mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-04-30 03:40:34 +02:00
For > 32 bit integers still in the fixnum range, scm_random() would return random numbers with a lower range than specified. * libguile/random.c (scm_i_mask32): New static inline function. (scm_c_random): Use `scm_i_mask32'. (scm_c_random64): New function, 64-bit variant of scm_c_random. (scm_random): Use `scm_c_random64' instead of forming the 64-bit random number in a bogus way. * libguile/random.h: Added `scm_c_random64'. Conflicts: libguile/random.c libguile/random.h
615 lines
17 KiB
C
615 lines
17 KiB
C
/* Copyright (C) 1999,2000,2001, 2003, 2005, 2006, 2010 Free Software Foundation, Inc.
|
||
* This library is free software; you can redistribute it and/or
|
||
* modify it under the terms of the GNU Lesser General Public
|
||
* License as published by the Free Software Foundation; either
|
||
* version 2.1 of the License, or (at your option) any later version.
|
||
*
|
||
* This library is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
* Lesser General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU Lesser General Public
|
||
* License along with this library; if not, write to the Free Software
|
||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
*/
|
||
|
||
|
||
|
||
/* Author: Mikael Djurfeldt <djurfeldt@nada.kth.se> */
|
||
|
||
#ifdef HAVE_CONFIG_H
|
||
# include <config.h>
|
||
#endif
|
||
|
||
#include "libguile/_scm.h"
|
||
|
||
#include <gmp.h>
|
||
#include <stdio.h>
|
||
#include <math.h>
|
||
#include <string.h>
|
||
#include "libguile/smob.h"
|
||
#include "libguile/numbers.h"
|
||
#include "libguile/feature.h"
|
||
#include "libguile/strings.h"
|
||
#include "libguile/unif.h"
|
||
#include "libguile/srfi-4.h"
|
||
#include "libguile/vectors.h"
|
||
|
||
#include "libguile/validate.h"
|
||
#include "libguile/random.h"
|
||
|
||
|
||
/*
|
||
* A plugin interface for RNGs
|
||
*
|
||
* Using this interface, it is possible for the application to tell
|
||
* libguile to use a different RNG. This is desirable if it is
|
||
* necessary to use the same RNG everywhere in the application in
|
||
* order to prevent interference, if the application uses RNG
|
||
* hardware, or if the application has special demands on the RNG.
|
||
*
|
||
* Look in random.h and how the default generator is "plugged in" in
|
||
* scm_init_random().
|
||
*/
|
||
|
||
scm_t_rng scm_the_rng;
|
||
|
||
|
||
/*
|
||
* The prepackaged RNG
|
||
*
|
||
* This is the MWC (Multiply With Carry) random number generator
|
||
* described by George Marsaglia at the Department of Statistics and
|
||
* Supercomputer Computations Research Institute, The Florida State
|
||
* University (http://stat.fsu.edu/~geo).
|
||
*
|
||
* It uses 64 bits, has a period of 4578426017172946943 (4.6e18), and
|
||
* passes all tests in the DIEHARD test suite
|
||
* (http://stat.fsu.edu/~geo/diehard.html)
|
||
*/
|
||
|
||
#define A 2131995753UL
|
||
|
||
#ifndef M_PI
|
||
#define M_PI 3.14159265359
|
||
#endif
|
||
|
||
unsigned long
|
||
scm_i_uniform32 (scm_t_i_rstate *state)
|
||
{
|
||
scm_t_uint64 x = (scm_t_uint64) A * state->w + state->c;
|
||
scm_t_uint32 w = x & 0xffffffffUL;
|
||
state->w = w;
|
||
state->c = x >> 32L;
|
||
return w;
|
||
}
|
||
|
||
void
|
||
scm_i_init_rstate (scm_t_i_rstate *state, const char *seed, int n)
|
||
{
|
||
scm_t_uint32 w = 0L;
|
||
scm_t_uint32 c = 0L;
|
||
int i, m;
|
||
for (i = 0; i < n; ++i)
|
||
{
|
||
m = i % 8;
|
||
if (m < 4)
|
||
w += seed[i] << (8 * m);
|
||
else
|
||
c += seed[i] << (8 * (m - 4));
|
||
}
|
||
if ((w == 0 && c == 0) || (w == -1 && c == A - 1))
|
||
++c;
|
||
state->w = w;
|
||
state->c = c;
|
||
}
|
||
|
||
scm_t_i_rstate *
|
||
scm_i_copy_rstate (scm_t_i_rstate *state)
|
||
{
|
||
scm_t_rstate *new_state = scm_malloc (scm_the_rng.rstate_size);
|
||
return memcpy (new_state, state, scm_the_rng.rstate_size);
|
||
}
|
||
|
||
|
||
/*
|
||
* Random number library functions
|
||
*/
|
||
|
||
scm_t_rstate *
|
||
scm_c_make_rstate (const char *seed, int n)
|
||
{
|
||
scm_t_rstate *state = scm_malloc (scm_the_rng.rstate_size);
|
||
state->reserved0 = 0;
|
||
scm_the_rng.init_rstate (state, seed, n);
|
||
return state;
|
||
}
|
||
|
||
|
||
scm_t_rstate *
|
||
scm_c_default_rstate ()
|
||
#define FUNC_NAME "scm_c_default_rstate"
|
||
{
|
||
SCM state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
if (!SCM_RSTATEP (state))
|
||
SCM_MISC_ERROR ("*random-state* contains bogus random state", SCM_EOL);
|
||
return SCM_RSTATE (state);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
inline double
|
||
scm_c_uniform01 (scm_t_rstate *state)
|
||
{
|
||
double x = (double) scm_the_rng.random_bits (state) / (double) 0xffffffffUL;
|
||
return ((x + (double) scm_the_rng.random_bits (state))
|
||
/ (double) 0xffffffffUL);
|
||
}
|
||
|
||
double
|
||
scm_c_normal01 (scm_t_rstate *state)
|
||
{
|
||
if (state->reserved0)
|
||
{
|
||
state->reserved0 = 0;
|
||
return state->reserved1;
|
||
}
|
||
else
|
||
{
|
||
double r, a, n;
|
||
|
||
r = sqrt (-2.0 * log (scm_c_uniform01 (state)));
|
||
a = 2.0 * M_PI * scm_c_uniform01 (state);
|
||
|
||
n = r * sin (a);
|
||
state->reserved1 = r * cos (a);
|
||
state->reserved0 = 1;
|
||
|
||
return n;
|
||
}
|
||
}
|
||
|
||
double
|
||
scm_c_exp1 (scm_t_rstate *state)
|
||
{
|
||
return - log (scm_c_uniform01 (state));
|
||
}
|
||
|
||
unsigned char scm_masktab[256];
|
||
|
||
static inline scm_t_uint32
|
||
scm_i_mask32 (scm_t_uint32 m)
|
||
{
|
||
return (m < 0x100
|
||
? scm_masktab[m]
|
||
: (m < 0x10000
|
||
? scm_masktab[m >> 8] << 8 | 0xff
|
||
: (m < 0x1000000
|
||
? scm_masktab[m >> 16] << 16 | 0xffff
|
||
: scm_masktab[m >> 24] << 24 | 0xffffff)));
|
||
}
|
||
|
||
static scm_t_uint32
|
||
scm_c_random32 (scm_t_rstate *state, scm_t_uint32 m)
|
||
{
|
||
scm_t_uint32 r, mask = scm_i_mask32 (m);
|
||
while ((r = scm_the_rng.random_bits (state) & mask) >= m);
|
||
return r;
|
||
}
|
||
|
||
/* Returns 32 random bits. */
|
||
unsigned long
|
||
scm_c_random (scm_t_rstate *state, unsigned long m)
|
||
{
|
||
return scm_c_random32 (state, (scm_t_uint32)m);
|
||
}
|
||
|
||
scm_t_uint64
|
||
scm_c_random64 (scm_t_rstate *state, scm_t_uint64 m)
|
||
{
|
||
scm_t_uint64 r;
|
||
scm_t_uint32 mask;
|
||
|
||
if (m <= SCM_T_UINT32_MAX)
|
||
return scm_c_random32 (state, (scm_t_uint32) m);
|
||
|
||
mask = scm_i_mask32 (m >> 32);
|
||
while ((r = ((scm_t_uint64) (scm_the_rng.random_bits (state) & mask) << 32)
|
||
| scm_the_rng.random_bits (state)) >= m)
|
||
;
|
||
return r;
|
||
}
|
||
|
||
/*
|
||
SCM scm_c_random_bignum (scm_t_rstate *state, SCM m)
|
||
|
||
Takes a random state (source of random bits) and a bignum m.
|
||
Returns a bignum b, 0 <= b < m.
|
||
|
||
It does this by allocating a bignum b with as many base 65536 digits
|
||
as m, filling b with random bits (in 32 bit chunks) up to the most
|
||
significant 1 in m, and, finally checking if the resultant b is too
|
||
large (>= m). If too large, we simply repeat the process again. (It
|
||
is important to throw away all generated random bits if b >= m,
|
||
otherwise we'll end up with a distorted distribution.)
|
||
|
||
*/
|
||
|
||
SCM
|
||
scm_c_random_bignum (scm_t_rstate *state, SCM m)
|
||
{
|
||
SCM result = scm_i_mkbig ();
|
||
const size_t m_bits = mpz_sizeinbase (SCM_I_BIG_MPZ (m), 2);
|
||
/* how many bits would only partially fill the last u32? */
|
||
const size_t end_bits = m_bits % (sizeof (scm_t_uint32) * SCM_CHAR_BIT);
|
||
scm_t_uint32 *random_chunks = NULL;
|
||
const scm_t_uint32 num_full_chunks =
|
||
m_bits / (sizeof (scm_t_uint32) * SCM_CHAR_BIT);
|
||
const scm_t_uint32 num_chunks = num_full_chunks + ((end_bits) ? 1 : 0);
|
||
|
||
/* we know the result will be this big */
|
||
mpz_realloc2 (SCM_I_BIG_MPZ (result), m_bits);
|
||
|
||
random_chunks =
|
||
(scm_t_uint32 *) scm_gc_calloc (num_chunks * sizeof (scm_t_uint32),
|
||
"random bignum chunks");
|
||
|
||
do
|
||
{
|
||
scm_t_uint32 *current_chunk = random_chunks + (num_chunks - 1);
|
||
scm_t_uint32 chunks_left = num_chunks;
|
||
|
||
mpz_set_ui (SCM_I_BIG_MPZ (result), 0);
|
||
|
||
if (end_bits)
|
||
{
|
||
/* generate a mask with ones in the end_bits position, i.e. if
|
||
end_bits is 3, then we'd have a mask of ...0000000111 */
|
||
const unsigned long rndbits = scm_the_rng.random_bits (state);
|
||
int rshift = (sizeof (scm_t_uint32) * SCM_CHAR_BIT) - end_bits;
|
||
scm_t_uint32 mask = 0xffffffff >> rshift;
|
||
scm_t_uint32 highest_bits = ((scm_t_uint32) rndbits) & mask;
|
||
*current_chunk-- = highest_bits;
|
||
chunks_left--;
|
||
}
|
||
|
||
while (chunks_left)
|
||
{
|
||
/* now fill in the remaining scm_t_uint32 sized chunks */
|
||
*current_chunk-- = scm_the_rng.random_bits (state);
|
||
chunks_left--;
|
||
}
|
||
mpz_import (SCM_I_BIG_MPZ (result),
|
||
num_chunks,
|
||
-1,
|
||
sizeof (scm_t_uint32),
|
||
0,
|
||
0,
|
||
random_chunks);
|
||
/* if result >= m, regenerate it (it is important to regenerate
|
||
all bits in order not to get a distorted distribution) */
|
||
} while (mpz_cmp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (m)) >= 0);
|
||
scm_gc_free (random_chunks,
|
||
num_chunks * sizeof (scm_t_uint32),
|
||
"random bignum chunks");
|
||
return scm_i_normbig (result);
|
||
}
|
||
|
||
/*
|
||
* Scheme level representation of random states.
|
||
*/
|
||
|
||
scm_t_bits scm_tc16_rstate;
|
||
|
||
static SCM
|
||
make_rstate (scm_t_rstate *state)
|
||
{
|
||
SCM_RETURN_NEWSMOB (scm_tc16_rstate, state);
|
||
}
|
||
|
||
static size_t
|
||
rstate_free (SCM rstate)
|
||
{
|
||
free (SCM_RSTATE (rstate));
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* Scheme level interface.
|
||
*/
|
||
|
||
SCM_GLOBAL_VARIABLE_INIT (scm_var_random_state, "*random-state*", scm_seed_to_random_state (scm_from_locale_string ("URL:http://stat.fsu.edu/~geo/diehard.html")));
|
||
|
||
SCM_DEFINE (scm_random, "random", 1, 1, 0,
|
||
(SCM n, SCM state),
|
||
"Return a number in [0, N).\n"
|
||
"\n"
|
||
"Accepts a positive integer or real n and returns a\n"
|
||
"number of the same type between zero (inclusive) and\n"
|
||
"N (exclusive). The values returned have a uniform\n"
|
||
"distribution.\n"
|
||
"\n"
|
||
"The optional argument @var{state} must be of the type produced\n"
|
||
"by @code{seed->random-state}. It defaults to the value of the\n"
|
||
"variable @var{*random-state*}. This object is used to maintain\n"
|
||
"the state of the pseudo-random-number generator and is altered\n"
|
||
"as a side effect of the random operation.")
|
||
#define FUNC_NAME s_scm_random
|
||
{
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
SCM_VALIDATE_RSTATE (2, state);
|
||
if (SCM_I_INUMP (n))
|
||
{
|
||
unsigned long m = (unsigned long) SCM_I_INUM (n);
|
||
SCM_ASSERT_RANGE (1, n, SCM_I_INUM (n) > 0);
|
||
#if SCM_SIZEOF_UNSIGNED_LONG <= 4
|
||
return scm_from_uint32 (scm_c_random (SCM_RSTATE (state),
|
||
(scm_t_uint32) m));
|
||
#elif SCM_SIZEOF_UNSIGNED_LONG <= 8
|
||
return scm_from_uint64 (scm_c_random64 (SCM_RSTATE (state),
|
||
(scm_t_uint64) m));
|
||
#else
|
||
#error "Cannot deal with this platform's unsigned long size"
|
||
#endif
|
||
}
|
||
SCM_VALIDATE_NIM (1, n);
|
||
if (SCM_REALP (n))
|
||
return scm_from_double (SCM_REAL_VALUE (n)
|
||
* scm_c_uniform01 (SCM_RSTATE (state)));
|
||
|
||
if (!SCM_BIGP (n))
|
||
SCM_WRONG_TYPE_ARG (1, n);
|
||
return scm_c_random_bignum (SCM_RSTATE (state), n);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_copy_random_state, "copy-random-state", 0, 1, 0,
|
||
(SCM state),
|
||
"Return a copy of the random state @var{state}.")
|
||
#define FUNC_NAME s_scm_copy_random_state
|
||
{
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
SCM_VALIDATE_RSTATE (1, state);
|
||
return make_rstate (scm_the_rng.copy_rstate (SCM_RSTATE (state)));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_seed_to_random_state, "seed->random-state", 1, 0, 0,
|
||
(SCM seed),
|
||
"Return a new random state using @var{seed}.")
|
||
#define FUNC_NAME s_scm_seed_to_random_state
|
||
{
|
||
SCM res;
|
||
if (SCM_NUMBERP (seed))
|
||
seed = scm_number_to_string (seed, SCM_UNDEFINED);
|
||
SCM_VALIDATE_STRING (1, seed);
|
||
res = make_rstate (scm_c_make_rstate (scm_i_string_chars (seed),
|
||
scm_i_string_length (seed)));
|
||
scm_remember_upto_here_1 (seed);
|
||
return res;
|
||
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_random_uniform, "random:uniform", 0, 1, 0,
|
||
(SCM state),
|
||
"Return a uniformly distributed inexact real random number in\n"
|
||
"[0,1).")
|
||
#define FUNC_NAME s_scm_random_uniform
|
||
{
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
SCM_VALIDATE_RSTATE (1, state);
|
||
return scm_from_double (scm_c_uniform01 (SCM_RSTATE (state)));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_random_normal, "random:normal", 0, 1, 0,
|
||
(SCM state),
|
||
"Return an inexact real in a normal distribution. The\n"
|
||
"distribution used has mean 0 and standard deviation 1. For a\n"
|
||
"normal distribution with mean m and standard deviation d use\n"
|
||
"@code{(+ m (* d (random:normal)))}.")
|
||
#define FUNC_NAME s_scm_random_normal
|
||
{
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
SCM_VALIDATE_RSTATE (1, state);
|
||
return scm_from_double (scm_c_normal01 (SCM_RSTATE (state)));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static void
|
||
vector_scale_x (SCM v, double c)
|
||
{
|
||
size_t n;
|
||
if (scm_is_simple_vector (v))
|
||
{
|
||
n = SCM_SIMPLE_VECTOR_LENGTH (v);
|
||
while (n-- > 0)
|
||
SCM_REAL_VALUE (SCM_SIMPLE_VECTOR_REF (v, n)) *= c;
|
||
}
|
||
else
|
||
{
|
||
/* must be a f64vector. */
|
||
scm_t_array_handle handle;
|
||
size_t i, len;
|
||
ssize_t inc;
|
||
double *elts;
|
||
|
||
elts = scm_f64vector_writable_elements (v, &handle, &len, &inc);
|
||
|
||
for (i = 0; i < len; i++, elts += inc)
|
||
*elts *= c;
|
||
|
||
scm_array_handle_release (&handle);
|
||
}
|
||
}
|
||
|
||
static double
|
||
vector_sum_squares (SCM v)
|
||
{
|
||
double x, sum = 0.0;
|
||
size_t n;
|
||
if (scm_is_simple_vector (v))
|
||
{
|
||
n = SCM_SIMPLE_VECTOR_LENGTH (v);
|
||
while (n-- > 0)
|
||
{
|
||
x = SCM_REAL_VALUE (SCM_SIMPLE_VECTOR_REF (v, n));
|
||
sum += x * x;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* must be a f64vector. */
|
||
scm_t_array_handle handle;
|
||
size_t i, len;
|
||
ssize_t inc;
|
||
const double *elts;
|
||
|
||
elts = scm_f64vector_elements (v, &handle, &len, &inc);
|
||
|
||
for (i = 0; i < len; i++, elts += inc)
|
||
{
|
||
x = *elts;
|
||
sum += x * x;
|
||
}
|
||
|
||
scm_array_handle_release (&handle);
|
||
}
|
||
return sum;
|
||
}
|
||
|
||
/* For the uniform distribution on the solid sphere, note that in
|
||
* this distribution the length r of the vector has cumulative
|
||
* distribution r^n; i.e., u=r^n is uniform [0,1], so r can be
|
||
* generated as r=u^(1/n).
|
||
*/
|
||
SCM_DEFINE (scm_random_solid_sphere_x, "random:solid-sphere!", 1, 1, 0,
|
||
(SCM v, SCM state),
|
||
"Fills @var{vect} with inexact real random numbers the sum of\n"
|
||
"whose squares is less than 1.0. Thinking of @var{vect} as\n"
|
||
"coordinates in space of dimension @var{n} @math{=}\n"
|
||
"@code{(vector-length @var{vect})}, the coordinates are\n"
|
||
"uniformly distributed within the unit @var{n}-sphere.")
|
||
#define FUNC_NAME s_scm_random_solid_sphere_x
|
||
{
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
SCM_VALIDATE_RSTATE (2, state);
|
||
scm_random_normal_vector_x (v, state);
|
||
vector_scale_x (v,
|
||
pow (scm_c_uniform01 (SCM_RSTATE (state)),
|
||
1.0 / scm_c_generalized_vector_length (v))
|
||
/ sqrt (vector_sum_squares (v)));
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_random_hollow_sphere_x, "random:hollow-sphere!", 1, 1, 0,
|
||
(SCM v, SCM state),
|
||
"Fills vect with inexact real random numbers\n"
|
||
"the sum of whose squares is equal to 1.0.\n"
|
||
"Thinking of vect as coordinates in space of\n"
|
||
"dimension n = (vector-length vect), the coordinates\n"
|
||
"are uniformly distributed over the surface of the\n"
|
||
"unit n-sphere.")
|
||
#define FUNC_NAME s_scm_random_hollow_sphere_x
|
||
{
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
SCM_VALIDATE_RSTATE (2, state);
|
||
scm_random_normal_vector_x (v, state);
|
||
vector_scale_x (v, 1 / sqrt (vector_sum_squares (v)));
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_random_normal_vector_x, "random:normal-vector!", 1, 1, 0,
|
||
(SCM v, SCM state),
|
||
"Fills vect with inexact real random numbers that are\n"
|
||
"independent and standard normally distributed\n"
|
||
"(i.e., with mean 0 and variance 1).")
|
||
#define FUNC_NAME s_scm_random_normal_vector_x
|
||
{
|
||
long i;
|
||
scm_t_array_handle handle;
|
||
scm_t_array_dim *dim;
|
||
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
SCM_VALIDATE_RSTATE (2, state);
|
||
|
||
scm_generalized_vector_get_handle (v, &handle);
|
||
dim = scm_array_handle_dims (&handle);
|
||
|
||
if (scm_is_vector (v))
|
||
{
|
||
SCM *elts = scm_array_handle_writable_elements (&handle);
|
||
for (i = dim->lbnd; i <= dim->ubnd; i++, elts += dim->inc)
|
||
*elts = scm_from_double (scm_c_normal01 (SCM_RSTATE (state)));
|
||
}
|
||
else
|
||
{
|
||
/* must be a f64vector. */
|
||
double *elts = scm_array_handle_f64_writable_elements (&handle);
|
||
for (i = dim->lbnd; i <= dim->ubnd; i++, elts += dim->inc)
|
||
*elts = scm_c_normal01 (SCM_RSTATE (state));
|
||
}
|
||
|
||
scm_array_handle_release (&handle);
|
||
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_random_exp, "random:exp", 0, 1, 0,
|
||
(SCM state),
|
||
"Return an inexact real in an exponential distribution with mean\n"
|
||
"1. For an exponential distribution with mean u use (* u\n"
|
||
"(random:exp)).")
|
||
#define FUNC_NAME s_scm_random_exp
|
||
{
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
SCM_VALIDATE_RSTATE (1, state);
|
||
return scm_from_double (scm_c_exp1 (SCM_RSTATE (state)));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
void
|
||
scm_init_random ()
|
||
{
|
||
int i, m;
|
||
/* plug in default RNG */
|
||
scm_t_rng rng =
|
||
{
|
||
sizeof (scm_t_i_rstate),
|
||
(unsigned long (*)()) scm_i_uniform32,
|
||
(void (*)()) scm_i_init_rstate,
|
||
(scm_t_rstate *(*)()) scm_i_copy_rstate
|
||
};
|
||
scm_the_rng = rng;
|
||
|
||
scm_tc16_rstate = scm_make_smob_type ("random-state", 0);
|
||
scm_set_smob_free (scm_tc16_rstate, rstate_free);
|
||
|
||
for (m = 1; m <= 0x100; m <<= 1)
|
||
for (i = m >> 1; i < m; ++i)
|
||
scm_masktab[i] = m - 1;
|
||
|
||
#include "libguile/random.x"
|
||
|
||
scm_add_feature ("random");
|
||
}
|
||
|
||
/*
|
||
Local Variables:
|
||
c-file-style: "gnu"
|
||
End:
|
||
*/
|