1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-30 11:50:28 +02:00
guile/module/language/cps/dfg.scm
Andy Wingo 6e8ad82335 Add CPS -> RTL compiler
* module/Makefile.am:
* module/language/cps/compile-rtl.scm:
* module/language/cps/dfg.scm:
* module/language/cps/slot-allocation.scm: New modules.

* module/language/cps/spec.scm: Register the compiler.

* test-suite/Makefile.am:
* test-suite/tests/rtl-compilation.test: Add tests.
2013-08-31 09:40:56 +02:00

432 lines
13 KiB
Scheme

;;; Continuation-passing style (CPS) intermediate language (IL)
;; Copyright (C) 2013 Free Software Foundation, Inc.
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;;; Commentary:
;;;
;;; Many passes rely on a local or global static analysis of a function.
;;; This module implements a simple data-flow graph (DFG) analysis,
;;; tracking the definitions and uses of variables and continuations.
;;; It also builds a table of continuations and parent links, to be able
;;; to easily determine if one continuation is in the scope of another,
;;; and to get to the expression inside a continuation.
;;;
;;; Note that the data-flow graph of continuation labels is a
;;; control-flow graph.
;;;
;;; We currently don't expose details of the DFG type outside this
;;; module, preferring to only expose accessors. That may change in the
;;; future but it seems to work for now.
;;;
;;; Code:
(define-module (language cps dfg)
#:use-module (ice-9 match)
#:use-module (srfi srfi-1)
#:use-module (srfi srfi-9)
#:use-module (srfi srfi-26)
#:use-module (language cps)
#:export (build-cont-table
build-local-cont-table
lookup-cont
compute-dfg
dfg-cont-table
lookup-def
lookup-uses
find-call
call-expression
find-expression
find-defining-expression
find-constant-value
lift-definition!
variable-used-in?
constant-needs-allocation?
dead-after-def?
dead-after-use?
branch?
find-other-branches
dead-after-branch?
lookup-bound-syms))
(define (build-cont-table fun)
(fold-conts (lambda (k src cont table)
(hashq-set! table k cont)
table)
(make-hash-table)
fun))
(define (build-local-cont-table cont)
(fold-local-conts (lambda (k src cont table)
(hashq-set! table k cont)
table)
(make-hash-table)
cont))
(define (lookup-cont sym conts)
(let ((res (hashq-ref conts sym)))
(unless res
(error "Unknown continuation!" sym (hash-fold acons '() conts)))
res))
;; Data-flow graph for CPS: both for values and continuations.
(define-record-type $dfg
(make-dfg conts use-maps uplinks)
dfg?
;; hash table of sym -> $kargs, $kif, etc
(conts dfg-cont-table)
;; hash table of sym -> $use-map
(use-maps dfg-use-maps)
;; hash table of sym -> $parent-link
(uplinks dfg-uplinks))
(define-record-type $use-map
(make-use-map sym def uses)
use-map?
(sym use-map-sym)
(def use-map-def)
(uses use-map-uses set-use-map-uses!))
(define-record-type $uplink
(make-uplink parent level)
uplink?
(parent uplink-parent)
(level uplink-level))
(define (visit-fun fun conts use-maps uplinks global?)
(define (add-def! sym def-k)
(unless def-k
(error "Term outside labelled continuation?"))
(hashq-set! use-maps sym (make-use-map sym def-k '())))
(define (add-use! sym use-k)
(match (hashq-ref use-maps sym)
(#f (error "Symbol out of scope?" sym))
((and use-map ($ $use-map sym def uses))
(set-use-map-uses! use-map (cons use-k uses)))))
(define (link-parent! k parent)
(match (hashq-ref uplinks parent)
(($ $uplink _ level)
(hashq-set! uplinks k (make-uplink parent (1+ level))))))
(define (visit exp exp-k)
(define (def! sym)
(add-def! sym exp-k))
(define (use! sym)
(add-use! sym exp-k))
(define (recur exp)
(visit exp exp-k))
(match exp
(($ $letk (($ $cont k src cont) ...) body)
;; Set up recursive environment before visiting cont bodies.
(for-each (lambda (cont k)
(def! k)
(hashq-set! conts k cont)
(link-parent! k exp-k))
cont k)
(for-each visit cont k)
(recur body))
(($ $kargs names syms body)
(for-each def! syms)
(recur body))
(($ $kif kt kf)
(use! kt)
(use! kf))
(($ $ktrunc arity k)
(use! k))
(($ $letrec names syms funs body)
(unless global?
(error "$letrec should not be present when building a local DFG"))
(for-each def! syms)
(for-each (cut visit-fun <> conts use-maps uplinks global?) funs)
(visit body exp-k))
(($ $continue k exp)
(use! k)
(match exp
(($ $var sym)
(use! sym))
(($ $call proc args)
(use! proc)
(for-each use! args))
(($ $primcall name args)
(for-each use! args))
(($ $values args)
(for-each use! args))
(($ $prompt escape? tag handler)
(use! tag)
(use! handler))
(($ $fun)
(when global?
(visit-fun exp conts use-maps uplinks global?)))
(_ #f)))))
(match fun
(($ $fun meta free
($ $cont kentry src
(and entry
($ $kentry self ($ $cont ktail _ tail) clauses))))
;; Treat the fun continuation as its own parent.
(add-def! kentry kentry)
(add-def! self kentry)
(hashq-set! uplinks kentry (make-uplink #f 0))
(hashq-set! conts kentry entry)
(add-def! ktail kentry)
(hashq-set! conts ktail tail)
(link-parent! ktail kentry)
(for-each
(match-lambda
(($ $cont kclause _
(and clause ($ $kclause arity ($ $cont kbody _ body))))
(add-def! kclause kentry)
(hashq-set! conts kclause clause)
(link-parent! kclause kentry)
(add-def! kbody kclause)
(hashq-set! conts kbody body)
(link-parent! kbody kclause)
(visit body kbody)))
clauses))))
(define* (compute-dfg fun #:key (global? #t))
(let* ((conts (make-hash-table))
(use-maps (make-hash-table))
(uplinks (make-hash-table)))
(visit-fun fun conts use-maps uplinks global?)
(make-dfg conts use-maps uplinks)))
(define (lookup-uplink k uplinks)
(let ((res (hashq-ref uplinks k)))
(unless res
(error "Unknown continuation!" k (hash-fold acons '() uplinks)))
res))
(define (lookup-use-map sym use-maps)
(let ((res (hashq-ref use-maps sym)))
(unless res
(error "Unknown lexical!" sym (hash-fold acons '() use-maps)))
res))
(define (lookup-def sym dfg)
(match dfg
(($ $dfg conts use-maps uplinks)
(match (lookup-use-map sym use-maps)
(($ $use-map sym def uses)
def)))))
(define (lookup-uses sym dfg)
(match dfg
(($ $dfg conts use-maps uplinks)
(match (lookup-use-map sym use-maps)
(($ $use-map sym def uses)
uses)))))
(define (find-defining-term sym dfg)
(match (lookup-uses (lookup-def sym dfg) dfg)
((def-exp-k)
(lookup-cont def-exp-k (dfg-cont-table dfg)))
(else #f)))
(define (find-call term)
(match term
(($ $kargs names syms body) (find-call body))
(($ $letk conts body) (find-call body))
(($ $letrec names syms funs body) (find-call body))
(($ $continue) term)))
(define (call-expression call)
(match call
(($ $continue k exp) exp)))
(define (find-expression term)
(call-expression (find-call term)))
(define (find-defining-expression sym dfg)
(match (find-defining-term sym dfg)
(#f #f)
(($ $ktrunc) #f)
(term (find-expression term))))
(define (find-constant-value sym dfg)
(match (find-defining-expression sym dfg)
(($ $const val)
(values #t val))
(($ $continue k ($ $void))
(values #t *unspecified*))
(else
(values #f #f))))
(define (constant-needs-allocation? sym val dfg)
(define (find-exp term)
(match term
(($ $kargs names syms body) (find-exp body))
(($ $letk conts body) (find-exp body))
(else term)))
(match dfg
(($ $dfg conts use-maps uplinks)
(match (lookup-use-map sym use-maps)
(($ $use-map _ def uses)
(or-map
(lambda (use)
(match (find-expression (lookup-cont use conts))
(($ $call) #f)
(($ $values) #f)
(($ $primcall 'free-ref (closure slot))
(not (eq? sym slot)))
(($ $primcall 'free-set! (closure slot value))
(not (eq? sym slot)))
(($ $primcall 'cache-current-module! (mod . _))
(eq? sym mod))
(($ $primcall 'cached-toplevel-box _)
#f)
(($ $primcall 'cached-module-box _)
#f)
(($ $primcall 'resolve (name bound?))
(eq? sym name))
(_ #t)))
uses))))))
(define (continuation-scope-contains? parent-k k uplinks)
(match (lookup-uplink parent-k uplinks)
(($ $uplink _ parent-level)
(let lp ((k k))
(or (eq? parent-k k)
(match (lookup-uplink k uplinks)
(($ $uplink parent level)
(and (< parent-level level)
(lp parent)))))))))
(define (lift-definition! k parent-k dfg)
(match dfg
(($ $dfg conts use-maps uplinks)
(match (lookup-uplink parent-k uplinks)
(($ $uplink parent level)
(hashq-set! uplinks k
(make-uplink parent-k (1+ level)))
;; Lift definitions of all conts in K.
(let lp ((cont (lookup-cont k conts)))
(match cont
(($ $letk (($ $cont kid) ...) body)
(for-each (cut lift-definition! <> k dfg) kid)
(lp body))
(($ $letrec names syms funs body)
(lp body))
(_ #t))))))))
(define (variable-used-in? var parent-k dfg)
(match dfg
(($ $dfg conts use-maps uplinks)
(or-map (lambda (use)
(continuation-scope-contains? parent-k use uplinks))
(match (lookup-use-map var use-maps)
(($ $use-map sym def uses)
uses))))))
;; Does k1 dominate k2?
;;
;; Note that this is a conservative predicate: a false return value does
;; not indicate that k1 _doesn't_ dominate k2. The reason for this is
;; that we are using the scope tree as an approximation of the dominator
;; relationship. See
;; http://mlton.org/pipermail/mlton/2003-January/023054.html for a
;; deeper discussion.
(define (conservatively-dominates? k1 k2 uplinks)
(continuation-scope-contains? k1 k2 uplinks))
(define (dead-after-def? sym dfg)
(match dfg
(($ $dfg conts use-maps uplinks)
(match (lookup-use-map sym use-maps)
(($ $use-map sym def uses)
(null? uses))))))
(define (dead-after-use? sym use-k dfg)
(match dfg
(($ $dfg conts use-maps uplinks)
(match (lookup-use-map sym use-maps)
(($ $use-map sym def uses)
;; If all other uses dominate this use, it is now dead. There
;; are other ways for it to be dead, but this is an
;; approximation. A better check would be if the successor
;; post-dominates all uses.
(and-map (cut conservatively-dominates? <> use-k uplinks)
uses))))))
;; A continuation is a "branch" if all of its predecessors are $kif
;; continuations.
(define (branch? k dfg)
(match dfg
(($ $dfg conts use-maps uplinks)
(match (lookup-use-map k use-maps)
(($ $use-map sym def uses)
(and (not (null? uses))
(and-map (lambda (k)
(match (lookup-cont k conts)
(($ $kif) #t)
(_ #f)))
uses)))))))
(define (find-other-branches k dfg)
(match dfg
(($ $dfg conts use-maps uplinks)
(match (lookup-use-map k use-maps)
(($ $use-map sym def (uses ..1))
(map (lambda (kif)
(match (lookup-cont kif conts)
(($ $kif (? (cut eq? <> k)) kf)
kf)
(($ $kif kt (? (cut eq? <> k)))
kt)
(_ (error "Not all predecessors are branches"))))
uses))))))
(define (dead-after-branch? sym branch other-branches dfg)
(match dfg
(($ $dfg conts use-maps uplinks)
(match (lookup-use-map sym use-maps)
(($ $use-map sym def uses)
(and-map
(lambda (use-k)
;; A symbol is dead after a branch if at least one of the
;; other branches dominates a use of the symbol, and all
;; other uses of the symbol dominate the test.
(if (or-map (cut conservatively-dominates? <> use-k uplinks)
other-branches)
(not (conservatively-dominates? branch use-k uplinks))
(conservatively-dominates? use-k branch uplinks)))
uses))))))
(define (lookup-bound-syms k dfg)
(match dfg
(($ $dfg conts use-maps uplinks)
(match (lookup-cont k conts)
(($ $kargs names syms body)
syms)))))