mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-04-30 20:00:19 +02:00
* module/language/scheme/decompile-tree-il.scm (do-decompile):
* module/language/tree-il/analyze.scm (analyze-lexicals):
* module/language/tree-il/canonicalize.scm (canonicalize):
* module/language/tree-il/compile-glil.scm (flatten-lambda-case):
* module/language/tree-il/cse.scm (cse):
* module/language/tree-il/peval.scm (peval):
* test-suite/tests/peval.test ("partial evaluation"): Partially revert
178a40928
, so that escape-only prompts explicitly inline their bodies.
546 lines
22 KiB
Scheme
546 lines
22 KiB
Scheme
;;; Common Subexpression Elimination (CSE) on Tree-IL
|
|
|
|
;; Copyright (C) 2011, 2012, 2013 Free Software Foundation, Inc.
|
|
|
|
;;;; This library is free software; you can redistribute it and/or
|
|
;;;; modify it under the terms of the GNU Lesser General Public
|
|
;;;; License as published by the Free Software Foundation; either
|
|
;;;; version 3 of the License, or (at your option) any later version.
|
|
;;;;
|
|
;;;; This library is distributed in the hope that it will be useful,
|
|
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
;;;; Lesser General Public License for more details.
|
|
;;;;
|
|
;;;; You should have received a copy of the GNU Lesser General Public
|
|
;;;; License along with this library; if not, write to the Free Software
|
|
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
(define-module (language tree-il cse)
|
|
#:use-module (language tree-il)
|
|
#:use-module (language tree-il primitives)
|
|
#:use-module (language tree-il effects)
|
|
#:use-module (ice-9 vlist)
|
|
#:use-module (ice-9 match)
|
|
#:use-module (srfi srfi-1)
|
|
#:use-module (srfi srfi-9)
|
|
#:use-module (srfi srfi-11)
|
|
#:use-module (srfi srfi-26)
|
|
#:export (cse))
|
|
|
|
;;;
|
|
;;; This pass eliminates common subexpressions in Tree-IL. It works
|
|
;;; best locally -- within a function -- so it is meant to be run after
|
|
;;; partial evaluation, which usually inlines functions and so opens up
|
|
;;; a bigger space for CSE to work.
|
|
;;;
|
|
;;; The algorithm traverses the tree of expressions, returning two
|
|
;;; values: the newly rebuilt tree, and a "database". The database is
|
|
;;; the set of expressions that will have been evaluated as part of
|
|
;;; evaluating an expression. For example, in:
|
|
;;;
|
|
;;; (1- (+ (if a b c) (* x y)))
|
|
;;;
|
|
;;; We can say that when it comes time to evaluate (1- <>), that the
|
|
;;; subexpressions +, x, y, and (* x y) must have been evaluated in
|
|
;;; values context. We know that a was evaluated in test context, but
|
|
;;; we don't know if it was true or false.
|
|
;;;
|
|
;;; The expressions in the database /dominate/ any subsequent
|
|
;;; expression: FOO dominates BAR if evaluation of BAR implies that any
|
|
;;; effects associated with FOO have already occured.
|
|
;;;
|
|
;;; When adding expressions to the database, we record the context in
|
|
;;; which they are evaluated. We treat expressions in test context
|
|
;;; specially: the presence of such an expression indicates that the
|
|
;;; expression is true. In this way we can elide duplicate predicates.
|
|
;;;
|
|
;;; Duplicate predicates are not common in code that users write, but
|
|
;;; can occur quite frequently in macro-generated code.
|
|
;;;
|
|
;;; For example:
|
|
;;;
|
|
;;; (and (foo? x) (foo-bar x))
|
|
;;; => (if (and (struct? x) (eq? (struct-vtable x) <foo>))
|
|
;;; (if (and (struct? x) (eq? (struct-vtable x) <foo>))
|
|
;;; (struct-ref x 1)
|
|
;;; (throw 'not-a-foo))
|
|
;;; #f))
|
|
;;; => (if (and (struct? x) (eq? (struct-vtable x) <foo>))
|
|
;;; (struct-ref x 1)
|
|
;;; #f)
|
|
;;;
|
|
;;; A conditional bailout in effect context also has the effect of
|
|
;;; adding predicates to the database:
|
|
;;;
|
|
;;; (begin (foo-bar x) (foo-baz x))
|
|
;;; => (begin
|
|
;;; (if (and (struct? x) (eq? (struct-vtable x) <foo>))
|
|
;;; (struct-ref x 1)
|
|
;;; (throw 'not-a-foo))
|
|
;;; (if (and (struct? x) (eq? (struct-vtable x) <foo>))
|
|
;;; (struct-ref x 2)
|
|
;;; (throw 'not-a-foo)))
|
|
;;; => (begin
|
|
;;; (if (and (struct? x) (eq? (struct-vtable x) <foo>))
|
|
;;; (struct-ref x 1)
|
|
;;; (throw 'not-a-foo))
|
|
;;; (struct-ref x 2))
|
|
;;;
|
|
;;; When removing code, we have to ensure that the semantics of the
|
|
;;; source program and the residual program are the same. It's easy to
|
|
;;; ensure that they have the same value, because those manipulations
|
|
;;; are just algebraic, but the tricky thing is to ensure that the
|
|
;;; expressions exhibit the same ordering of effects. For that, we use
|
|
;;; the effects analysis of (language tree-il effects). We only
|
|
;;; eliminate code if the duplicate code commutes with all of the
|
|
;;; dominators on the path from the duplicate to the original.
|
|
;;;
|
|
;;; The implementation uses vhashes as the fundamental data structure.
|
|
;;; This can be seen as a form of global value numbering. This
|
|
;;; algorithm currently spends most of its time in vhash-assoc. I'm not
|
|
;;; sure whether that is due to our bad hash function in Guile 2.0, an
|
|
;;; inefficiency in vhashes, or what. Overall though the complexity
|
|
;;; should be linear, or N log N -- whatever vhash-assoc's complexity
|
|
;;; is. Walking the dominators is nonlinear, but that only happens when
|
|
;;; we've actually found a common subexpression so that should be OK.
|
|
;;;
|
|
|
|
;; Logging helpers, as in peval.
|
|
;;
|
|
(define-syntax *logging* (identifier-syntax #f))
|
|
;; (define %logging #f)
|
|
;; (define-syntax *logging* (identifier-syntax %logging))
|
|
(define-syntax log
|
|
(syntax-rules (quote)
|
|
((log 'event arg ...)
|
|
(if (and *logging*
|
|
(or (eq? *logging* #t)
|
|
(memq 'event *logging*)))
|
|
(log* 'event arg ...)))))
|
|
(define (log* event . args)
|
|
(let ((pp (module-ref (resolve-interface '(ice-9 pretty-print))
|
|
'pretty-print)))
|
|
(pp `(log ,event . ,args))
|
|
(newline)
|
|
(values)))
|
|
|
|
;; A pre-pass on the source program to determine the set of assigned
|
|
;; lexicals.
|
|
;;
|
|
(define* (build-assigned-var-table exp #:optional (table vlist-null))
|
|
(tree-il-fold
|
|
(lambda (exp res)
|
|
(match exp
|
|
(($ <lexical-set> src name gensym exp)
|
|
(vhash-consq gensym #t res))
|
|
(_ res)))
|
|
(lambda (exp res) res)
|
|
table exp))
|
|
|
|
(define (boolean-valued-primitive? primitive)
|
|
(or (negate-primitive primitive)
|
|
(eq? primitive 'not)
|
|
(let ((chars (symbol->string primitive)))
|
|
(eqv? (string-ref chars (1- (string-length chars)))
|
|
#\?))))
|
|
|
|
(define (boolean-valued-expression? x ctx)
|
|
(match x
|
|
(($ <primcall> _ (? boolean-valued-primitive?)) #t)
|
|
(($ <const> _ (? boolean?)) #t)
|
|
(_ (eq? ctx 'test))))
|
|
|
|
(define (singly-valued-expression? x ctx)
|
|
(match x
|
|
(($ <const>) #t)
|
|
(($ <lexical-ref>) #t)
|
|
(($ <void>) #t)
|
|
(($ <lexical-ref>) #t)
|
|
(($ <primitive-ref>) #t)
|
|
(($ <module-ref>) #t)
|
|
(($ <toplevel-ref>) #t)
|
|
(($ <primcall> _ (? singly-valued-primitive?)) #t)
|
|
(($ <primcall> _ 'values (val)) #t)
|
|
(($ <lambda>) #t)
|
|
(_ (eq? ctx 'value))))
|
|
|
|
(define* (cse exp)
|
|
"Eliminate common subexpressions in EXP."
|
|
|
|
(define assigned-lexical?
|
|
(let ((table (build-assigned-var-table exp)))
|
|
(lambda (sym)
|
|
(vhash-assq sym table))))
|
|
|
|
(define %compute-effects
|
|
(make-effects-analyzer assigned-lexical?))
|
|
|
|
(define (negate exp ctx)
|
|
(match exp
|
|
(($ <const> src x)
|
|
(make-const src (not x)))
|
|
(($ <void> src)
|
|
(make-const src #f))
|
|
(($ <conditional> src test consequent alternate)
|
|
(make-conditional src test (negate consequent ctx) (negate alternate ctx)))
|
|
(($ <primcall> _ 'not
|
|
((and x (? (cut boolean-valued-expression? <> ctx)))))
|
|
x)
|
|
(($ <primcall> src (and pred (? negate-primitive)) args)
|
|
(make-primcall src (negate-primitive pred) args))
|
|
(_
|
|
(make-primcall #f 'not (list exp)))))
|
|
|
|
|
|
(define (hasher n)
|
|
(lambda (x size) (modulo n size)))
|
|
|
|
(define (add-to-db exp effects ctx db)
|
|
(let ((v (vector exp effects ctx))
|
|
(h (tree-il-hash exp)))
|
|
(vhash-cons v h db (hasher h))))
|
|
|
|
(define (control-flow-boundary db)
|
|
(let ((h (hashq 'lambda most-positive-fixnum)))
|
|
(vhash-cons 'lambda h db (hasher h))))
|
|
|
|
(define (find-dominating-expression exp effects ctx db)
|
|
(define (entry-matches? v1 v2)
|
|
(match (if (vector? v1) v1 v2)
|
|
(#(exp* effects* ctx*)
|
|
(and (tree-il=? exp exp*)
|
|
(or (not ctx) (eq? ctx* ctx))))
|
|
(_ #f)))
|
|
|
|
(let ((len (vlist-length db))
|
|
(h (tree-il-hash exp)))
|
|
(and (vhash-assoc #t db entry-matches? (hasher h))
|
|
(let lp ((n 0))
|
|
(and (< n len)
|
|
(match (vlist-ref db n)
|
|
(('lambda . h*)
|
|
;; We assume that lambdas can escape and thus be
|
|
;; called from anywhere. Thus code inside a lambda
|
|
;; only has a dominating expression if it does not
|
|
;; depend on any effects.
|
|
(and (not (depends-on-effects? effects &all-effects))
|
|
(lp (1+ n))))
|
|
((#(exp* effects* ctx*) . h*)
|
|
(log 'walk (unparse-tree-il exp) effects
|
|
(unparse-tree-il exp*) effects* ctx*)
|
|
(or (and (= h h*)
|
|
(or (not ctx) (eq? ctx ctx*))
|
|
(tree-il=? exp exp*))
|
|
(and (effects-commute? effects effects*)
|
|
(lp (1+ n)))))))))))
|
|
|
|
;; Return #t if EXP is dominated by an instance of itself. In that
|
|
;; case, we can exclude *type-check* effects, because the first
|
|
;; expression already caused them if needed.
|
|
(define (has-dominating-effect? exp effects db)
|
|
(or (constant? effects)
|
|
(and
|
|
(effect-free?
|
|
(exclude-effects effects
|
|
(logior &zero-values
|
|
&allocation
|
|
&type-check)))
|
|
(find-dominating-expression exp effects #f db))))
|
|
|
|
(define (find-dominating-test exp effects db)
|
|
(and
|
|
(effect-free?
|
|
(exclude-effects effects (logior &allocation
|
|
&type-check)))
|
|
(match exp
|
|
(($ <const> src val)
|
|
(if (boolean? val)
|
|
exp
|
|
(make-const src (not (not val)))))
|
|
;; For (not FOO), try to prove FOO, then negate the result.
|
|
(($ <primcall> src 'not (exp*))
|
|
(match (find-dominating-test exp* effects db)
|
|
(($ <const> _ val)
|
|
(log 'inferring exp (not val))
|
|
(make-const src (not val)))
|
|
(_
|
|
#f)))
|
|
(_
|
|
(cond
|
|
((find-dominating-expression exp effects 'test db)
|
|
;; We have an EXP fact, so we infer #t.
|
|
(log 'inferring exp #t)
|
|
(make-const (tree-il-src exp) #t))
|
|
((find-dominating-expression (negate exp 'test) effects 'test db)
|
|
;; We have a (not EXP) fact, so we infer #f.
|
|
(log 'inferring exp #f)
|
|
(make-const (tree-il-src exp) #f))
|
|
(else
|
|
;; Otherwise we don't know.
|
|
#f))))))
|
|
|
|
(define (add-to-env exp name sym db env)
|
|
(let* ((v (vector exp name sym (vlist-length db)))
|
|
(h (tree-il-hash exp)))
|
|
(vhash-cons v h env (hasher h))))
|
|
|
|
(define (augment-env env names syms exps db)
|
|
(if (null? names)
|
|
env
|
|
(let ((name (car names)) (sym (car syms)) (exp (car exps)))
|
|
(augment-env (if (or (assigned-lexical? sym)
|
|
(lexical-ref? exp))
|
|
env
|
|
(add-to-env exp name sym db env))
|
|
(cdr names) (cdr syms) (cdr exps) db))))
|
|
|
|
(define (find-dominating-lexical exp effects env db)
|
|
(define (entry-matches? v1 v2)
|
|
(match (if (vector? v1) v1 v2)
|
|
(#(exp* name sym db)
|
|
(tree-il=? exp exp*))
|
|
(_ #f)))
|
|
|
|
(define (unroll db base n)
|
|
(or (zero? n)
|
|
(match (vlist-ref db base)
|
|
(('lambda . h*)
|
|
;; See note in find-dominating-expression.
|
|
(and (not (depends-on-effects? effects &all-effects))
|
|
(unroll db (1+ base) (1- n))))
|
|
((#(exp* effects* ctx*) . h*)
|
|
(and (effects-commute? effects effects*)
|
|
(unroll db (1+ base) (1- n)))))))
|
|
|
|
(let ((h (tree-il-hash exp)))
|
|
(and (effect-free? (exclude-effects effects &type-check))
|
|
(vhash-assoc exp env entry-matches? (hasher h))
|
|
(let ((env-len (vlist-length env))
|
|
(db-len (vlist-length db)))
|
|
(let lp ((n 0) (m 0))
|
|
(and (< n env-len)
|
|
(match (vlist-ref env n)
|
|
((#(exp* name sym db-len*) . h*)
|
|
(let ((niter (- (- db-len db-len*) m)))
|
|
(and (unroll db m niter)
|
|
(if (and (= h h*) (tree-il=? exp* exp))
|
|
(make-lexical-ref (tree-il-src exp) name sym)
|
|
(lp (1+ n) (- db-len db-len*)))))))))))))
|
|
|
|
(define (lookup-lexical sym env)
|
|
(let ((env-len (vlist-length env)))
|
|
(let lp ((n 0))
|
|
(and (< n env-len)
|
|
(match (vlist-ref env n)
|
|
((#(exp _ sym* _) . _)
|
|
(if (eq? sym sym*)
|
|
exp
|
|
(lp (1+ n)))))))))
|
|
|
|
(define (intersection db+ db-)
|
|
(vhash-fold-right
|
|
(lambda (k h out)
|
|
(if (vhash-assoc k db- equal? (hasher h))
|
|
(vhash-cons k h out (hasher h))
|
|
out))
|
|
vlist-null
|
|
db+))
|
|
|
|
(define (concat db1 db2)
|
|
(vhash-fold-right (lambda (k h tail)
|
|
(vhash-cons k h tail (hasher h)))
|
|
db2 db1))
|
|
|
|
(let visit ((exp exp)
|
|
(db vlist-null) ; dominating expressions: #(exp effects ctx) -> hash
|
|
(env vlist-null) ; named expressions: #(exp name sym db) -> hash
|
|
(ctx 'values)) ; test, effect, value, or values
|
|
|
|
(define (parallel-visit exps db env ctx)
|
|
(let lp ((in exps) (out '()) (db* vlist-null))
|
|
(if (pair? in)
|
|
(call-with-values (lambda () (visit (car in) db env ctx))
|
|
(lambda (x db**)
|
|
(lp (cdr in) (cons x out) (concat db** db*))))
|
|
(values (reverse out) db*))))
|
|
|
|
(define (compute-effects exp)
|
|
(%compute-effects exp (lambda (sym) (lookup-lexical sym env))))
|
|
|
|
(define (bailout? exp)
|
|
(causes-effects? (compute-effects exp) &definite-bailout))
|
|
|
|
(define (return exp db*)
|
|
(let ((effects (compute-effects exp)))
|
|
(cond
|
|
((and (eq? ctx 'effect)
|
|
(not (lambda-case? exp))
|
|
(or (effect-free?
|
|
(exclude-effects effects
|
|
(logior &zero-values
|
|
&allocation)))
|
|
(has-dominating-effect? exp effects db)))
|
|
(cond
|
|
((void? exp)
|
|
(values exp db*))
|
|
(else
|
|
(log 'elide ctx (unparse-tree-il exp))
|
|
(values (make-void #f) db*))))
|
|
((and (boolean-valued-expression? exp ctx)
|
|
(find-dominating-test exp effects db))
|
|
=> (lambda (exp)
|
|
(log 'propagate-test ctx (unparse-tree-il exp))
|
|
(values exp db*)))
|
|
((and (singly-valued-expression? exp ctx)
|
|
(find-dominating-lexical exp effects env db))
|
|
=> (lambda (exp)
|
|
(log 'propagate-value ctx (unparse-tree-il exp))
|
|
(values exp db*)))
|
|
((and (constant? effects) (memq ctx '(value values)))
|
|
;; Adds nothing to the db.
|
|
(values exp db*))
|
|
(else
|
|
(log 'return ctx effects (unparse-tree-il exp) db*)
|
|
(values exp
|
|
(add-to-db exp effects ctx db*))))))
|
|
|
|
(log 'visit ctx (unparse-tree-il exp) db env)
|
|
|
|
(match exp
|
|
(($ <const>)
|
|
(return exp vlist-null))
|
|
(($ <void>)
|
|
(return exp vlist-null))
|
|
(($ <lexical-ref> _ _ gensym)
|
|
(return exp vlist-null))
|
|
(($ <lexical-set> src name gensym exp)
|
|
(let*-values (((exp db*) (visit exp db env 'value)))
|
|
(return (make-lexical-set src name gensym exp)
|
|
db*)))
|
|
(($ <let> src names gensyms vals body)
|
|
(let*-values (((vals db*) (parallel-visit vals db env 'value))
|
|
((body db**) (visit body (concat db* db)
|
|
(augment-env env names gensyms vals db)
|
|
ctx)))
|
|
(return (make-let src names gensyms vals body)
|
|
(concat db** db*))))
|
|
(($ <letrec> src in-order? names gensyms vals body)
|
|
(let*-values (((vals db*) (parallel-visit vals db env 'value))
|
|
((body db**) (visit body (concat db* db)
|
|
(augment-env env names gensyms vals db)
|
|
ctx)))
|
|
(return (make-letrec src in-order? names gensyms vals body)
|
|
(concat db** db*))))
|
|
(($ <fix> src names gensyms vals body)
|
|
(let*-values (((vals db*) (parallel-visit vals db env 'value))
|
|
((body db**) (visit body (concat db* db) env ctx)))
|
|
(return (make-fix src names gensyms vals body)
|
|
(concat db** db*))))
|
|
(($ <let-values> src producer consumer)
|
|
(let*-values (((producer db*) (visit producer db env 'values))
|
|
((consumer db**) (visit consumer (concat db* db) env ctx)))
|
|
(return (make-let-values src producer consumer)
|
|
(concat db** db*))))
|
|
(($ <toplevel-ref>)
|
|
(return exp vlist-null))
|
|
(($ <module-ref>)
|
|
(return exp vlist-null))
|
|
(($ <module-set> src mod name public? exp)
|
|
(let*-values (((exp db*) (visit exp db env 'value)))
|
|
(return (make-module-set src mod name public? exp)
|
|
db*)))
|
|
(($ <toplevel-define> src name exp)
|
|
(let*-values (((exp db*) (visit exp db env 'value)))
|
|
(return (make-toplevel-define src name exp)
|
|
db*)))
|
|
(($ <toplevel-set> src name exp)
|
|
(let*-values (((exp db*) (visit exp db env 'value)))
|
|
(return (make-toplevel-set src name exp)
|
|
db*)))
|
|
(($ <primitive-ref>)
|
|
(return exp vlist-null))
|
|
(($ <conditional> src test consequent alternate)
|
|
(let*-values
|
|
(((test db+) (visit test db env 'test))
|
|
((converse db-) (visit (negate test 'test) db env 'test))
|
|
((consequent db++) (visit consequent (concat db+ db) env ctx))
|
|
((alternate db--) (visit alternate (concat db- db) env ctx)))
|
|
(match (make-conditional src test consequent alternate)
|
|
(($ <conditional> _ ($ <const> _ exp))
|
|
(if exp
|
|
(return consequent (concat db++ db+))
|
|
(return alternate (concat db-- db-))))
|
|
;; (if FOO A A) => (begin FOO A)
|
|
(($ <conditional> src _
|
|
($ <const> _ a) ($ <const> _ (? (cut equal? a <>))))
|
|
(visit (make-seq #f test (make-const #f a))
|
|
db env ctx))
|
|
;; (if FOO #t #f) => FOO for boolean-valued FOO.
|
|
(($ <conditional> src
|
|
(? (cut boolean-valued-expression? <> ctx))
|
|
($ <const> _ #t) ($ <const> _ #f))
|
|
(return test db+))
|
|
;; (if FOO #f #t) => (not FOO)
|
|
(($ <conditional> src _ ($ <const> _ #f) ($ <const> _ #t))
|
|
(visit (negate test ctx) db env ctx))
|
|
|
|
;; Allow "and"-like conditions to accumulate in test context.
|
|
((and c ($ <conditional> _ _ _ ($ <const> _ #f)))
|
|
(return c (if (eq? ctx 'test) (concat db++ db+) vlist-null)))
|
|
((and c ($ <conditional> _ _ ($ <const> _ #f) _))
|
|
(return c (if (eq? ctx 'test) (concat db-- db-) vlist-null)))
|
|
|
|
;; Conditional bailouts turn expressions into predicates.
|
|
((and c ($ <conditional> _ _ _ (? bailout?)))
|
|
(return c (concat db++ db+)))
|
|
((and c ($ <conditional> _ _ (? bailout?) _))
|
|
(return c (concat db-- db-)))
|
|
|
|
(c
|
|
(return c (intersection (concat db++ db+) (concat db-- db-)))))))
|
|
(($ <primcall> src primitive args)
|
|
(let*-values (((args db*) (parallel-visit args db env 'value)))
|
|
(return (make-primcall src primitive args) db*)))
|
|
(($ <call> src proc args)
|
|
(let*-values (((proc db*) (visit proc db env 'value))
|
|
((args db**) (parallel-visit args db env 'value)))
|
|
(return (make-call src proc args)
|
|
(concat db** db*))))
|
|
(($ <lambda> src meta body)
|
|
(let*-values (((body _) (if body
|
|
(visit body (control-flow-boundary db)
|
|
env 'values)
|
|
(values #f #f))))
|
|
(return (make-lambda src meta body)
|
|
vlist-null)))
|
|
(($ <lambda-case> src req opt rest kw inits gensyms body alt)
|
|
(let*-values (((inits _) (parallel-visit inits db env 'value))
|
|
((body db*) (visit body db env ctx))
|
|
((alt _) (if alt
|
|
(visit alt db env ctx)
|
|
(values #f #f))))
|
|
(return (make-lambda-case src req opt rest kw inits gensyms body alt)
|
|
(if alt vlist-null db*))))
|
|
(($ <seq> src head tail)
|
|
(let*-values (((head db*) (visit head db env 'effect)))
|
|
(cond
|
|
((void? head)
|
|
(visit tail db env ctx))
|
|
(else
|
|
(let*-values (((tail db**) (visit tail (concat db* db) env ctx)))
|
|
(values (make-seq src head tail)
|
|
(concat db** db*)))))))
|
|
(($ <prompt> src escape-only? tag body handler)
|
|
(let*-values (((tag db*) (visit tag db env 'value))
|
|
((body _) (visit body (concat db* db) env
|
|
(if escape-only? ctx 'value)))
|
|
((handler _) (visit handler (concat db* db) env 'value)))
|
|
(return (make-prompt src escape-only? tag body handler)
|
|
db*)))
|
|
(($ <abort> src tag args tail)
|
|
(let*-values (((tag db*) (visit tag db env 'value))
|
|
((args db**) (parallel-visit args db env 'value))
|
|
((tail db***) (visit tail db env 'value)))
|
|
(return (make-abort src tag args tail)
|
|
(concat db* (concat db** db***))))))))
|