig (zdigs, SCM_DIGSPERLONG,
(yy < 0) ? 0 : SCM_BIGSIGNFLAG, x, 0);
#endif
} else if (SCM_BIGP (y)) {
return (SCM_NUMDIGS (x) < SCM_NUMDIGS (y))
? scm_addbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
SCM_BIGSIGN (x), y, SCM_BIGSIGNFLAG)
: scm_addbig (SCM_BDIGITS (y), SCM_NUMDIGS (y),
SCM_BIGSIGN (y) ^ SCM_BIGSIGNFLAG, x, 0);
} else if (SCM_REALP (y)) {
return scm_make_real (scm_i_big2dbl (x) - SCM_REAL_VALUE (y));
} else if (SCM_COMPLEXP (y)) {
return scm_make_complex (scm_i_big2dbl (x) - SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (y));
} else {
SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
}
} else if (SCM_REALP (x)) {
if (SCM_INUMP (y)) {
return scm_make_real (SCM_REAL_VALUE (x) - SCM_INUM (y));
} else if (SCM_BIGP (y)) {
return scm_make_real (SCM_REAL_VALUE (x) - scm_i_big2dbl (y));
} else if (SCM_REALP (y)) {
return scm_make_real (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
} else if (SCM_COMPLEXP (y)) {
return scm_make_complex (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
-SCM_COMPLEX_IMAG (y));
} else {
SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
}
} else if (SCM_COMPLEXP (x)) {
if (SCM_INUMP (y)) {
return scm_make_complex (SCM_COMPLEX_REAL (x) - SCM_INUM (y),
SCM_COMPLEX_IMAG (x));
} else if (SCM_BIGP (y)) {
return scm_make_complex (SCM_COMPLEX_REAL (x) - scm_i_big2dbl (y),
SCM_COMPLEX_IMAG (x));
} else if (SCM_REALP (y)) {
return scm_make_complex (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
SCM_COMPLEX_IMAG (x));
} else if (SCM_COMPLEXP (y)) {
return scm_make_complex (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
} else {
SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
}
} else {
SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
}
}
#undef FUNC_NAME
SCM_GPROC1 (s_product, "*", scm_tc7_asubr, scm_product, g_product);
/* "Return the product of all arguments. If called without arguments,\n"
* "1 is returned."
*/
SCM
scm_product (SCM x, SCM y)
{
if (SCM_UNBNDP (y)) {
if (SCM_UNBNDP (x)) {
return SCM_MAKINUM (1L);
} else if (SCM_NUMBERP (x)) {
return x;
} else {
SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
}
}
if (SCM_INUMP (x)) {
long xx;
intbig:
xx = SCM_INUM (x);
if (xx == 0) {
return x;
} else if (xx == 1) {
return y;
}
if (SCM_INUMP (y)) {
long yy = SCM_INUM (y);
long kk = xx * yy;
SCM k = SCM_MAKINUM (kk);
if (kk != SCM_INUM (k) || kk / xx != yy) {
#ifdef SCM_BIGDIG
int sgn = (xx < 0) ^ (yy < 0);
#ifndef SCM_DIGSTOOBIG
long i = scm_pseudolong (xx);
long j = scm_pseudolong (yy);
return scm_mulbig ((SCM_BIGDIG *) & i, SCM_DIGSPERLONG,
(SCM_BIGDIG *) & j, SCM_DIGSPERLONG, sgn);
#else /* SCM_DIGSTOOBIG */
SCM_BIGDIG xdigs [SCM_DIGSPERLONG];
SCM_BIGDIG ydigs [SCM_DIGSPERLONG];
scm_longdigs (xx, xdigs);
scm_longdigs (yy, ydigs);
return scm_mulbig (xdigs, SCM_DIGSPERLONG,
ydigs, SCM_DIGSPERLONG,
sgn);
#endif
#else
return scm_make_real (((double) xx) * ((double) yy));
#endif
} else {
return k;
}
} else if (SCM_BIGP (y)) {
#ifndef SCM_DIGSTOOBIG
long z = scm_pseudolong (xx);
return scm_mulbig ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG,
SCM_BDIGITS (y), SCM_NUMDIGS (y),
SCM_BIGSIGN (y) ? (xx > 0) : (xx < 0));
#else
SCM_BIGDIG zdigs [SCM_DIGSPERLONG];
scm_longdigs (xx, zdigs);
return scm_mulbig (zdigs, SCM_DIGSPERLONG,
SCM_BDIGITS (y), SCM_NUMDIGS (y),
SCM_BIGSIGN (y) ? (xx > 0) : (xx < 0));
#endif
} else if (SCM_REALP (y)) {
return scm_make_real (xx * SCM_REAL_VALUE (y));
} else if (SCM_COMPLEXP (y)) {
return scm_make_complex (xx * SCM_COMPLEX_REAL (y),
xx * SCM_COMPLEX_IMAG (y));
} else {
SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
}
} else if (SCM_BIGP (x)) {
if (SCM_INUMP (y)) {
SCM_SWAP (x, y);
goto intbig;
} else if (SCM_BIGP (y)) {
return scm_mulbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
SCM_BDIGITS (y), SCM_NUMDIGS (y),
SCM_BIGSIGN (x) ^ SCM_BIGSIGN (y));
} else if (SCM_REALP (y)) {
return scm_make_real (scm_i_big2dbl (x) * SCM_REAL_VALUE (y));
} else if (SCM_COMPLEXP (y)) {
double z = scm_i_big2dbl (x);
return scm_make_complex (z * SCM_COMPLEX_REAL (y),
z * SCM_COMPLEX_IMAG (y));
} else {
SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
}
} else if (SCM_REALP (x)) {
if (SCM_INUMP (y)) {
/* inexact*exact0 => exact 0, per R5RS "Exactness" section */
if (SCM_EQ_P (y, SCM_INUM0))
return y;
return scm_make_real (SCM_INUM (y) * SCM_REAL_VALUE (x));
} else if (SCM_BIGP (y)) {
return scm_make_real (scm_i_big2dbl (y) * SCM_REAL_VALUE (x));
} else if (SCM_REALP (y)) {
return scm_make_real (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
} else if (SCM_COMPLEXP (y)) {
return scm_make_complex (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
} else {
SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
}
} else if (SCM_COMPLEXP (x)) {
if (SCM_INUMP (y)) {
/* inexact*exact0 => exact 0, per R5RS "Exactness" section */
if (SCM_EQ_P (y, SCM_INUM0))
return y;
return scm_make_complex (SCM_INUM (y) * SCM_COMPLEX_REAL (x),
SCM_INUM (y) * SCM_COMPLEX_IMAG (x));
} else if (SCM_BIGP (y)) {
double z = scm_i_big2dbl (y);
return scm_make_complex (z * SCM_COMPLEX_REAL (x),
z * SCM_COMPLEX_IMAG (x));
} else if (SCM_REALP (y)) {
return scm_make_complex (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
} else if (SCM_COMPLEXP (y)) {
return scm_make_complex (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
- SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
+ SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
} else {
SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
}
} else {
SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
}
}
double
scm_num2dbl (SCM a, const char *why)
#define FUNC_NAME why
{
if (SCM_INUMP (a)) {
return (double) SCM_INUM (a);
} else if (SCM_BIGP (a)) {
return scm_i_big2dbl (a);
} else if (SCM_REALP (a)) {
return (SCM_REAL_VALUE (a));
} else {
SCM_WRONG_TYPE_ARG (SCM_ARGn, a);
}
}
#undef FUNC_NAME
/* The code below for complex division is adapted from the GNU
libstdc++, which adapted it from f2c's libF77, and is subject to
this copyright: */
/****************************************************************
Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the names of AT&T Bell Laboratories or
Bellcore or any of their entities not be used in advertising or
publicity pertaining to distribution of the software without
specific, written prior permission.
AT&T and Bellcore disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall AT&T or Bellcore be liable for
any special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
****************************************************************/
SCM_GPROC1 (s_divide, "/", scm_tc7_asubr, scm_divide, g_divide);
/* Divide the first argument by the product of the remaining
arguments. If called with one argument @var{z1}, 1/@var{z1} is
returned. */
#define FUNC_NAME s_divide
SCM
scm_divide (SCM x, SCM y)
{
double a;
if (SCM_UNBNDP (y)) {
if (SCM_UNBNDP (x)) {
SCM_WTA_DISPATCH_0 (g_divide, s_divide);
} else if (SCM_INUMP (x)) {
if (SCM_EQ_P (x, SCM_MAKINUM (1L)) || SCM_EQ_P (x, SCM_MAKINUM (-1L))) {
return x;
} else {
return scm_make_real (1.0 / (double) SCM_INUM (x));
}
} else if (SCM_BIGP (x)) {
return scm_make_real (1.0 / scm_i_big2dbl (x));
} else if (SCM_REALP (x)) {
return scm_make_real (1.0 / SCM_REAL_VALUE (x));
} else if (SCM_COMPLEXP (x)) {
double r = SCM_COMPLEX_REAL (x);
double i = SCM_COMPLEX_IMAG (x);
if (fabs(r) <= fabs(i)) {
double t = r / i;
double d = i * (1.0 + t * t);
return scm_make_complex (t / d, -1.0 / d);
} else {
double t = i / r;
double d = r * (1.0 + t * t);
return scm_make_complex (1.0 / d, -t / d);
}
} else {
SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
}
}
if (SCM_INUMP (x)) {
long xx = SCM_INUM (x);
if (SCM_INUMP (y)) {
long yy = SCM_INUM (y);
if (yy == 0) {
scm_num_overflow (s_divide);
} else if (xx % yy != 0) {
return scm_make_real ((double) xx / (double) yy);
} else {
long z = xx / yy;
if (SCM_FIXABLE (z)) {
return SCM_MAKINUM (z);
} else {
#ifdef SCM_BIGDIG
return scm_i_long2big (z);
#else
return scm_make_real ((double) xx / (double) yy);
#endif
}
}
} else if (SCM_BIGP (y)) {
return scm_make_real ((double) xx / scm_i_big2dbl (y));
} else if (SCM_REALP (y)) {
return scm_make_real ((double) xx / SCM_REAL_VALUE (y));
} else if (SCM_COMPLEXP (y)) {
a = xx;
complex_div: /* y _must_ be a complex number */
{
double r = SCM_COMPLEX_REAL (y);
double i = SCM_COMPLEX_IMAG (y);
if (fabs(r) <= fabs(i)) {
double t = r / i;
double d = i * (1.0 + t * t);
return scm_make_complex ((a * t) / d, -a / d);
} else {
double t = i / r;
double d = r * (1.0 + t * t);
return scm_make_complex (a / d, -(a * t) / d);
}
}
} else {
SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
}
} else if (SCM_BIGP (x)) {
if (SCM_INUMP (y)) {
long int yy = SCM_INUM (y);
if (yy == 0) {
scm_num_overflow (s_divide);
} else if (yy == 1) {
return x;
} else {
long z = yy < 0 ? -yy : yy;
if (z < SCM_BIGRAD) {
SCM w = scm_i_copybig (x, SCM_BIGSIGN (x) ? (yy > 0) : (yy < 0));
return scm_divbigdig (SCM_BDIGITS (w), SCM_NUMDIGS (w),
(SCM_BIGDIG) z)
? scm_make_real (scm_i_big2dbl (x) / (double) yy)
: scm_i_normbig (w);
} else {
SCM w;
#ifndef SCM_DIGSTOOBIG
z = scm_pseudolong (z);
w = scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
(SCM_BIGDIG *) & z, SCM_DIGSPERLONG,
SCM_BIGSIGN (x) ? (yy > 0) : (yy < 0), 3);
#else
SCM_BIGDIG zdigs[SCM_DIGSPERLONG];
scm_longdigs (z, zdigs);
w = scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
zdigs, SCM_DIGSPERLONG,
SCM_BIGSIGN (x) ? (yy > 0) : (yy < 0), 3);
#endif
return (!SCM_UNBNDP (w))
? w
: scm_make_real (scm_i_big2dbl (x) / (double) yy);
}
}
} else if (SCM_BIGP (y)) {
SCM w = scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
SCM_BDIGITS (y), SCM_NUMDIGS (y),
SCM_BIGSIGN (x) ^ SCM_BIGSIGN (y), 3);
return (!SCM_UNBNDP (w))
? w
: scm_make_real (scm_i_big2dbl (x) / scm_i_big2dbl (y));
} else if (SCM_REALP (y)) {
return scm_make_real (scm_i_big2dbl (x) / SCM_REAL_VALUE (y));
} else if (SCM_COMPLEXP (y)) {
a = scm_i_big2dbl (x);
goto complex_div;
} else {
SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
}
} else if (SCM_REALP (x)) {
double rx = SCM_REAL_VALUE (x);
if (SCM_INUMP (y)) {
return scm_make_real (rx / (double) SCM_INUM (y));
} else if (SCM_BIGP (y)) {
return scm_make_real (rx / scm_i_big2dbl (y));
} else if (SCM_REALP (y)) {
return scm_make_real (rx / SCM_REAL_VALUE (y));
} else if (SCM_COMPLEXP (y)) {
a = rx;
goto complex_div;
} else {
SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
}
} else if (SCM_COMPLEXP (x)) {
double rx = SCM_COMPLEX_REAL (x);
double ix = SCM_COMPLEX_IMAG (x);
if (SCM_INUMP (y)) {
double d = SCM_INUM (y);
return scm_make_complex (rx / d, ix / d);
} else if (SCM_BIGP (y)) {
double d = scm_i_big2dbl (y);
return scm_make_complex (rx / d, ix / d);
} else if (SCM_REALP (y)) {
double d = SCM_REAL_VALUE (y);
return scm_make_complex (rx / d, ix / d);
} else if (SCM_COMPLEXP (y)) {
double ry = SCM_COMPLEX_REAL (y);
double iy = SCM_COMPLEX_IMAG (y);
if (fabs(ry) <= fabs(iy)) {
double t = ry / iy;
double d = iy * (1.0 + t * t);
return scm_make_complex ((rx * t + ix) / d, (ix * t - rx) / d);
} else {
double t = iy / ry;
double d = ry * (1.0 + t * t);
return scm_make_complex ((rx + ix * t) / d, (ix - rx * t) / d);
}
} else {
SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
}
} else {
SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
}
}
#undef FUNC_NAME
SCM_GPROC1 (s_asinh, "$asinh", scm_tc7_cxr, (SCM (*)()) scm_asinh, g_asinh);
/* "Return the inverse hyperbolic sine of @var{x}."
*/
double
scm_asinh (double x)
{
return log (x + sqrt (x * x + 1));
}
SCM_GPROC1 (s_acosh, "$acosh", scm_tc7_cxr, (SCM (*)()) scm_acosh, g_acosh);
/* "Return the inverse hyperbolic cosine of @var{x}."
*/
double
scm_acosh (double x)
{
return log (x + sqrt (x * x - 1));
}
SCM_GPROC1 (s_atanh, "$atanh", scm_tc7_cxr, (SCM (*)()) scm_atanh, g_atanh);
/* "Return the inverse hyperbolic tangent of @var{x}."
*/
double
scm_atanh (double x)
{
return 0.5 * log ((1 + x) / (1 - x));
}
SCM_PRIMITIVE_GENERIC (scm_truncate_number, "truncate", 1, 0, 0,
(SCM x),
"Round the inexact number @var{x} towards zero.")
#define FUNC_NAME s_scm_truncate_number
{
if (SCM_INUMP (x) || SCM_BIGP (x))
return x;
else if (SCM_REALP (x))
return scm_make_real (scm_truncate (SCM_REAL_VALUE (x)));
else
SCM_WTA_DISPATCH_1 (g_scm_truncate_number, x, 1, s_scm_truncate_number);
}
#undef FUNC_NAME
double
scm_truncate (double x)
{
if (x < 0.0)
return -floor (-x);
return floor (x);
}
/* scm_round is done using floor(x+0.5) to round to nearest and with
half-way case (ie. when x is an integer plus 0.5) going upwards. Then
half-way cases are identified and adjusted down if the round-upwards
didn't give the desired even integer.
"plus_half == result" identifies a half-way case. If plus_half, which is
x + 0.5, is an integer then x must be an integer plus 0.5.
An odd "result" value is identified with result/2 != floor(result/2).
This is done with plus_half, since that value is ready for use sooner in
a pipelined cpu, and we're already requiring plus_half == result.
Note however that we need to be careful when x is big and already an
integer. In that case "x+0.5" may round to an adjacent integer, causing
us to return such a value, incorrectly. For instance if the hardware is
in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
(ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
returned. Or if the hardware is in round-upwards mode, then other bigger
values like say x == 2^128 will see x+0.5 rounding up to the next higher
representable value, 2^128+2^76 (or whatever), again incorrect.
These bad roundings of x+0.5 are avoided by testing at the start whether
x is already an integer. If it is then clearly that's the desired result
already. And if it's not then the exponent must be small enough to allow
an 0.5 to be represented, and hence added without a bad rounding. */
double
scm_round (double x)
{
double plus_half, result;
if (x == floor (x))
return x;
plus_half = x + 0.5;
result = floor (plus_half);
/* Adjust so that the scm_round is towards even. */
return (plus_half == result && plus_half / 2 != floor (plus_half / 2))
? result - 1 : result;
}
SCM_PRIMITIVE_GENERIC (scm_round_number, "round", 1, 0, 0,
(SCM x),
"Round the number @var{x} towards the nearest integer. "
"When it is exactly halfway between two integers, "
"round towards the even one.")
#define FUNC_NAME s_scm_round_number
{
if (SCM_INUMP (x) || SCM_BIGP (x))
return x;
else if (SCM_REALP (x))
return scm_make_real (scm_round (SCM_REAL_VALUE (x)));
else
SCM_WTA_DISPATCH_1 (g_scm_round_number, x, 1, s_scm_round_number);
}
#undef FUNC_NAME
SCM_GPROC1 (s_exact_to_inexact, "exact->inexact", scm_tc7_cxr, (SCM (*)()) scm_exact_to_inexact, g_exact_to_inexact);
/* Convert the number @var{x} to its inexact representation.\n"
*/
double
scm_exact_to_inexact (double z)
{
return z;
}
SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
(SCM x),
"Round the number @var{x} towards minus infinity.")
#define FUNC_NAME s_scm_floor
{
if (SCM_INUMP (x) || SCM_BIGP (x))
return x;
else if (SCM_REALP (x))
return scm_make_real (floor (SCM_REAL_VALUE (x)));
else
SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
}
#undef FUNC_NAME
SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
(SCM x),
"Round the number @var{x} towards infinity.")
#define FUNC_NAME s_scm_ceiling
{
if (SCM_INUMP (x) || SCM_BIGP (x))
return x;
else if (SCM_REALP (x))
return scm_make_real (ceil (SCM_REAL_VALUE (x)));
else
SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
}
#undef FUNC_NAME
SCM_GPROC1 (s_i_sqrt, "$sqrt", scm_tc7_cxr, (SCM (*)()) sqrt, g_i_sqrt);
/* "Return the square root of the real number @var{x}."
*/
SCM_GPROC1 (s_i_abs, "$abs", scm_tc7_cxr, (SCM (*)()) fabs, g_i_abs);
/* "Return the absolute value of the real number @var{x}."
*/
SCM_GPROC1 (s_i_exp, "$exp", scm_tc7_cxr, (SCM (*)()) exp, g_i_exp);
/* "Return the @var{x}th power of e."
*/
SCM_GPROC1 (s_i_log, "$log", scm_tc7_cxr, (SCM (*)()) log, g_i_log);
/* "Return the natural logarithm of the real number @var{x}."
*/
SCM_GPROC1 (s_i_sin, "$sin", scm_tc7_cxr, (SCM (*)()) sin, g_i_sin);
/* "Return the sine of the real number @var{x}."
*/
SCM_GPROC1 (s_i_cos, "$cos", scm_tc7_cxr, (SCM (*)()) cos, g_i_cos);
/* "Return the cosine of the real number @var{x}."
*/
SCM_GPROC1 (s_i_tan, "$tan", scm_tc7_cxr, (SCM (*)()) tan, g_i_tan);
/* "Return the tangent of the real number @var{x}."
*/
SCM_GPROC1 (s_i_asin, "$asin", scm_tc7_cxr, (SCM (*)()) asin, g_i_asin);
/* "Return the arc sine of the real number @var{x}."
*/
SCM_GPROC1 (s_i_acos, "$acos", scm_tc7_cxr, (SCM (*)()) acos, g_i_acos);
/* "Return the arc cosine of the real number @var{x}."
*/
SCM_GPROC1 (s_i_atan, "$atan", scm_tc7_cxr, (SCM (*)()) atan, g_i_atan);
/* "Return the arc tangent of the real number @var{x}."
*/
SCM_GPROC1 (s_i_sinh, "$sinh", scm_tc7_cxr, (SCM (*)()) sinh, g_i_sinh);
/* "Return the hyperbolic sine of the real number @var{x}."
*/
SCM_GPROC1 (s_i_cosh, "$cosh", scm_tc7_cxr, (SCM (*)()) cosh, g_i_cosh);
/* "Return the hyperbolic cosine of the real number @var{x}."
*/
SCM_GPROC1 (s_i_tanh, "$tanh", scm_tc7_cxr, (SCM (*)()) tanh, g_i_tanh);
/* "Return the hyperbolic tangent of the real number @var{x}."
*/
struct dpair
{
double x, y;
};
static void scm_two_doubles (SCM x,
SCM y,
const char *sstring,
struct dpair * xy);
static void
scm_two_doubles (SCM x, SCM y, const char *sstring, struct dpair *xy)
{
if (SCM_INUMP (x)) {
xy->x = SCM_INUM (x);
} else if (SCM_BIGP (x)) {
xy->x = scm_i_big2dbl (x);
} else if (SCM_REALP (x)) {
xy->x = SCM_REAL_VALUE (x);
} else {
scm_wrong_type_arg (sstring, SCM_ARG1, x);
}
if (SCM_INUMP (y)) {
xy->y = SCM_INUM (y);
} else if (SCM_BIGP (y)) {
xy->y = scm_i_big2dbl (y);
} else if (SCM_REALP (y)) {
xy->y = SCM_REAL_VALUE (y);
} else {
scm_wrong_type_arg (sstring, SCM_ARG2, y);
}
}
SCM_DEFINE (scm_sys_expt, "$expt", 2, 0, 0,
(SCM x, SCM y),
"Return @var{x} raised to the power of @var{y}. This\n"
"procedure does not accept complex arguments.")
#define FUNC_NAME s_scm_sys_expt
{
struct dpair xy;
scm_two_doubles (x, y, FUNC_NAME, &xy);
return scm_make_real (pow (xy.x, xy.y));
}
#undef FUNC_NAME
SCM_DEFINE (scm_sys_atan2, "$atan2", 2, 0, 0,
(SCM x, SCM y),
"Return the arc tangent of the two arguments @var{x} and\n"
"@var{y}. This is similar to calculating the arc tangent of\n"
"@var{x} / @var{y}, except that the signs of both arguments\n"
"are used to determine the quadrant of the result. This\n"
"procedure does not accept complex arguments.")
#define FUNC_NAME s_scm_sys_atan2
{
struct dpair xy;
scm_two_doubles (x, y, FUNC_NAME, &xy);
return scm_make_real (atan2 (xy.x, xy.y));
}
#undef FUNC_NAME
SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
(SCM real, SCM imaginary),
"Return a complex number constructed of the given @var{real} and\n"
"@var{imaginary} parts.")
#define FUNC_NAME s_scm_make_rectangular
{
struct dpair xy;
scm_two_doubles (real, imaginary, FUNC_NAME, &xy);
return scm_make_complex (xy.x, xy.y);
}
#undef FUNC_NAME
SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
(SCM x, SCM y),
"Return the complex number @var{x} * e^(i * @var{y}).")
#define FUNC_NAME s_scm_make_polar
{
struct dpair xy;
scm_two_doubles (x, y, FUNC_NAME, &xy);
return scm_make_complex (xy.x * cos (xy.y), xy.x * sin (xy.y));
}
#undef FUNC_NAME
SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
/* "Return the real part of the number @var{z}."
*/
SCM
scm_real_part (SCM z)
{
if (SCM_INUMP (z)) {
return z;
} else if (SCM_BIGP (z)) {
return z;
} else if (SCM_REALP (z)) {
return z;
} else if (SCM_COMPLEXP (z)) {
return scm_make_real (SCM_COMPLEX_REAL (z));
} else {
SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
}
}
SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
/* "Return the imaginary part of the number @var{z}."
*/
SCM
scm_imag_part (SCM z)
{
if (SCM_INUMP (z)) {
return SCM_INUM0;
} else if (SCM_BIGP (z)) {
return SCM_INUM0;
} else if (SCM_REALP (z)) {
return scm_flo0;
} else if (SCM_COMPLEXP (z)) {
return scm_make_real (SCM_COMPLEX_IMAG (z));
} else {
SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
}
}
SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
/* "Return the magnitude of the number @var{z}. This is the same as\n"
* "@code{abs} for real arguments, but also allows complex numbers."
*/
SCM
scm_magnitude (SCM z)
{
if (SCM_INUMP (z)) {
long int zz = SCM_INUM (z);
if (zz >= 0) {
return z;
} else if (SCM_POSFIXABLE (-zz)) {
return SCM_MAKINUM (-zz);
} else {
#ifdef SCM_BIGDIG
return scm_i_long2big (-zz);
#else
scm_num_overflow (s_magnitude);
#endif
}
} else if (SCM_BIGP (z)) {
if (!SCM_BIGSIGN (z)) {
return z;
} else {
return scm_i_copybig (z, 0);
}
} else if (SCM_REALP (z)) {
return scm_make_real (fabs (SCM_REAL_VALUE (z)));
} else if (SCM_COMPLEXP (z)) {
double r = SCM_COMPLEX_REAL (z);
double i = SCM_COMPLEX_IMAG (z);
return scm_make_real (sqrt (i * i + r * r));
} else {
SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
}
}
SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
/* "Return the angle of the complex number @var{z}."
*/
SCM
scm_angle (SCM z)
{
if (SCM_INUMP (z)) {
if (SCM_INUM (z) >= 0) {
return scm_make_real (atan2 (0.0, 1.0));
} else {
return scm_make_real (atan2 (0.0, -1.0));
}
} else if (SCM_BIGP (z)) {
if (SCM_BIGSIGN (z)) {
return scm_make_real (atan2 (0.0, -1.0));
} else {
return scm_make_real (atan2 (0.0, 1.0));
}
} else if (SCM_REALP (z)) {
return scm_make_real (atan2 (0.0, SCM_REAL_VALUE (z)));
} else if (SCM_COMPLEXP (z)) {
return scm_make_real (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
} else {
SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
}
}
SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
(SCM z),
"Return an exact number that is numerically closest to @var{z}.")
#define FUNC_NAME s_scm_inexact_to_exact
{
if (SCM_INUMP (z)) {
return z;
} else if (SCM_BIGP (z)) {
return z;
} else if (SCM_REALP (z)) {
double u = floor (SCM_REAL_VALUE (z) + 0.5);
long lu = (long) u;
if (SCM_FIXABLE (lu)) {
return SCM_MAKINUM (lu);
#ifdef SCM_BIGDIG
} else if (isfinite (u)) {
return scm_i_dbl2big (u);
#endif
} else {
scm_num_overflow (s_scm_inexact_to_exact);
}
} else {
SCM_WRONG_TYPE_ARG (1, z);
}
}
#undef FUNC_NAME
#ifdef SCM_BIGDIG
/* d must be integer */
SCM
scm_i_dbl2big (double d)
{
size_t i = 0;
long c;
SCM_BIGDIG *digits;
SCM ans;
double u = (d < 0) ? -d : d;
while (0 != floor (u))
{
u /= SCM_BIGRAD;
i++;
}
ans = scm_i_mkbig (i, d < 0);
digits = SCM_BDIGITS (ans);
while (i--)
{
u *= SCM_BIGRAD;
c = floor (u);
u -= c;
digits[i] = c;
}
#ifndef SCM_RECKLESS
if (u != 0)
scm_num_overflow ("dbl2big");
#endif
return ans;
}
double
scm_i_big2dbl (SCM b)
{
double ans = 0.0;
size_t i = SCM_NUMDIGS (b);
SCM_BIGDIG *digits = SCM_BDIGITS (b);
while (i--)
ans = digits[i] + SCM_BIGRAD * ans;
if (SCM_BIGSIGN (b))
return - ans;
return ans;
}
#endif
#ifdef HAVE_LONG_LONGS
# ifndef LLONG_MAX
# define ULLONG_MAX ((unsigned long long) (-1))
# define LLONG_MAX ((long long) (ULLONG_MAX >> 1))
# define LLONG_MIN (~LLONG_MAX)
# endif
#endif
#ifndef SIZE_MAX
#define SIZE_MAX ((size_t) (-1))
#endif
#ifndef PTRDIFF_MIN
/* the below is not really guaranteed to work (I think), but probably does: */
#define PTRDIFF_MIN ((ptrdiff_t) ((ptrdiff_t)1 << (sizeof (ptrdiff_t)*8 - 1)))
#endif
#ifndef PTRDIFF_MAX
#define PTRDIFF_MAX (~ PTRDIFF_MIN)
#endif
#define NUM2INTEGRAL scm_num2short
#define INTEGRAL2NUM scm_short2num
#define INTEGRAL2BIG scm_i_short2big
#define ITYPE short
#define MIN_VALUE SHRT_MIN
#define MAX_VALUE SHRT_MAX
#include "libguile/num2integral.i.c"
#define NUM2INTEGRAL scm_num2ushort
#define INTEGRAL2NUM scm_ushort2num
#define INTEGRAL2BIG scm_i_ushort2big
#define UNSIGNED
#define ITYPE unsigned short
#define MAX_VALUE USHRT_MAX
#include "libguile/num2integral.i.c"
#define NUM2INTEGRAL scm_num2int
#define INTEGRAL2NUM scm_int2num
#define INTEGRAL2BIG scm_i_int2big
#define ITYPE int
#define MIN_VALUE INT_MIN
#define MAX_VALUE INT_MAX
#include "libguile/num2integral.i.c"
#define NUM2INTEGRAL scm_num2uint
#define INTEGRAL2NUM scm_uint2num
#define INTEGRAL2BIG scm_i_uint2big
#define UNSIGNED
#define ITYPE unsigned int
#define MAX_VALUE UINT_MAX
#include "libguile/num2integral.i.c"
#define NUM2INTEGRAL scm_num2long
#define INTEGRAL2NUM scm_long2num
#define INTEGRAL2BIG scm_i_long2big
#define ITYPE long
#define MIN_VALUE LONG_MIN
#define MAX_VALUE LONG_MAX
#include "libguile/num2integral.i.c"
#define NUM2INTEGRAL scm_num2ulong
#define INTEGRAL2NUM scm_ulong2num
#define INTEGRAL2BIG scm_i_ulong2big
#define UNSIGNED
#define ITYPE unsigned long
#define MAX_VALUE ULONG_MAX
#include "libguile/num2integral.i.c"
#define NUM2INTEGRAL scm_num2ptrdiff
#define INTEGRAL2NUM scm_ptrdiff2num
#define INTEGRAL2BIG scm_i_ptrdiff2big
#define ITYPE ptrdiff_t
#define MIN_VALUE PTRDIFF_MIN
#define MAX_VALUE PTRDIFF_MAX
#include "libguile/num2integral.i.c"
#define NUM2INTEGRAL scm_num2size
#define INTEGRAL2NUM scm_size2num
#define INTEGRAL2BIG scm_i_size2big
#define UNSIGNED
#define ITYPE size_t
#define MAX_VALUE SIZE_MAX
#include "libguile/num2integral.i.c"
#ifdef HAVE_LONG_LONGS
#ifndef ULONG_LONG_MAX
#define ULONG_LONG_MAX (~0ULL)
#endif
#define NUM2INTEGRAL scm_num2long_long
#define INTEGRAL2NUM scm_long_long2num
#define INTEGRAL2BIG scm_i_long_long2big
#define ITYPE long long
#define MIN_VALUE LLONG_MIN
#define MAX_VALUE LLONG_MAX
#include "libguile/num2integral.i.c"
#define NUM2INTEGRAL scm_num2ulong_long
#define INTEGRAL2NUM scm_ulong_long2num
#define INTEGRAL2BIG scm_i_ulong_long2big
#define UNSIGNED
#define ITYPE unsigned long long
#define MAX_VALUE ULLONG_MAX
#include "libguile/num2integral.i.c"
#endif /* HAVE_LONG_LONGS */
#define NUM2FLOAT scm_num2float
#define FLOAT2NUM scm_float2num
#define FTYPE float
#include "libguile/num2float.i.c"
#define NUM2FLOAT scm_num2double
#define FLOAT2NUM scm_double2num
#define FTYPE double
#include "libguile/num2float.i.c"
#ifdef GUILE_DEBUG
#define CHECK(type, v) \
do { \
if ((v) != scm_num2##type (scm_##type##2num (v), 1, "check_sanity")) \
abort (); \
} while (0);
static void
check_sanity ()
{
CHECK (short, 0);
CHECK (ushort, 0U);
CHECK (int, 0);
CHECK (uint, 0U);
CHECK (long, 0L);
CHECK (ulong, 0UL);
CHECK (size, 0);
CHECK (ptrdiff, 0);
CHECK (short, -1);
CHECK (int, -1);
CHECK (long, -1L);
CHECK (ptrdiff, -1);
CHECK (short, SHRT_MAX);
CHECK (short, SHRT_MIN);
CHECK (ushort, USHRT_MAX);
CHECK (int, INT_MAX);
CHECK (int, INT_MIN);
CHECK (uint, UINT_MAX);
CHECK (long, LONG_MAX);
CHECK (long, LONG_MIN);
CHECK (ulong, ULONG_MAX);
CHECK (size, SIZE_MAX);
CHECK (ptrdiff, PTRDIFF_MAX);
CHECK (ptrdiff, PTRDIFF_MIN);
#ifdef HAVE_LONG_LONGS
CHECK (long_long, 0LL);
CHECK (ulong_long, 0ULL);
CHECK (long_long, -1LL);
CHECK (long_long, LLONG_MAX);
CHECK (long_long, LLONG_MIN);
CHECK (ulong_long, ULLONG_MAX);
#endif
}
#undef CHECK
#define CHECK \
scm_internal_catch (SCM_BOOL_T, check_body, &data, check_handler, &data); \
if (!SCM_FALSEP (data)) abort();
static SCM
check_body (void *data)
{
SCM num = *(SCM *) data;
scm_num2ulong (num, 1, NULL);
return SCM_UNSPECIFIED;
}
static SCM
check_handler (void *data, SCM tag, SCM throw_args)
{
SCM *num = (SCM *) data;
*num = SCM_BOOL_F;
return SCM_UNSPECIFIED;
}
SCM_DEFINE (scm_sys_check_number_conversions, "%check-number-conversions", 0, 0, 0,
(),
"Number conversion sanity checking.")
#define FUNC_NAME s_scm_sys_check_number_conversions
{
SCM data = SCM_MAKINUM (-1);
CHECK;
data = scm_int2num (INT_MIN);
CHECK;
data = scm_ulong2num (ULONG_MAX);
data = scm_difference (SCM_INUM0, data);
CHECK;
data = scm_ulong2num (ULONG_MAX);
data = scm_sum (SCM_MAKINUM (1), data); data = scm_difference (SCM_INUM0, data);
CHECK;
data = scm_int2num (-10000); data = scm_product (data, data); data = scm_product (data, data);
CHECK;
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
#endif
void
scm_init_numbers ()
{
abs_most_negative_fixnum = scm_i_long2big (- SCM_MOST_NEGATIVE_FIXNUM);
scm_permanent_object (abs_most_negative_fixnum);
/* It may be possible to tune the performance of some algorithms by using
* the following constants to avoid the creation of bignums. Please, before
* using these values, remember the two rules of program optimization:
* 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
scm_c_define ("most-positive-fixnum",
SCM_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
scm_c_define ("most-negative-fixnum",
SCM_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
scm_add_feature ("complex");
scm_add_feature ("inexact");
scm_flo0 = scm_make_real (0.0);
#ifdef DBL_DIG
scm_dblprec = (DBL_DIG > 20) ? 20 : DBL_DIG;
#else
{ /* determine floating point precision */
double f = 0.1;
double fsum = 1.0 + f;
while (fsum != 1.0) {
if (++scm_dblprec > 20) {
fsum = 1.0;
} else {
f /= 10.0;
fsum = f + 1.0;
}
}
scm_dblprec = scm_dblprec - 1;
}
#endif /* DBL_DIG */
#ifdef GUILE_DEBUG
check_sanity ();
#endif
#include "libguile/numbers.x"
}
#if (SCM_DEBUG_DEPRECATED == 0)
SCM
scm_mkbig (size_t len, int sign)
{
scm_c_issue_deprecation_warning ("`scm_mkbig' is deprecated. "
"Use `scm_i_mkbig' instead.");
return scm_i_mkbig (len, sign);
}
SCM
scm_big2inum (SCM b, size_t l)
{
scm_c_issue_deprecation_warning ("`scm_big2inum' is deprecated. "
"Use `scm_i_big2num' instead.");
return scm_i_big2inum (b, l);
}
SCM
scm_adjbig (SCM b, size_t nlen)
{
scm_c_issue_deprecation_warning ("`scm_adjbig' is deprecated. "
"Use `scm_i_adjbig' instead.");
return scm_i_adjbig (b, nlen);
}
SCM
scm_normbig (SCM b)
{
scm_c_issue_deprecation_warning ("`scm_normbig' is deprecated. "
"Use `scm_i_normbig' instead.");
return scm_i_normbig (b);
}
SCM
scm_copybig (SCM b, int sign)
{
scm_c_issue_deprecation_warning ("`scm_copybig' is deprecated. "
"Use `scm_i_copybig' instead.");
return scm_i_copybig (b, sign);
}
SCM
scm_2ulong2big (unsigned long *np)
{
unsigned long n;
size_t i;
SCM_BIGDIG *digits;
SCM ans;
ans = scm_i_mkbig (2 * SCM_DIGSPERLONG, 0);
digits = SCM_BDIGITS (ans);
n = np[0];
for (i = 0; i < SCM_DIGSPERLONG; ++i)
{
digits[i] = SCM_BIGLO (n);
n = SCM_BIGDN ((unsigned long) n);
}
n = np[1];
for (i = 0; i < SCM_DIGSPERLONG; ++i)
{
digits[i + SCM_DIGSPERLONG] = SCM_BIGLO (n);
n = SCM_BIGDN ((unsigned long) n);
}
return ans;
}
SCM
scm_dbl2big (double d)
{
scm_c_issue_deprecation_warning ("`scm_dbl2big' is deprecated. "
"Use `scm_double2num' instead,"
"or `scm_i_dbl2big'.");
return scm_i_dbl2big (d);
}
double
scm_big2dbl (SCM b)
{
scm_c_issue_deprecation_warning ("`scm_big2dbl' is deprecated. "
"Use `scm_num2dbl' instead,"
"or `scm_i_big2dbl'.");
return scm_i_big2dbl (b);
}
#endif
/*
Local Variables:
c-file-style: "gnu"
End:
*/