mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-04-30 20:00:19 +02:00
* libguile/numbers.c (scm_numerator, scm_denominator): Handle signed zeroes and infinities in accordance with the corresponding R6RS flonum procedures. * module/rnrs/arithmetic/flonums.scm (flnumerator, fldenominator): Remove special handling of infinities. * test-suite/tests/numbers.test (numerator, denominator): Add tests. Convert existing tests to use 'pass-if-equal'. * test-suite/tests/r6rs-arithmetic-flonums.test (flnumerator): Fix broken test of (flnumerator -0.0).
203 lines
5.9 KiB
Scheme
203 lines
5.9 KiB
Scheme
;;; flonums.scm --- The R6RS flonums arithmetic library
|
||
|
||
;; Copyright (C) 2010, 2011, 2013 Free Software Foundation, Inc.
|
||
;;
|
||
;; This library is free software; you can redistribute it and/or
|
||
;; modify it under the terms of the GNU Lesser General Public
|
||
;; License as published by the Free Software Foundation; either
|
||
;; version 3 of the License, or (at your option) any later version.
|
||
;;
|
||
;; This library is distributed in the hope that it will be useful,
|
||
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
;; Lesser General Public License for more details.
|
||
;;
|
||
;; You should have received a copy of the GNU Lesser General Public
|
||
;; License along with this library; if not, write to the Free Software
|
||
;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
||
|
||
(library (rnrs arithmetic flonums (6))
|
||
(export flonum?
|
||
real->flonum
|
||
|
||
fl=? fl<? fl<=? fl>? fl>=?
|
||
|
||
flinteger? flzero? flpositive? flnegative? flodd? fleven? flfinite?
|
||
flinfinite? flnan?
|
||
|
||
flmax flmin
|
||
|
||
fl+ fl* fl- fl/
|
||
|
||
flabs
|
||
|
||
fldiv-and-mod
|
||
fldiv
|
||
flmod
|
||
fldiv0-and-mod0
|
||
fldiv0
|
||
flmod0
|
||
|
||
flnumerator
|
||
fldenominator
|
||
|
||
flfloor flceiling fltruncate flround
|
||
|
||
flexp fllog flsin flcos fltan flacos flasin flatan
|
||
|
||
flsqrt flexpt
|
||
|
||
&no-infinities
|
||
make-no-infinities-violation
|
||
no-infinities-violation?
|
||
|
||
&no-nans
|
||
make-no-nans-violation
|
||
no-nans-violation?
|
||
|
||
fixnum->flonum)
|
||
(import (ice-9 optargs)
|
||
(only (guile) inf?)
|
||
(rnrs arithmetic fixnums (6))
|
||
(rnrs base (6))
|
||
(rnrs control (6))
|
||
(rnrs conditions (6))
|
||
(rnrs exceptions (6))
|
||
(rnrs lists (6))
|
||
(rnrs r5rs (6)))
|
||
|
||
(define (flonum? obj) (and (real? obj) (inexact? obj)))
|
||
(define (assert-flonum . args)
|
||
(or (for-all flonum? args) (raise (make-assertion-violation))))
|
||
(define (assert-iflonum . args)
|
||
(or (for-all (lambda (i) (and (flonum? i) (integer? i))) args)
|
||
(raise (make-assertion-violation))))
|
||
|
||
(define (ensure-flonum z)
|
||
(cond ((real? z) z)
|
||
((zero? (imag-part z)) (real-part z))
|
||
(else +nan.0)))
|
||
|
||
(define (real->flonum x)
|
||
(or (real? x) (raise (make-assertion-violation)))
|
||
(exact->inexact x))
|
||
|
||
(define (fl=? . args) (apply assert-flonum args) (apply = args))
|
||
(define (fl<? . args) (apply assert-flonum args) (apply < args))
|
||
(define (fl<=? . args) (apply assert-flonum args) (apply <= args))
|
||
(define (fl>? . args) (apply assert-flonum args) (apply > args))
|
||
(define (fl>=? . args) (apply assert-flonum args) (apply >= args))
|
||
|
||
(define (flinteger? fl) (assert-flonum fl) (integer? fl))
|
||
(define (flzero? fl) (assert-flonum fl) (zero? fl))
|
||
(define (flpositive? fl) (assert-flonum fl) (positive? fl))
|
||
(define (flnegative? fl) (assert-flonum fl) (negative? fl))
|
||
(define (flodd? ifl) (assert-iflonum ifl) (odd? ifl))
|
||
(define (fleven? ifl) (assert-iflonum ifl) (even? ifl))
|
||
(define (flfinite? fl) (assert-flonum fl) (not (or (inf? fl) (nan? fl))))
|
||
(define (flinfinite? fl) (assert-flonum fl) (inf? fl))
|
||
(define (flnan? fl) (assert-flonum fl) (nan? fl))
|
||
|
||
(define (flmax fl1 . args)
|
||
(let ((flargs (cons fl1 args)))
|
||
(apply assert-flonum flargs)
|
||
(apply max flargs)))
|
||
|
||
(define (flmin fl1 . args)
|
||
(let ((flargs (cons fl1 args)))
|
||
(apply assert-flonum flargs)
|
||
(apply min flargs)))
|
||
|
||
(define (fl+ . args)
|
||
(apply assert-flonum args)
|
||
(if (null? args) 0.0 (apply + args)))
|
||
|
||
(define (fl* . args)
|
||
(apply assert-flonum args)
|
||
(if (null? args) 1.0 (apply * args)))
|
||
|
||
(define (fl- fl1 . args)
|
||
(let ((flargs (cons fl1 args)))
|
||
(apply assert-flonum flargs)
|
||
(apply - flargs)))
|
||
|
||
(define (fl/ fl1 . args)
|
||
(let ((flargs (cons fl1 args)))
|
||
(apply assert-flonum flargs)
|
||
(apply / flargs)))
|
||
|
||
(define (flabs fl) (assert-flonum fl) (abs fl))
|
||
|
||
(define (fldiv-and-mod fl1 fl2)
|
||
(assert-iflonum fl1 fl2)
|
||
(div-and-mod fl1 fl2))
|
||
|
||
(define (fldiv fl1 fl2)
|
||
(assert-iflonum fl1 fl2)
|
||
(div fl1 fl2))
|
||
|
||
(define (flmod fl1 fl2)
|
||
(assert-iflonum fl1 fl2)
|
||
(mod fl1 fl2))
|
||
|
||
(define (fldiv0-and-mod0 fl1 fl2)
|
||
(assert-iflonum fl1 fl2)
|
||
(div0-and-mod0 fl1 fl2))
|
||
|
||
(define (fldiv0 fl1 fl2)
|
||
(assert-iflonum fl1 fl2)
|
||
(div0 fl1 fl2))
|
||
|
||
(define (flmod0 fl1 fl2)
|
||
(assert-iflonum fl1 fl2)
|
||
(mod0 fl1 fl2))
|
||
|
||
(define (flnumerator fl) (assert-flonum fl) (numerator fl))
|
||
(define (fldenominator fl) (assert-flonum fl) (denominator fl))
|
||
|
||
(define (flfloor fl) (assert-flonum fl) (floor fl))
|
||
(define (flceiling fl) (assert-flonum fl) (ceiling fl))
|
||
(define (fltruncate fl) (assert-flonum fl) (truncate fl))
|
||
(define (flround fl) (assert-flonum fl) (round fl))
|
||
|
||
(define (flexp fl) (assert-flonum fl) (exp fl))
|
||
(define fllog
|
||
(case-lambda
|
||
((fl)
|
||
(assert-flonum fl)
|
||
;; add 0.0 to fl, to change -0.0 to 0.0,
|
||
;; so that (fllog -0.0) will be -inf.0, not -inf.0+pi*i.
|
||
(ensure-flonum (log (+ fl 0.0))))
|
||
((fl fl2)
|
||
(assert-flonum fl fl2)
|
||
(ensure-flonum (/ (log (+ fl 0.0))
|
||
(log (+ fl2 0.0)))))))
|
||
|
||
(define (flsin fl) (assert-flonum fl) (sin fl))
|
||
(define (flcos fl) (assert-flonum fl) (cos fl))
|
||
(define (fltan fl) (assert-flonum fl) (tan fl))
|
||
(define (flasin fl) (assert-flonum fl) (ensure-flonum (asin fl)))
|
||
(define (flacos fl) (assert-flonum fl) (ensure-flonum (acos fl)))
|
||
(define flatan
|
||
(case-lambda
|
||
((fl) (assert-flonum fl) (atan fl))
|
||
((fl fl2) (assert-flonum fl fl2) (atan fl fl2))))
|
||
|
||
(define (flsqrt fl) (assert-flonum fl) (ensure-flonum (sqrt fl)))
|
||
(define (flexpt fl1 fl2) (assert-flonum fl1 fl2) (ensure-flonum (expt fl1 fl2)))
|
||
|
||
(define-condition-type &no-infinities
|
||
&implementation-restriction
|
||
make-no-infinities-violation
|
||
no-infinities-violation?)
|
||
|
||
(define-condition-type &no-nans
|
||
&implementation-restriction
|
||
make-no-nans-violation
|
||
no-nans-violation?)
|
||
|
||
(define (fixnum->flonum fx)
|
||
(or (fixnum? fx) (raise (make-assertion-violation)))
|
||
(exact->inexact fx))
|
||
)
|