mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-04-29 19:30:36 +02:00
Fixes https://debbugs.gnu.org/69725. * libguile/numbers.c (scm_is_less_than): Add branch for (< fraction real). * test-suite/tests/numbers.test (<): New test.
7308 lines
224 KiB
C
7308 lines
224 KiB
C
/* Copyright 1995-2016,2018-2022
|
||
Free Software Foundation, Inc.
|
||
|
||
Portions Copyright 1990-1993 by AT&T Bell Laboratories and Bellcore.
|
||
See scm_divide.
|
||
|
||
This file is part of Guile.
|
||
|
||
Guile is free software: you can redistribute it and/or modify it
|
||
under the terms of the GNU Lesser General Public License as published
|
||
by the Free Software Foundation, either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
Guile is distributed in the hope that it will be useful, but WITHOUT
|
||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
||
License for more details.
|
||
|
||
You should have received a copy of the GNU Lesser General Public
|
||
License along with Guile. If not, see
|
||
<https://www.gnu.org/licenses/>. */
|
||
|
||
|
||
/* General assumptions:
|
||
* All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
|
||
* If an object satisfies integer?, it's either an inum, a bignum, or a real.
|
||
* If floor (r) == r, r is an int, and mpz_set_d will DTRT.
|
||
* XXX What about infinities? They are equal to their own floor! -mhw
|
||
* All objects satisfying SCM_FRACTIONP are never an integer.
|
||
*/
|
||
|
||
/* TODO:
|
||
|
||
- see if special casing bignums and reals in integer-exponent when
|
||
possible (to use mpz_pow and mpf_pow_ui) is faster.
|
||
|
||
- look in to better short-circuiting of common cases in
|
||
integer-expt and elsewhere.
|
||
|
||
- see if direct mpz operations can help in ash and elsewhere.
|
||
|
||
*/
|
||
|
||
#ifdef HAVE_CONFIG_H
|
||
# include <config.h>
|
||
#endif
|
||
|
||
#include <assert.h>
|
||
#include <math.h>
|
||
#include <stdarg.h>
|
||
#include <string.h>
|
||
#include <unicase.h>
|
||
#include <unictype.h>
|
||
#include <verify.h>
|
||
|
||
#if HAVE_COMPLEX_H
|
||
#include <complex.h>
|
||
#endif
|
||
|
||
#include "bdw-gc.h"
|
||
#include "boolean.h"
|
||
#include "deprecation.h"
|
||
#include "dynwind.h"
|
||
#include "eq.h"
|
||
#include "feature.h"
|
||
#include "finalizers.h"
|
||
#include "goops.h"
|
||
#include "gsubr.h"
|
||
#include "integers.h"
|
||
#include "modules.h"
|
||
#include "pairs.h"
|
||
#include "ports.h"
|
||
#include "simpos.h"
|
||
#include "smob.h"
|
||
#include "strings.h"
|
||
#include "values.h"
|
||
|
||
#include "numbers.h"
|
||
|
||
/* values per glibc, if not already defined */
|
||
#ifndef M_LOG10E
|
||
#define M_LOG10E 0.43429448190325182765
|
||
#endif
|
||
#ifndef M_LN2
|
||
#define M_LN2 0.69314718055994530942
|
||
#endif
|
||
#ifndef M_PI
|
||
#define M_PI 3.14159265358979323846
|
||
#endif
|
||
|
||
/* FIXME: We assume that FLT_RADIX is 2 */
|
||
verify (FLT_RADIX == 2);
|
||
|
||
/* Make sure that scm_t_inum fits within a SCM value. */
|
||
verify (sizeof (scm_t_inum) <= sizeof (scm_t_bits));
|
||
|
||
/* Several functions below assume that fixnums fit within a long, and
|
||
furthermore that there is some headroom to spare for other operations
|
||
without overflowing. */
|
||
verify (SCM_I_FIXNUM_BIT <= SCM_LONG_BIT - 2);
|
||
|
||
/* Some functions that use GMP's mpn functions assume that a
|
||
non-negative fixnum will always fit in a 'mp_limb_t'. */
|
||
verify (SCM_MOST_POSITIVE_FIXNUM <= (mp_limb_t) -1);
|
||
|
||
#define scm_from_inum(x) (scm_from_signed_integer (x))
|
||
|
||
/* Test an inum to see if it can be converted to a double without loss
|
||
of precision. Note that this will sometimes return 0 even when 1
|
||
could have been returned, e.g. for large powers of 2. It is designed
|
||
to be a fast check to optimize common cases. */
|
||
#define INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE(n) \
|
||
(SCM_I_FIXNUM_BIT-1 <= DBL_MANT_DIG \
|
||
|| ((n) ^ ((n) >> (SCM_I_FIXNUM_BIT-1))) < (1L << DBL_MANT_DIG))
|
||
|
||
#if (! HAVE_DECL_MPZ_INITS) || SCM_ENABLE_MINI_GMP
|
||
|
||
/* GMP < 5.0.0 and mini-gmp lack `mpz_inits' and `mpz_clears'. Provide
|
||
them. */
|
||
|
||
#define VARARG_MPZ_ITERATOR(func) \
|
||
static void \
|
||
func ## s (mpz_t x, ...) \
|
||
{ \
|
||
va_list ap; \
|
||
\
|
||
va_start (ap, x); \
|
||
while (x != NULL) \
|
||
{ \
|
||
func (x); \
|
||
x = va_arg (ap, mpz_ptr); \
|
||
} \
|
||
va_end (ap); \
|
||
}
|
||
|
||
VARARG_MPZ_ITERATOR (mpz_init)
|
||
VARARG_MPZ_ITERATOR (mpz_clear)
|
||
|
||
#endif
|
||
|
||
|
||
|
||
/*
|
||
Wonder if this might be faster for some of our code? A switch on
|
||
the numtag would jump directly to the right case, and the
|
||
SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
|
||
|
||
#define SCM_I_NUMTAG_NOTNUM 0
|
||
#define SCM_I_NUMTAG_INUM 1
|
||
#define SCM_I_NUMTAG_BIG scm_tc16_big
|
||
#define SCM_I_NUMTAG_REAL scm_tc16_real
|
||
#define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
|
||
#define SCM_I_NUMTAG(x) \
|
||
(SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
|
||
: (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
|
||
: (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
|
||
: SCM_I_NUMTAG_NOTNUM)))
|
||
*/
|
||
/* the macro above will not work as is with fractions */
|
||
|
||
static SCM flo0;
|
||
static SCM exactly_one_half;
|
||
static SCM flo_log10e;
|
||
|
||
#define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
|
||
|
||
/* FLOBUFLEN is the maximum number of characters necessary for the
|
||
* printed or scm_string representation of an inexact number.
|
||
*/
|
||
#define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
|
||
|
||
|
||
#if !defined (HAVE_ASINH)
|
||
static double asinh (double x) { return log (x + sqrt (x * x + 1)); }
|
||
#endif
|
||
#if !defined (HAVE_ACOSH)
|
||
static double acosh (double x) { return log (x + sqrt (x * x - 1)); }
|
||
#endif
|
||
#if !defined (HAVE_ATANH)
|
||
static double atanh (double x) { return 0.5 * log ((1 + x) / (1 - x)); }
|
||
#endif
|
||
|
||
/* mpz_cmp_d in GMP before 4.2 didn't recognise infinities, so
|
||
xmpz_cmp_d uses an explicit check. Starting with GMP 4.2 (released
|
||
in March 2006), mpz_cmp_d now handles infinities properly. */
|
||
#if 1
|
||
#define xmpz_cmp_d(z, d) \
|
||
(isinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
|
||
#else
|
||
#define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
|
||
#endif
|
||
|
||
|
||
#if defined (GUILE_I)
|
||
#if defined HAVE_COMPLEX_DOUBLE
|
||
|
||
/* For an SCM object Z which is a complex number (ie. satisfies
|
||
SCM_COMPLEXP), return its value as a C level "complex double". */
|
||
#define SCM_COMPLEX_VALUE(z) \
|
||
(SCM_COMPLEX_REAL (z) + GUILE_I * SCM_COMPLEX_IMAG (z))
|
||
|
||
static inline SCM scm_from_complex_double (complex double z) SCM_UNUSED;
|
||
|
||
/* Convert a C "complex double" to an SCM value. */
|
||
static inline SCM
|
||
scm_from_complex_double (complex double z)
|
||
{
|
||
return scm_c_make_rectangular (creal (z), cimag (z));
|
||
}
|
||
|
||
#endif /* HAVE_COMPLEX_DOUBLE */
|
||
#endif /* GUILE_I */
|
||
|
||
|
||
|
||
/* Make the ratio NUMERATOR/DENOMINATOR, where:
|
||
1. NUMERATOR and DENOMINATOR are exact integers
|
||
2. NUMERATOR and DENOMINATOR are reduced to lowest terms: gcd(n,d) == 1 */
|
||
static SCM
|
||
scm_i_make_ratio_already_reduced (SCM numerator, SCM denominator)
|
||
{
|
||
/* Flip signs so that the denominator is positive. */
|
||
if (scm_is_false (scm_positive_p (denominator)))
|
||
{
|
||
if (SCM_UNLIKELY (scm_is_eq (denominator, SCM_INUM0)))
|
||
scm_num_overflow ("make-ratio");
|
||
else
|
||
{
|
||
numerator = scm_difference (numerator, SCM_UNDEFINED);
|
||
denominator = scm_difference (denominator, SCM_UNDEFINED);
|
||
}
|
||
}
|
||
|
||
/* Check for the integer case */
|
||
if (scm_is_eq (denominator, SCM_INUM1))
|
||
return numerator;
|
||
|
||
return scm_double_cell (scm_tc16_fraction,
|
||
SCM_UNPACK (numerator),
|
||
SCM_UNPACK (denominator), 0);
|
||
}
|
||
|
||
static SCM scm_exact_integer_quotient (SCM x, SCM y);
|
||
|
||
/* Make the ratio NUMERATOR/DENOMINATOR */
|
||
static SCM
|
||
scm_i_make_ratio (SCM numerator, SCM denominator)
|
||
#define FUNC_NAME "make-ratio"
|
||
{
|
||
if (!scm_is_exact_integer (numerator))
|
||
abort();
|
||
if (!scm_is_exact_integer (denominator))
|
||
abort();
|
||
|
||
SCM the_gcd = scm_gcd (numerator, denominator);
|
||
if (!(scm_is_eq (the_gcd, SCM_INUM1)))
|
||
{
|
||
/* Reduce to lowest terms */
|
||
numerator = scm_exact_integer_quotient (numerator, the_gcd);
|
||
denominator = scm_exact_integer_quotient (denominator, the_gcd);
|
||
}
|
||
return scm_i_make_ratio_already_reduced (numerator, denominator);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static mpz_t scm_i_divide2double_lo2b;
|
||
|
||
/* Return the double that is closest to the exact rational N/D, with
|
||
ties rounded toward even mantissas. N and D must be exact
|
||
integers. */
|
||
static double
|
||
scm_i_divide2double (SCM n, SCM d)
|
||
{
|
||
int neg;
|
||
mpz_t nn, dd, lo, hi, x;
|
||
ssize_t e;
|
||
|
||
if (SCM_I_INUMP (d))
|
||
{
|
||
if (SCM_I_INUMP (n)
|
||
&& INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE (SCM_I_INUM (n))
|
||
&& INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE (SCM_I_INUM (d)))
|
||
/* If both N and D can be losslessly converted to doubles, then
|
||
we can rely on IEEE floating point to do proper rounding much
|
||
faster than we can. */
|
||
return ((double) SCM_I_INUM (n)) / ((double) SCM_I_INUM (d));
|
||
|
||
if (scm_is_eq (d, SCM_INUM0))
|
||
{
|
||
if (scm_is_true (scm_positive_p (n)))
|
||
return 1.0 / 0.0;
|
||
else if (scm_is_true (scm_negative_p (n)))
|
||
return -1.0 / 0.0;
|
||
else
|
||
return 0.0 / 0.0;
|
||
}
|
||
|
||
mpz_init_set_si (dd, SCM_I_INUM (d));
|
||
}
|
||
else
|
||
scm_integer_init_set_mpz_z (scm_bignum (d), dd);
|
||
|
||
if (SCM_I_INUMP (n))
|
||
mpz_init_set_si (nn, SCM_I_INUM (n));
|
||
else
|
||
scm_integer_init_set_mpz_z (scm_bignum (n), nn);
|
||
|
||
neg = (mpz_sgn (nn) < 0) ^ (mpz_sgn (dd) < 0);
|
||
mpz_abs (nn, nn);
|
||
mpz_abs (dd, dd);
|
||
|
||
/* Now we need to find the value of e such that:
|
||
|
||
For e <= 0:
|
||
b^{p-1} - 1/2b <= b^-e n / d < b^p - 1/2 [1A]
|
||
(2 b^p - 1) <= 2 b b^-e n / d < (2 b^p - 1) b [2A]
|
||
(2 b^p - 1) d <= 2 b b^-e n < (2 b^p - 1) d b [3A]
|
||
|
||
For e >= 0:
|
||
b^{p-1} - 1/2b <= n / b^e d < b^p - 1/2 [1B]
|
||
(2 b^p - 1) <= 2 b n / b^e d < (2 b^p - 1) b [2B]
|
||
(2 b^p - 1) d b^e <= 2 b n < (2 b^p - 1) d b b^e [3B]
|
||
|
||
where: p = DBL_MANT_DIG
|
||
b = FLT_RADIX (here assumed to be 2)
|
||
|
||
After rounding, the mantissa must be an integer between b^{p-1} and
|
||
(b^p - 1), except for subnormal numbers. In the inequations [1A]
|
||
and [1B], the middle expression represents the mantissa *before*
|
||
rounding, and therefore is bounded by the range of values that will
|
||
round to a floating-point number with the exponent e. The upper
|
||
bound is (b^p - 1 + 1/2) = (b^p - 1/2), and is exclusive because
|
||
ties will round up to the next power of b. The lower bound is
|
||
(b^{p-1} - 1/2b), and is inclusive because ties will round toward
|
||
this power of b. Here we subtract 1/2b instead of 1/2 because it
|
||
is in the range of the next smaller exponent, where the
|
||
representable numbers are closer together by a factor of b.
|
||
|
||
Inequations [2A] and [2B] are derived from [1A] and [1B] by
|
||
multiplying by 2b, and in [3A] and [3B] we multiply by the
|
||
denominator of the middle value to obtain integer expressions.
|
||
|
||
In the code below, we refer to the three expressions in [3A] or
|
||
[3B] as lo, x, and hi. If the number is normalizable, we will
|
||
achieve the goal: lo <= x < hi */
|
||
|
||
/* Make an initial guess for e */
|
||
e = mpz_sizeinbase (nn, 2) - mpz_sizeinbase (dd, 2) - (DBL_MANT_DIG-1);
|
||
if (e < DBL_MIN_EXP - DBL_MANT_DIG)
|
||
e = DBL_MIN_EXP - DBL_MANT_DIG;
|
||
|
||
/* Compute the initial values of lo, x, and hi
|
||
based on the initial guess of e */
|
||
mpz_inits (lo, hi, x, NULL);
|
||
mpz_mul_2exp (x, nn, 2 + ((e < 0) ? -e : 0));
|
||
mpz_mul (lo, dd, scm_i_divide2double_lo2b);
|
||
if (e > 0)
|
||
mpz_mul_2exp (lo, lo, e);
|
||
mpz_mul_2exp (hi, lo, 1);
|
||
|
||
/* Adjust e as needed to satisfy the inequality lo <= x < hi,
|
||
(but without making e less than the minimum exponent) */
|
||
while (mpz_cmp (x, lo) < 0 && e > DBL_MIN_EXP - DBL_MANT_DIG)
|
||
{
|
||
mpz_mul_2exp (x, x, 1);
|
||
e--;
|
||
}
|
||
while (mpz_cmp (x, hi) >= 0)
|
||
{
|
||
/* If we ever used lo's value again,
|
||
we would need to double lo here. */
|
||
mpz_mul_2exp (hi, hi, 1);
|
||
e++;
|
||
}
|
||
|
||
/* Now compute the rounded mantissa:
|
||
n / b^e d (if e >= 0)
|
||
n b^-e / d (if e <= 0) */
|
||
{
|
||
int cmp;
|
||
double result;
|
||
|
||
if (e < 0)
|
||
mpz_mul_2exp (nn, nn, -e);
|
||
else
|
||
mpz_mul_2exp (dd, dd, e);
|
||
|
||
/* mpz does not directly support rounded right
|
||
shifts, so we have to do it the hard way.
|
||
For efficiency, we reuse lo and hi.
|
||
hi == quotient, lo == remainder */
|
||
mpz_fdiv_qr (hi, lo, nn, dd);
|
||
|
||
/* The fractional part of the unrounded mantissa would be
|
||
remainder/dividend, i.e. lo/dd. So we have a tie if
|
||
lo/dd = 1/2. Multiplying both sides by 2*dd yields the
|
||
integer expression 2*lo = dd. Here we do that comparison
|
||
to decide whether to round up or down. */
|
||
mpz_mul_2exp (lo, lo, 1);
|
||
cmp = mpz_cmp (lo, dd);
|
||
if (cmp > 0 || (cmp == 0 && mpz_odd_p (hi)))
|
||
mpz_add_ui (hi, hi, 1);
|
||
|
||
result = ldexp (mpz_get_d (hi), e);
|
||
if (neg)
|
||
result = -result;
|
||
|
||
mpz_clears (nn, dd, lo, hi, x, NULL);
|
||
return result;
|
||
}
|
||
}
|
||
|
||
double
|
||
scm_i_fraction2double (SCM z)
|
||
{
|
||
return scm_i_divide2double (SCM_FRACTION_NUMERATOR (z),
|
||
SCM_FRACTION_DENOMINATOR (z));
|
||
}
|
||
|
||
static SCM
|
||
scm_i_from_double (double val)
|
||
{
|
||
SCM z;
|
||
|
||
z = SCM_PACK_POINTER (scm_gc_malloc_pointerless (sizeof (scm_t_double), "real"));
|
||
|
||
SCM_SET_CELL_TYPE (z, scm_tc16_real);
|
||
SCM_REAL_VALUE (z) = val;
|
||
|
||
return z;
|
||
}
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_exact_p, "exact?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
|
||
"otherwise.")
|
||
#define FUNC_NAME s_scm_exact_p
|
||
{
|
||
if (SCM_INEXACTP (x))
|
||
return SCM_BOOL_F;
|
||
else if (SCM_NUMBERP (x))
|
||
return SCM_BOOL_T;
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_exact_p, x, 1, s_scm_exact_p);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
int
|
||
scm_is_exact (SCM val)
|
||
{
|
||
return scm_is_true (scm_exact_p (val));
|
||
}
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_inexact_p, "inexact?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
|
||
"else.")
|
||
#define FUNC_NAME s_scm_inexact_p
|
||
{
|
||
if (SCM_INEXACTP (x))
|
||
return SCM_BOOL_T;
|
||
else if (SCM_NUMBERP (x))
|
||
return SCM_BOOL_F;
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_inexact_p, x, 1, s_scm_inexact_p);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
int
|
||
scm_is_inexact (SCM val)
|
||
{
|
||
return scm_is_true (scm_inexact_p (val));
|
||
}
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_odd_p, "odd?", 1, 0, 0,
|
||
(SCM n),
|
||
"Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
|
||
"otherwise.")
|
||
#define FUNC_NAME s_scm_odd_p
|
||
{
|
||
if (SCM_I_INUMP (n))
|
||
return scm_from_bool (scm_is_integer_odd_i (SCM_I_INUM (n)));
|
||
else if (SCM_BIGP (n))
|
||
return scm_from_bool (scm_is_integer_odd_z (scm_bignum (n)));
|
||
else if (SCM_REALP (n))
|
||
{
|
||
double val = SCM_REAL_VALUE (n);
|
||
if (isfinite (val))
|
||
{
|
||
double rem = fabs (fmod (val, 2.0));
|
||
if (rem == 1.0)
|
||
return SCM_BOOL_T;
|
||
else if (rem == 0.0)
|
||
return SCM_BOOL_F;
|
||
}
|
||
}
|
||
return scm_wta_dispatch_1 (g_scm_odd_p, n, 1, s_scm_odd_p);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_even_p, "even?", 1, 0, 0,
|
||
(SCM n),
|
||
"Return @code{#t} if @var{n} is an even number, @code{#f}\n"
|
||
"otherwise.")
|
||
#define FUNC_NAME s_scm_even_p
|
||
{
|
||
if (SCM_I_INUMP (n))
|
||
return scm_from_bool (!scm_is_integer_odd_i (SCM_I_INUM (n)));
|
||
else if (SCM_BIGP (n))
|
||
return scm_from_bool (!scm_is_integer_odd_z (scm_bignum (n)));
|
||
else if (SCM_REALP (n))
|
||
{
|
||
double val = SCM_REAL_VALUE (n);
|
||
if (isfinite (val))
|
||
{
|
||
double rem = fabs (fmod (val, 2.0));
|
||
if (rem == 1.0)
|
||
return SCM_BOOL_F;
|
||
else if (rem == 0.0)
|
||
return SCM_BOOL_T;
|
||
}
|
||
}
|
||
return scm_wta_dispatch_1 (g_scm_even_p, n, 1, s_scm_even_p);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_finite_p, "finite?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if the real number @var{x} is neither\n"
|
||
"infinite nor a NaN, @code{#f} otherwise.")
|
||
#define FUNC_NAME s_scm_finite_p
|
||
{
|
||
if (SCM_REALP (x))
|
||
return scm_from_bool (isfinite (SCM_REAL_VALUE (x)));
|
||
else if (scm_is_real (x))
|
||
return SCM_BOOL_T;
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_finite_p, x, 1, s_scm_finite_p);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_inf_p, "inf?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if the real number @var{x} is @samp{+inf.0} or\n"
|
||
"@samp{-inf.0}. Otherwise return @code{#f}.")
|
||
#define FUNC_NAME s_scm_inf_p
|
||
{
|
||
if (SCM_REALP (x))
|
||
return scm_from_bool (isinf (SCM_REAL_VALUE (x)));
|
||
else if (scm_is_real (x))
|
||
return SCM_BOOL_F;
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_inf_p, x, 1, s_scm_inf_p);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_nan_p, "nan?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if the real number @var{x} is a NaN,\n"
|
||
"or @code{#f} otherwise.")
|
||
#define FUNC_NAME s_scm_nan_p
|
||
{
|
||
if (SCM_REALP (x))
|
||
return scm_from_bool (isnan (SCM_REAL_VALUE (x)));
|
||
else if (scm_is_real (x))
|
||
return SCM_BOOL_F;
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_nan_p, x, 1, s_scm_nan_p);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
/* Guile's idea of infinity. */
|
||
static double guile_Inf;
|
||
|
||
/* Guile's idea of not a number. */
|
||
static double guile_NaN;
|
||
|
||
static void
|
||
guile_ieee_init (void)
|
||
{
|
||
/* Some version of gcc on some old version of Linux used to crash when
|
||
trying to make Inf and NaN. */
|
||
|
||
#ifdef INFINITY
|
||
/* C99 INFINITY, when available.
|
||
FIXME: The standard allows for INFINITY to be something that overflows
|
||
at compile time. We ought to have a configure test to check for that
|
||
before trying to use it. (But in practice we believe this is not a
|
||
problem on any system guile is likely to target.) */
|
||
guile_Inf = INFINITY;
|
||
#elif defined HAVE_DINFINITY
|
||
/* OSF */
|
||
extern unsigned int DINFINITY[2];
|
||
guile_Inf = (*((double *) (DINFINITY)));
|
||
#else
|
||
double tmp = 1e+10;
|
||
guile_Inf = tmp;
|
||
for (;;)
|
||
{
|
||
guile_Inf *= 1e+10;
|
||
if (guile_Inf == tmp)
|
||
break;
|
||
tmp = guile_Inf;
|
||
}
|
||
#endif
|
||
|
||
#ifdef NAN
|
||
/* C99 NAN, when available */
|
||
guile_NaN = NAN;
|
||
#elif defined HAVE_DQNAN
|
||
{
|
||
/* OSF */
|
||
extern unsigned int DQNAN[2];
|
||
guile_NaN = (*((double *)(DQNAN)));
|
||
}
|
||
#else
|
||
guile_NaN = guile_Inf / guile_Inf;
|
||
#endif
|
||
}
|
||
|
||
SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
|
||
(void),
|
||
"Return Inf.")
|
||
#define FUNC_NAME s_scm_inf
|
||
{
|
||
static int initialized = 0;
|
||
if (! initialized)
|
||
{
|
||
guile_ieee_init ();
|
||
initialized = 1;
|
||
}
|
||
return scm_i_from_double (guile_Inf);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
|
||
(void),
|
||
"Return NaN.")
|
||
#define FUNC_NAME s_scm_nan
|
||
{
|
||
static int initialized = 0;
|
||
if (!initialized)
|
||
{
|
||
guile_ieee_init ();
|
||
initialized = 1;
|
||
}
|
||
return scm_i_from_double (guile_NaN);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
|
||
(SCM x),
|
||
"Return the absolute value of @var{x}.")
|
||
#define FUNC_NAME s_scm_abs
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
return scm_integer_abs_i (SCM_I_INUM (x));
|
||
else if (SCM_LIKELY (SCM_REALP (x)))
|
||
return scm_i_from_double (copysign (SCM_REAL_VALUE (x), 1.0));
|
||
else if (SCM_BIGP (x))
|
||
return scm_integer_abs_z (scm_bignum (x));
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
|
||
return x;
|
||
return scm_i_make_ratio_already_reduced
|
||
(scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
|
||
SCM_FRACTION_DENOMINATOR (x));
|
||
}
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_abs, x, 1, s_scm_abs);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_quotient, "quotient", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return the quotient of the numbers @var{x} and @var{y}.")
|
||
#define FUNC_NAME s_scm_quotient
|
||
{
|
||
if (SCM_LIKELY (scm_is_integer (x)))
|
||
{
|
||
if (SCM_LIKELY (scm_is_integer (y)))
|
||
return scm_truncate_quotient (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_quotient, x, y, SCM_ARG2, s_scm_quotient);
|
||
}
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_quotient, x, y, SCM_ARG1, s_scm_quotient);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_remainder, "remainder", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return the remainder of the numbers @var{x} and @var{y}.\n"
|
||
"@lisp\n"
|
||
"(remainder 13 4) @result{} 1\n"
|
||
"(remainder -13 4) @result{} -1\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_remainder
|
||
{
|
||
if (SCM_LIKELY (scm_is_integer (x)))
|
||
{
|
||
if (SCM_LIKELY (scm_is_integer (y)))
|
||
return scm_truncate_remainder (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_remainder, x, y, SCM_ARG2, s_scm_remainder);
|
||
}
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_remainder, x, y, SCM_ARG1, s_scm_remainder);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_modulo, "modulo", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return the modulo of the numbers @var{x} and @var{y}.\n"
|
||
"@lisp\n"
|
||
"(modulo 13 4) @result{} 1\n"
|
||
"(modulo -13 4) @result{} 3\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_modulo
|
||
{
|
||
if (SCM_LIKELY (scm_is_integer (x)))
|
||
{
|
||
if (SCM_LIKELY (scm_is_integer (y)))
|
||
return scm_floor_remainder (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_modulo, x, y, SCM_ARG2, s_scm_modulo);
|
||
}
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_modulo, x, y, SCM_ARG1, s_scm_modulo);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
/* Return the exact integer q such that n = q*d, for exact integers n
|
||
and d, where d is known in advance to divide n evenly (with zero
|
||
remainder). For large integers, this can be computed more
|
||
efficiently than when the remainder is unknown. */
|
||
static SCM
|
||
scm_exact_integer_quotient (SCM n, SCM d)
|
||
#define FUNC_NAME "exact-integer-quotient"
|
||
{
|
||
if (SCM_I_INUMP (n))
|
||
{
|
||
if (scm_is_eq (n, d))
|
||
return SCM_INUM1;
|
||
if (SCM_I_INUMP (d))
|
||
return scm_integer_exact_quotient_ii (SCM_I_INUM (n), SCM_I_INUM (d));
|
||
else if (SCM_BIGP (d))
|
||
return scm_integer_exact_quotient_iz (SCM_I_INUM (n), scm_bignum (d));
|
||
else
|
||
abort (); // Unreachable.
|
||
}
|
||
else if (SCM_BIGP (n))
|
||
{
|
||
if (scm_is_eq (n, d))
|
||
return SCM_INUM1;
|
||
if (SCM_I_INUMP (d))
|
||
return scm_integer_exact_quotient_zi (scm_bignum (n), SCM_I_INUM (d));
|
||
else if (SCM_BIGP (d))
|
||
return scm_integer_exact_quotient_zz (scm_bignum (n), scm_bignum (d));
|
||
else
|
||
abort (); // Unreachable.
|
||
}
|
||
else
|
||
abort (); // Unreachable.
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
/* two_valued_wta_dispatch_2 is a version of SCM_WTA_DISPATCH_2 for
|
||
two-valued functions. It is called from primitive generics that take
|
||
two arguments and return two values, when the core procedure is
|
||
unable to handle the given argument types. If there are GOOPS
|
||
methods for this primitive generic, it dispatches to GOOPS and, if
|
||
successful, expects two values to be returned, which are placed in
|
||
*rp1 and *rp2. If there are no GOOPS methods, it throws a
|
||
wrong-type-arg exception.
|
||
|
||
FIXME: This obviously belongs somewhere else, but until we decide on
|
||
the right API, it is here as a static function, because it is needed
|
||
by the *_divide functions below.
|
||
*/
|
||
static void
|
||
two_valued_wta_dispatch_2 (SCM gf, SCM a1, SCM a2, int pos,
|
||
const char *subr, SCM *rp1, SCM *rp2)
|
||
{
|
||
SCM vals = scm_wta_dispatch_2 (gf, a1, a2, pos, subr);
|
||
|
||
scm_i_extract_values_2 (vals, rp1, rp2);
|
||
}
|
||
|
||
SCM_DEFINE (scm_euclidean_quotient, "euclidean-quotient", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return the integer @var{q} such that\n"
|
||
"@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
|
||
"where @math{0 <= @var{r} < abs(@var{y})}.\n"
|
||
"@lisp\n"
|
||
"(euclidean-quotient 123 10) @result{} 12\n"
|
||
"(euclidean-quotient 123 -10) @result{} -12\n"
|
||
"(euclidean-quotient -123 10) @result{} -13\n"
|
||
"(euclidean-quotient -123 -10) @result{} 13\n"
|
||
"(euclidean-quotient -123.2 -63.5) @result{} 2.0\n"
|
||
"(euclidean-quotient 16/3 -10/7) @result{} -3\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_euclidean_quotient
|
||
{
|
||
if (scm_is_false (scm_negative_p (y)))
|
||
return scm_floor_quotient (x, y);
|
||
else
|
||
return scm_ceiling_quotient (x, y);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_euclidean_remainder, "euclidean-remainder", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return the real number @var{r} such that\n"
|
||
"@math{0 <= @var{r} < abs(@var{y})} and\n"
|
||
"@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
|
||
"for some integer @var{q}.\n"
|
||
"@lisp\n"
|
||
"(euclidean-remainder 123 10) @result{} 3\n"
|
||
"(euclidean-remainder 123 -10) @result{} 3\n"
|
||
"(euclidean-remainder -123 10) @result{} 7\n"
|
||
"(euclidean-remainder -123 -10) @result{} 7\n"
|
||
"(euclidean-remainder -123.2 -63.5) @result{} 3.8\n"
|
||
"(euclidean-remainder 16/3 -10/7) @result{} 22/21\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_euclidean_remainder
|
||
{
|
||
if (scm_is_false (scm_negative_p (y)))
|
||
return scm_floor_remainder (x, y);
|
||
else
|
||
return scm_ceiling_remainder (x, y);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_i_euclidean_divide, "euclidean/", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return the integer @var{q} and the real number @var{r}\n"
|
||
"such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
|
||
"and @math{0 <= @var{r} < abs(@var{y})}.\n"
|
||
"@lisp\n"
|
||
"(euclidean/ 123 10) @result{} 12 and 3\n"
|
||
"(euclidean/ 123 -10) @result{} -12 and 3\n"
|
||
"(euclidean/ -123 10) @result{} -13 and 7\n"
|
||
"(euclidean/ -123 -10) @result{} 13 and 7\n"
|
||
"(euclidean/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
|
||
"(euclidean/ 16/3 -10/7) @result{} -3 and 22/21\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_i_euclidean_divide
|
||
{
|
||
if (scm_is_false (scm_negative_p (y)))
|
||
return scm_i_floor_divide (x, y);
|
||
else
|
||
return scm_i_ceiling_divide (x, y);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
void
|
||
scm_euclidean_divide (SCM x, SCM y, SCM *qp, SCM *rp)
|
||
{
|
||
if (scm_is_false (scm_negative_p (y)))
|
||
scm_floor_divide (x, y, qp, rp);
|
||
else
|
||
scm_ceiling_divide (x, y, qp, rp);
|
||
}
|
||
|
||
static SCM scm_i_inexact_floor_quotient (double x, double y);
|
||
static SCM scm_i_exact_rational_floor_quotient (SCM x, SCM y);
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_floor_quotient, "floor-quotient", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return the floor of @math{@var{x} / @var{y}}.\n"
|
||
"@lisp\n"
|
||
"(floor-quotient 123 10) @result{} 12\n"
|
||
"(floor-quotient 123 -10) @result{} -13\n"
|
||
"(floor-quotient -123 10) @result{} -13\n"
|
||
"(floor-quotient -123 -10) @result{} 12\n"
|
||
"(floor-quotient -123.2 -63.5) @result{} 1.0\n"
|
||
"(floor-quotient 16/3 -10/7) @result{} -4\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_floor_quotient
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_floor_quotient_ii (SCM_I_INUM (x), SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_floor_quotient_iz (SCM_I_INUM (x), scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_inexact_floor_quotient (SCM_I_INUM (x), SCM_REAL_VALUE (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_floor_quotient (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
|
||
s_scm_floor_quotient);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_floor_quotient_zi (scm_bignum (x), SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_floor_quotient_zz (scm_bignum (x), scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_inexact_floor_quotient
|
||
(scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_floor_quotient (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
|
||
s_scm_floor_quotient);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_REALP (y) || SCM_I_INUMP (y) ||
|
||
SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
return scm_i_inexact_floor_quotient
|
||
(SCM_REAL_VALUE (x), scm_to_double (y));
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
|
||
s_scm_floor_quotient);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_REALP (y))
|
||
return scm_i_inexact_floor_quotient
|
||
(scm_i_fraction2double (x), SCM_REAL_VALUE (y));
|
||
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_floor_quotient (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
|
||
s_scm_floor_quotient);
|
||
}
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG1,
|
||
s_scm_floor_quotient);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static SCM
|
||
scm_i_inexact_floor_quotient (double x, double y)
|
||
{
|
||
if (SCM_UNLIKELY (y == 0))
|
||
scm_num_overflow (s_scm_floor_quotient); /* or return a NaN? */
|
||
else
|
||
return scm_i_from_double (floor (x / y));
|
||
}
|
||
|
||
static SCM
|
||
scm_i_exact_rational_floor_quotient (SCM x, SCM y)
|
||
{
|
||
return scm_floor_quotient
|
||
(scm_product (scm_numerator (x), scm_denominator (y)),
|
||
scm_product (scm_numerator (y), scm_denominator (x)));
|
||
}
|
||
|
||
static SCM scm_i_inexact_floor_remainder (double x, double y);
|
||
static SCM scm_i_exact_rational_floor_remainder (SCM x, SCM y);
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_floor_remainder, "floor-remainder", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return the real number @var{r} such that\n"
|
||
"@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
|
||
"where @math{@var{q} = floor(@var{x} / @var{y})}.\n"
|
||
"@lisp\n"
|
||
"(floor-remainder 123 10) @result{} 3\n"
|
||
"(floor-remainder 123 -10) @result{} -7\n"
|
||
"(floor-remainder -123 10) @result{} 7\n"
|
||
"(floor-remainder -123 -10) @result{} -3\n"
|
||
"(floor-remainder -123.2 -63.5) @result{} -59.7\n"
|
||
"(floor-remainder 16/3 -10/7) @result{} -8/21\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_floor_remainder
|
||
{
|
||
if (SCM_LIKELY (SCM_I_INUMP (x)))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_floor_remainder_ii (SCM_I_INUM (x), SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_floor_remainder_iz (SCM_I_INUM (x), scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_inexact_floor_remainder (SCM_I_INUM (x),
|
||
SCM_REAL_VALUE (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_floor_remainder (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
|
||
s_scm_floor_remainder);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_floor_remainder_zi (scm_bignum (x), SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_floor_remainder_zz (scm_bignum (x), scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_inexact_floor_remainder
|
||
(scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_floor_remainder (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
|
||
s_scm_floor_remainder);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_REALP (y) || SCM_I_INUMP (y) ||
|
||
SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
return scm_i_inexact_floor_remainder
|
||
(SCM_REAL_VALUE (x), scm_to_double (y));
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
|
||
s_scm_floor_remainder);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_REALP (y))
|
||
return scm_i_inexact_floor_remainder
|
||
(scm_i_fraction2double (x), SCM_REAL_VALUE (y));
|
||
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_floor_remainder (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
|
||
s_scm_floor_remainder);
|
||
}
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG1,
|
||
s_scm_floor_remainder);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static SCM
|
||
scm_i_inexact_floor_remainder (double x, double y)
|
||
{
|
||
/* Although it would be more efficient to use fmod here, we can't
|
||
because it would in some cases produce results inconsistent with
|
||
scm_i_inexact_floor_quotient, such that x != q * y + r (not even
|
||
close). In particular, when x is very close to a multiple of y,
|
||
then r might be either 0.0 or y, but those two cases must
|
||
correspond to different choices of q. If r = 0.0 then q must be
|
||
x/y, and if r = y then q must be x/y-1. If quotient chooses one
|
||
and remainder chooses the other, it would be bad. */
|
||
if (SCM_UNLIKELY (y == 0))
|
||
scm_num_overflow (s_scm_floor_remainder); /* or return a NaN? */
|
||
else
|
||
return scm_i_from_double (x - y * floor (x / y));
|
||
}
|
||
|
||
static SCM
|
||
scm_i_exact_rational_floor_remainder (SCM x, SCM y)
|
||
{
|
||
SCM xd = scm_denominator (x);
|
||
SCM yd = scm_denominator (y);
|
||
SCM r1 = scm_floor_remainder (scm_product (scm_numerator (x), yd),
|
||
scm_product (scm_numerator (y), xd));
|
||
return scm_divide (r1, scm_product (xd, yd));
|
||
}
|
||
|
||
|
||
static void scm_i_inexact_floor_divide (double x, double y,
|
||
SCM *qp, SCM *rp);
|
||
static void scm_i_exact_rational_floor_divide (SCM x, SCM y,
|
||
SCM *qp, SCM *rp);
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_i_floor_divide, "floor/", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return the integer @var{q} and the real number @var{r}\n"
|
||
"such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
|
||
"and @math{@var{q} = floor(@var{x} / @var{y})}.\n"
|
||
"@lisp\n"
|
||
"(floor/ 123 10) @result{} 12 and 3\n"
|
||
"(floor/ 123 -10) @result{} -13 and -7\n"
|
||
"(floor/ -123 10) @result{} -13 and 7\n"
|
||
"(floor/ -123 -10) @result{} 12 and -3\n"
|
||
"(floor/ -123.2 -63.5) @result{} 1.0 and -59.7\n"
|
||
"(floor/ 16/3 -10/7) @result{} -4 and -8/21\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_i_floor_divide
|
||
{
|
||
SCM q, r;
|
||
|
||
scm_floor_divide(x, y, &q, &r);
|
||
return scm_values_2 (q, r);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
#define s_scm_floor_divide s_scm_i_floor_divide
|
||
#define g_scm_floor_divide g_scm_i_floor_divide
|
||
|
||
void
|
||
scm_floor_divide (SCM x, SCM y, SCM *qp, SCM *rp)
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
scm_integer_floor_divide_ii (SCM_I_INUM (x), SCM_I_INUM (y), qp, rp);
|
||
else if (SCM_BIGP (y))
|
||
scm_integer_floor_divide_iz (SCM_I_INUM (x), scm_bignum (y), qp, rp);
|
||
else if (SCM_REALP (y))
|
||
scm_i_inexact_floor_divide (SCM_I_INUM (x), SCM_REAL_VALUE (y), qp, rp);
|
||
else if (SCM_FRACTIONP (y))
|
||
scm_i_exact_rational_floor_divide (x, y, qp, rp);
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
|
||
s_scm_floor_divide, qp, rp);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
scm_integer_floor_divide_zi (scm_bignum (x), SCM_I_INUM (y), qp, rp);
|
||
else if (SCM_BIGP (y))
|
||
scm_integer_floor_divide_zz (scm_bignum (x), scm_bignum (y), qp, rp);
|
||
else if (SCM_REALP (y))
|
||
scm_i_inexact_floor_divide (scm_integer_to_double_z (scm_bignum (x)),
|
||
SCM_REAL_VALUE (y),
|
||
qp, rp);
|
||
else if (SCM_FRACTIONP (y))
|
||
scm_i_exact_rational_floor_divide (x, y, qp, rp);
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
|
||
s_scm_floor_divide, qp, rp);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_REALP (y) || SCM_I_INUMP (y) ||
|
||
SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
scm_i_inexact_floor_divide (SCM_REAL_VALUE (x), scm_to_double (y),
|
||
qp, rp);
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
|
||
s_scm_floor_divide, qp, rp);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_REALP (y))
|
||
scm_i_inexact_floor_divide
|
||
(scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
|
||
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
scm_i_exact_rational_floor_divide (x, y, qp, rp);
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
|
||
s_scm_floor_divide, qp, rp);
|
||
}
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG1,
|
||
s_scm_floor_divide, qp, rp);
|
||
}
|
||
|
||
static void
|
||
scm_i_inexact_floor_divide (double x, double y, SCM *qp, SCM *rp)
|
||
{
|
||
if (SCM_UNLIKELY (y == 0))
|
||
scm_num_overflow (s_scm_floor_divide); /* or return a NaN? */
|
||
else
|
||
{
|
||
double q = floor (x / y);
|
||
double r = x - q * y;
|
||
*qp = scm_i_from_double (q);
|
||
*rp = scm_i_from_double (r);
|
||
}
|
||
}
|
||
|
||
static void
|
||
scm_i_exact_rational_floor_divide (SCM x, SCM y, SCM *qp, SCM *rp)
|
||
{
|
||
SCM r1;
|
||
SCM xd = scm_denominator (x);
|
||
SCM yd = scm_denominator (y);
|
||
|
||
scm_floor_divide (scm_product (scm_numerator (x), yd),
|
||
scm_product (scm_numerator (y), xd),
|
||
qp, &r1);
|
||
*rp = scm_divide (r1, scm_product (xd, yd));
|
||
}
|
||
|
||
static SCM scm_i_inexact_ceiling_quotient (double x, double y);
|
||
static SCM scm_i_exact_rational_ceiling_quotient (SCM x, SCM y);
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_ceiling_quotient, "ceiling-quotient", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return the ceiling of @math{@var{x} / @var{y}}.\n"
|
||
"@lisp\n"
|
||
"(ceiling-quotient 123 10) @result{} 13\n"
|
||
"(ceiling-quotient 123 -10) @result{} -12\n"
|
||
"(ceiling-quotient -123 10) @result{} -12\n"
|
||
"(ceiling-quotient -123 -10) @result{} 13\n"
|
||
"(ceiling-quotient -123.2 -63.5) @result{} 2.0\n"
|
||
"(ceiling-quotient 16/3 -10/7) @result{} -3\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_ceiling_quotient
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_ceiling_quotient_ii (SCM_I_INUM (x), SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_ceiling_quotient_iz (SCM_I_INUM (x), scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_inexact_ceiling_quotient (SCM_I_INUM (x),
|
||
SCM_REAL_VALUE (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_ceiling_quotient (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
|
||
s_scm_ceiling_quotient);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_ceiling_quotient_zi (scm_bignum (x), SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_ceiling_quotient_zz (scm_bignum (x), scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_inexact_ceiling_quotient
|
||
(scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_ceiling_quotient (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
|
||
s_scm_ceiling_quotient);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_REALP (y) || SCM_I_INUMP (y) ||
|
||
SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
return scm_i_inexact_ceiling_quotient
|
||
(SCM_REAL_VALUE (x), scm_to_double (y));
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
|
||
s_scm_ceiling_quotient);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_REALP (y))
|
||
return scm_i_inexact_ceiling_quotient
|
||
(scm_i_fraction2double (x), SCM_REAL_VALUE (y));
|
||
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_ceiling_quotient (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
|
||
s_scm_ceiling_quotient);
|
||
}
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG1,
|
||
s_scm_ceiling_quotient);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static SCM
|
||
scm_i_inexact_ceiling_quotient (double x, double y)
|
||
{
|
||
if (SCM_UNLIKELY (y == 0))
|
||
scm_num_overflow (s_scm_ceiling_quotient); /* or return a NaN? */
|
||
else
|
||
return scm_i_from_double (ceil (x / y));
|
||
}
|
||
|
||
static SCM
|
||
scm_i_exact_rational_ceiling_quotient (SCM x, SCM y)
|
||
{
|
||
return scm_ceiling_quotient
|
||
(scm_product (scm_numerator (x), scm_denominator (y)),
|
||
scm_product (scm_numerator (y), scm_denominator (x)));
|
||
}
|
||
|
||
static SCM scm_i_inexact_ceiling_remainder (double x, double y);
|
||
static SCM scm_i_exact_rational_ceiling_remainder (SCM x, SCM y);
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_ceiling_remainder, "ceiling-remainder", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return the real number @var{r} such that\n"
|
||
"@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
|
||
"where @math{@var{q} = ceiling(@var{x} / @var{y})}.\n"
|
||
"@lisp\n"
|
||
"(ceiling-remainder 123 10) @result{} -7\n"
|
||
"(ceiling-remainder 123 -10) @result{} 3\n"
|
||
"(ceiling-remainder -123 10) @result{} -3\n"
|
||
"(ceiling-remainder -123 -10) @result{} 7\n"
|
||
"(ceiling-remainder -123.2 -63.5) @result{} 3.8\n"
|
||
"(ceiling-remainder 16/3 -10/7) @result{} 22/21\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_ceiling_remainder
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_ceiling_remainder_ii (SCM_I_INUM (x),
|
||
SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_ceiling_remainder_iz (SCM_I_INUM (x),
|
||
scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_inexact_ceiling_remainder (SCM_I_INUM (x),
|
||
SCM_REAL_VALUE (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_ceiling_remainder (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
|
||
s_scm_ceiling_remainder);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_ceiling_remainder_zi (scm_bignum (x),
|
||
SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_ceiling_remainder_zz (scm_bignum (x),
|
||
scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_inexact_ceiling_remainder
|
||
(scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_ceiling_remainder (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
|
||
s_scm_ceiling_remainder);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_REALP (y) || SCM_I_INUMP (y) ||
|
||
SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
return scm_i_inexact_ceiling_remainder
|
||
(SCM_REAL_VALUE (x), scm_to_double (y));
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
|
||
s_scm_ceiling_remainder);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_REALP (y))
|
||
return scm_i_inexact_ceiling_remainder
|
||
(scm_i_fraction2double (x), SCM_REAL_VALUE (y));
|
||
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_ceiling_remainder (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
|
||
s_scm_ceiling_remainder);
|
||
}
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG1,
|
||
s_scm_ceiling_remainder);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static SCM
|
||
scm_i_inexact_ceiling_remainder (double x, double y)
|
||
{
|
||
/* Although it would be more efficient to use fmod here, we can't
|
||
because it would in some cases produce results inconsistent with
|
||
scm_i_inexact_ceiling_quotient, such that x != q * y + r (not even
|
||
close). In particular, when x is very close to a multiple of y,
|
||
then r might be either 0.0 or -y, but those two cases must
|
||
correspond to different choices of q. If r = 0.0 then q must be
|
||
x/y, and if r = -y then q must be x/y+1. If quotient chooses one
|
||
and remainder chooses the other, it would be bad. */
|
||
if (SCM_UNLIKELY (y == 0))
|
||
scm_num_overflow (s_scm_ceiling_remainder); /* or return a NaN? */
|
||
else
|
||
return scm_i_from_double (x - y * ceil (x / y));
|
||
}
|
||
|
||
static SCM
|
||
scm_i_exact_rational_ceiling_remainder (SCM x, SCM y)
|
||
{
|
||
SCM xd = scm_denominator (x);
|
||
SCM yd = scm_denominator (y);
|
||
SCM r1 = scm_ceiling_remainder (scm_product (scm_numerator (x), yd),
|
||
scm_product (scm_numerator (y), xd));
|
||
return scm_divide (r1, scm_product (xd, yd));
|
||
}
|
||
|
||
static void scm_i_inexact_ceiling_divide (double x, double y,
|
||
SCM *qp, SCM *rp);
|
||
static void scm_i_exact_rational_ceiling_divide (SCM x, SCM y,
|
||
SCM *qp, SCM *rp);
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_i_ceiling_divide, "ceiling/", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return the integer @var{q} and the real number @var{r}\n"
|
||
"such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
|
||
"and @math{@var{q} = ceiling(@var{x} / @var{y})}.\n"
|
||
"@lisp\n"
|
||
"(ceiling/ 123 10) @result{} 13 and -7\n"
|
||
"(ceiling/ 123 -10) @result{} -12 and 3\n"
|
||
"(ceiling/ -123 10) @result{} -12 and -3\n"
|
||
"(ceiling/ -123 -10) @result{} 13 and 7\n"
|
||
"(ceiling/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
|
||
"(ceiling/ 16/3 -10/7) @result{} -3 and 22/21\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_i_ceiling_divide
|
||
{
|
||
SCM q, r;
|
||
|
||
scm_ceiling_divide(x, y, &q, &r);
|
||
return scm_values_2 (q, r);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
#define s_scm_ceiling_divide s_scm_i_ceiling_divide
|
||
#define g_scm_ceiling_divide g_scm_i_ceiling_divide
|
||
|
||
void
|
||
scm_ceiling_divide (SCM x, SCM y, SCM *qp, SCM *rp)
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
scm_integer_ceiling_divide_ii (SCM_I_INUM (x), SCM_I_INUM (y), qp, rp);
|
||
else if (SCM_BIGP (y))
|
||
scm_integer_ceiling_divide_iz (SCM_I_INUM (x), scm_bignum (y), qp, rp);
|
||
else if (SCM_REALP (y))
|
||
scm_i_inexact_ceiling_divide (SCM_I_INUM (x), SCM_REAL_VALUE (y), qp, rp);
|
||
else if (SCM_FRACTIONP (y))
|
||
scm_i_exact_rational_ceiling_divide (x, y, qp, rp);
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
|
||
s_scm_ceiling_divide, qp, rp);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
scm_integer_ceiling_divide_zi (scm_bignum (x), SCM_I_INUM (y), qp, rp);
|
||
else if (SCM_BIGP (y))
|
||
scm_integer_ceiling_divide_zz (scm_bignum (x), scm_bignum (y), qp, rp);
|
||
else if (SCM_REALP (y))
|
||
scm_i_inexact_ceiling_divide (scm_integer_to_double_z (scm_bignum (x)),
|
||
SCM_REAL_VALUE (y), qp, rp);
|
||
else if (SCM_FRACTIONP (y))
|
||
scm_i_exact_rational_ceiling_divide (x, y, qp, rp);
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
|
||
s_scm_ceiling_divide, qp, rp);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_REALP (y) || SCM_I_INUMP (y) ||
|
||
SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
scm_i_inexact_ceiling_divide (SCM_REAL_VALUE (x), scm_to_double (y),
|
||
qp, rp);
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
|
||
s_scm_ceiling_divide, qp, rp);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_REALP (y))
|
||
scm_i_inexact_ceiling_divide
|
||
(scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
|
||
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
scm_i_exact_rational_ceiling_divide (x, y, qp, rp);
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
|
||
s_scm_ceiling_divide, qp, rp);
|
||
}
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG1,
|
||
s_scm_ceiling_divide, qp, rp);
|
||
}
|
||
|
||
static void
|
||
scm_i_inexact_ceiling_divide (double x, double y, SCM *qp, SCM *rp)
|
||
{
|
||
if (SCM_UNLIKELY (y == 0))
|
||
scm_num_overflow (s_scm_ceiling_divide); /* or return a NaN? */
|
||
else
|
||
{
|
||
double q = ceil (x / y);
|
||
double r = x - q * y;
|
||
*qp = scm_i_from_double (q);
|
||
*rp = scm_i_from_double (r);
|
||
}
|
||
}
|
||
|
||
static void
|
||
scm_i_exact_rational_ceiling_divide (SCM x, SCM y, SCM *qp, SCM *rp)
|
||
{
|
||
SCM r1;
|
||
SCM xd = scm_denominator (x);
|
||
SCM yd = scm_denominator (y);
|
||
|
||
scm_ceiling_divide (scm_product (scm_numerator (x), yd),
|
||
scm_product (scm_numerator (y), xd),
|
||
qp, &r1);
|
||
*rp = scm_divide (r1, scm_product (xd, yd));
|
||
}
|
||
|
||
static SCM scm_i_inexact_truncate_quotient (double x, double y);
|
||
static SCM scm_i_exact_rational_truncate_quotient (SCM x, SCM y);
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_truncate_quotient, "truncate-quotient", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return @math{@var{x} / @var{y}} rounded toward zero.\n"
|
||
"@lisp\n"
|
||
"(truncate-quotient 123 10) @result{} 12\n"
|
||
"(truncate-quotient 123 -10) @result{} -12\n"
|
||
"(truncate-quotient -123 10) @result{} -12\n"
|
||
"(truncate-quotient -123 -10) @result{} 12\n"
|
||
"(truncate-quotient -123.2 -63.5) @result{} 1.0\n"
|
||
"(truncate-quotient 16/3 -10/7) @result{} -3\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_truncate_quotient
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_truncate_quotient_ii (SCM_I_INUM (x),
|
||
SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_truncate_quotient_iz (SCM_I_INUM (x),
|
||
scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_inexact_truncate_quotient (SCM_I_INUM (x),
|
||
SCM_REAL_VALUE (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_truncate_quotient (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
|
||
s_scm_truncate_quotient);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_truncate_quotient_zi (scm_bignum (x),
|
||
SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_truncate_quotient_zz (scm_bignum (x),
|
||
scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_inexact_truncate_quotient
|
||
(scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_truncate_quotient (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
|
||
s_scm_truncate_quotient);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_REALP (y) || SCM_I_INUMP (y) ||
|
||
SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
return scm_i_inexact_truncate_quotient
|
||
(SCM_REAL_VALUE (x), scm_to_double (y));
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
|
||
s_scm_truncate_quotient);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_REALP (y))
|
||
return scm_i_inexact_truncate_quotient
|
||
(scm_i_fraction2double (x), SCM_REAL_VALUE (y));
|
||
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_truncate_quotient (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
|
||
s_scm_truncate_quotient);
|
||
}
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG1,
|
||
s_scm_truncate_quotient);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static SCM
|
||
scm_i_inexact_truncate_quotient (double x, double y)
|
||
{
|
||
if (SCM_UNLIKELY (y == 0))
|
||
scm_num_overflow (s_scm_truncate_quotient); /* or return a NaN? */
|
||
else
|
||
return scm_i_from_double (trunc (x / y));
|
||
}
|
||
|
||
static SCM
|
||
scm_i_exact_rational_truncate_quotient (SCM x, SCM y)
|
||
{
|
||
return scm_truncate_quotient
|
||
(scm_product (scm_numerator (x), scm_denominator (y)),
|
||
scm_product (scm_numerator (y), scm_denominator (x)));
|
||
}
|
||
|
||
static SCM scm_i_inexact_truncate_remainder (double x, double y);
|
||
static SCM scm_i_exact_rational_truncate_remainder (SCM x, SCM y);
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_truncate_remainder, "truncate-remainder", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return the real number @var{r} such that\n"
|
||
"@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
|
||
"where @math{@var{q} = truncate(@var{x} / @var{y})}.\n"
|
||
"@lisp\n"
|
||
"(truncate-remainder 123 10) @result{} 3\n"
|
||
"(truncate-remainder 123 -10) @result{} 3\n"
|
||
"(truncate-remainder -123 10) @result{} -3\n"
|
||
"(truncate-remainder -123 -10) @result{} -3\n"
|
||
"(truncate-remainder -123.2 -63.5) @result{} -59.7\n"
|
||
"(truncate-remainder 16/3 -10/7) @result{} 22/21\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_truncate_remainder
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_truncate_remainder_ii (SCM_I_INUM (x),
|
||
SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_truncate_remainder_iz (SCM_I_INUM (x),
|
||
scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_inexact_truncate_remainder (SCM_I_INUM (x),
|
||
SCM_REAL_VALUE (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_truncate_remainder (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
|
||
s_scm_truncate_remainder);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_truncate_remainder_zi (scm_bignum (x),
|
||
SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_truncate_remainder_zz (scm_bignum (x),
|
||
scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_inexact_truncate_remainder
|
||
(scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_truncate_remainder (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
|
||
s_scm_truncate_remainder);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_REALP (y) || SCM_I_INUMP (y) ||
|
||
SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
return scm_i_inexact_truncate_remainder
|
||
(SCM_REAL_VALUE (x), scm_to_double (y));
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
|
||
s_scm_truncate_remainder);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_REALP (y))
|
||
return scm_i_inexact_truncate_remainder
|
||
(scm_i_fraction2double (x), SCM_REAL_VALUE (y));
|
||
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_truncate_remainder (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
|
||
s_scm_truncate_remainder);
|
||
}
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG1,
|
||
s_scm_truncate_remainder);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static SCM
|
||
scm_i_inexact_truncate_remainder (double x, double y)
|
||
{
|
||
/* Although it would be more efficient to use fmod here, we can't
|
||
because it would in some cases produce results inconsistent with
|
||
scm_i_inexact_truncate_quotient, such that x != q * y + r (not even
|
||
close). In particular, when x is very close to a multiple of y,
|
||
then r might be either 0.0 or sgn(x)*|y|, but those two cases must
|
||
correspond to different choices of q. If quotient chooses one and
|
||
remainder chooses the other, it would be bad. */
|
||
if (SCM_UNLIKELY (y == 0))
|
||
scm_num_overflow (s_scm_truncate_remainder); /* or return a NaN? */
|
||
else
|
||
return scm_i_from_double (x - y * trunc (x / y));
|
||
}
|
||
|
||
static SCM
|
||
scm_i_exact_rational_truncate_remainder (SCM x, SCM y)
|
||
{
|
||
SCM xd = scm_denominator (x);
|
||
SCM yd = scm_denominator (y);
|
||
SCM r1 = scm_truncate_remainder (scm_product (scm_numerator (x), yd),
|
||
scm_product (scm_numerator (y), xd));
|
||
return scm_divide (r1, scm_product (xd, yd));
|
||
}
|
||
|
||
|
||
static void scm_i_inexact_truncate_divide (double x, double y,
|
||
SCM *qp, SCM *rp);
|
||
static void scm_i_exact_rational_truncate_divide (SCM x, SCM y,
|
||
SCM *qp, SCM *rp);
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_i_truncate_divide, "truncate/", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return the integer @var{q} and the real number @var{r}\n"
|
||
"such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
|
||
"and @math{@var{q} = truncate(@var{x} / @var{y})}.\n"
|
||
"@lisp\n"
|
||
"(truncate/ 123 10) @result{} 12 and 3\n"
|
||
"(truncate/ 123 -10) @result{} -12 and 3\n"
|
||
"(truncate/ -123 10) @result{} -12 and -3\n"
|
||
"(truncate/ -123 -10) @result{} 12 and -3\n"
|
||
"(truncate/ -123.2 -63.5) @result{} 1.0 and -59.7\n"
|
||
"(truncate/ 16/3 -10/7) @result{} -3 and 22/21\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_i_truncate_divide
|
||
{
|
||
SCM q, r;
|
||
|
||
scm_truncate_divide(x, y, &q, &r);
|
||
return scm_values_2 (q, r);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
#define s_scm_truncate_divide s_scm_i_truncate_divide
|
||
#define g_scm_truncate_divide g_scm_i_truncate_divide
|
||
|
||
void
|
||
scm_truncate_divide (SCM x, SCM y, SCM *qp, SCM *rp)
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
scm_integer_truncate_divide_ii (SCM_I_INUM (x), SCM_I_INUM (y),
|
||
qp, rp);
|
||
else if (SCM_BIGP (y))
|
||
scm_integer_truncate_divide_iz (SCM_I_INUM (x), scm_bignum (y),
|
||
qp, rp);
|
||
else if (SCM_REALP (y))
|
||
scm_i_inexact_truncate_divide (SCM_I_INUM (x), SCM_REAL_VALUE (y),
|
||
qp, rp);
|
||
else if (SCM_FRACTIONP (y))
|
||
scm_i_exact_rational_truncate_divide (x, y, qp, rp);
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG2,
|
||
s_scm_truncate_divide, qp, rp);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
scm_integer_truncate_divide_zi (scm_bignum (x), SCM_I_INUM (y), qp, rp);
|
||
else if (SCM_BIGP (y))
|
||
scm_integer_truncate_divide_zz (scm_bignum (x), scm_bignum (y), qp, rp);
|
||
else if (SCM_REALP (y))
|
||
scm_i_inexact_truncate_divide (scm_integer_to_double_z (scm_bignum (x)),
|
||
SCM_REAL_VALUE (y), qp, rp);
|
||
else if (SCM_FRACTIONP (y))
|
||
scm_i_exact_rational_truncate_divide (x, y, qp, rp);
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG2,
|
||
s_scm_truncate_divide, qp, rp);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_REALP (y) || SCM_I_INUMP (y) ||
|
||
SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
scm_i_inexact_truncate_divide (SCM_REAL_VALUE (x), scm_to_double (y),
|
||
qp, rp);
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG2,
|
||
s_scm_truncate_divide, qp, rp);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_REALP (y))
|
||
scm_i_inexact_truncate_divide
|
||
(scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
|
||
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
scm_i_exact_rational_truncate_divide (x, y, qp, rp);
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG2,
|
||
s_scm_truncate_divide, qp, rp);
|
||
}
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG1,
|
||
s_scm_truncate_divide, qp, rp);
|
||
}
|
||
|
||
static void
|
||
scm_i_inexact_truncate_divide (double x, double y, SCM *qp, SCM *rp)
|
||
{
|
||
if (SCM_UNLIKELY (y == 0))
|
||
scm_num_overflow (s_scm_truncate_divide); /* or return a NaN? */
|
||
else
|
||
{
|
||
double q = trunc (x / y);
|
||
double r = x - q * y;
|
||
*qp = scm_i_from_double (q);
|
||
*rp = scm_i_from_double (r);
|
||
}
|
||
}
|
||
|
||
static void
|
||
scm_i_exact_rational_truncate_divide (SCM x, SCM y, SCM *qp, SCM *rp)
|
||
{
|
||
SCM r1;
|
||
SCM xd = scm_denominator (x);
|
||
SCM yd = scm_denominator (y);
|
||
|
||
scm_truncate_divide (scm_product (scm_numerator (x), yd),
|
||
scm_product (scm_numerator (y), xd),
|
||
qp, &r1);
|
||
*rp = scm_divide (r1, scm_product (xd, yd));
|
||
}
|
||
|
||
static SCM scm_i_inexact_centered_quotient (double x, double y);
|
||
static SCM scm_i_exact_rational_centered_quotient (SCM x, SCM y);
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_centered_quotient, "centered-quotient", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return the integer @var{q} such that\n"
|
||
"@math{@var{x} = @var{q}*@var{y} + @var{r}} where\n"
|
||
"@math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}.\n"
|
||
"@lisp\n"
|
||
"(centered-quotient 123 10) @result{} 12\n"
|
||
"(centered-quotient 123 -10) @result{} -12\n"
|
||
"(centered-quotient -123 10) @result{} -12\n"
|
||
"(centered-quotient -123 -10) @result{} 12\n"
|
||
"(centered-quotient -123.2 -63.5) @result{} 2.0\n"
|
||
"(centered-quotient 16/3 -10/7) @result{} -4\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_centered_quotient
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_centered_quotient_ii (SCM_I_INUM (x),
|
||
SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_centered_quotient_iz (SCM_I_INUM (x), scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_inexact_centered_quotient (SCM_I_INUM (x),
|
||
SCM_REAL_VALUE (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_centered_quotient (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
|
||
s_scm_centered_quotient);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_centered_quotient_zi (scm_bignum (x),
|
||
SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_centered_quotient_zz (scm_bignum (x),
|
||
scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_inexact_centered_quotient
|
||
(scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_centered_quotient (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
|
||
s_scm_centered_quotient);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_REALP (y) || SCM_I_INUMP (y) ||
|
||
SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
return scm_i_inexact_centered_quotient
|
||
(SCM_REAL_VALUE (x), scm_to_double (y));
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
|
||
s_scm_centered_quotient);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_REALP (y))
|
||
return scm_i_inexact_centered_quotient
|
||
(scm_i_fraction2double (x), SCM_REAL_VALUE (y));
|
||
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_centered_quotient (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
|
||
s_scm_centered_quotient);
|
||
}
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG1,
|
||
s_scm_centered_quotient);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static SCM
|
||
scm_i_inexact_centered_quotient (double x, double y)
|
||
{
|
||
if (SCM_LIKELY (y > 0))
|
||
return scm_i_from_double (floor (x/y + 0.5));
|
||
else if (SCM_LIKELY (y < 0))
|
||
return scm_i_from_double (ceil (x/y - 0.5));
|
||
else if (y == 0)
|
||
scm_num_overflow (s_scm_centered_quotient); /* or return a NaN? */
|
||
else
|
||
return scm_nan ();
|
||
}
|
||
|
||
static SCM
|
||
scm_i_exact_rational_centered_quotient (SCM x, SCM y)
|
||
{
|
||
return scm_centered_quotient
|
||
(scm_product (scm_numerator (x), scm_denominator (y)),
|
||
scm_product (scm_numerator (y), scm_denominator (x)));
|
||
}
|
||
|
||
static SCM scm_i_inexact_centered_remainder (double x, double y);
|
||
static SCM scm_i_exact_rational_centered_remainder (SCM x, SCM y);
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_centered_remainder, "centered-remainder", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return the real number @var{r} such that\n"
|
||
"@math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}\n"
|
||
"and @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
|
||
"for some integer @var{q}.\n"
|
||
"@lisp\n"
|
||
"(centered-remainder 123 10) @result{} 3\n"
|
||
"(centered-remainder 123 -10) @result{} 3\n"
|
||
"(centered-remainder -123 10) @result{} -3\n"
|
||
"(centered-remainder -123 -10) @result{} -3\n"
|
||
"(centered-remainder -123.2 -63.5) @result{} 3.8\n"
|
||
"(centered-remainder 16/3 -10/7) @result{} -8/21\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_centered_remainder
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_centered_remainder_ii (SCM_I_INUM (x),
|
||
SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_centered_remainder_iz (SCM_I_INUM (x),
|
||
scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_inexact_centered_remainder (SCM_I_INUM (x),
|
||
SCM_REAL_VALUE (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_centered_remainder (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
|
||
s_scm_centered_remainder);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_centered_remainder_zi (scm_bignum (x),
|
||
SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_centered_remainder_zz (scm_bignum (x),
|
||
scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_inexact_centered_remainder
|
||
(scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_centered_remainder (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
|
||
s_scm_centered_remainder);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_REALP (y) || SCM_I_INUMP (y) ||
|
||
SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
return scm_i_inexact_centered_remainder
|
||
(SCM_REAL_VALUE (x), scm_to_double (y));
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
|
||
s_scm_centered_remainder);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_REALP (y))
|
||
return scm_i_inexact_centered_remainder
|
||
(scm_i_fraction2double (x), SCM_REAL_VALUE (y));
|
||
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_centered_remainder (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
|
||
s_scm_centered_remainder);
|
||
}
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG1,
|
||
s_scm_centered_remainder);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static SCM
|
||
scm_i_inexact_centered_remainder (double x, double y)
|
||
{
|
||
double q;
|
||
|
||
/* Although it would be more efficient to use fmod here, we can't
|
||
because it would in some cases produce results inconsistent with
|
||
scm_i_inexact_centered_quotient, such that x != r + q * y (not even
|
||
close). In particular, when x-y/2 is very close to a multiple of
|
||
y, then r might be either -abs(y/2) or abs(y/2)-epsilon, but those
|
||
two cases must correspond to different choices of q. If quotient
|
||
chooses one and remainder chooses the other, it would be bad. */
|
||
if (SCM_LIKELY (y > 0))
|
||
q = floor (x/y + 0.5);
|
||
else if (SCM_LIKELY (y < 0))
|
||
q = ceil (x/y - 0.5);
|
||
else if (y == 0)
|
||
scm_num_overflow (s_scm_centered_remainder); /* or return a NaN? */
|
||
else
|
||
return scm_nan ();
|
||
return scm_i_from_double (x - q * y);
|
||
}
|
||
|
||
static SCM
|
||
scm_i_exact_rational_centered_remainder (SCM x, SCM y)
|
||
{
|
||
SCM xd = scm_denominator (x);
|
||
SCM yd = scm_denominator (y);
|
||
SCM r1 = scm_centered_remainder (scm_product (scm_numerator (x), yd),
|
||
scm_product (scm_numerator (y), xd));
|
||
return scm_divide (r1, scm_product (xd, yd));
|
||
}
|
||
|
||
|
||
static void scm_i_inexact_centered_divide (double x, double y,
|
||
SCM *qp, SCM *rp);
|
||
static void scm_i_exact_rational_centered_divide (SCM x, SCM y,
|
||
SCM *qp, SCM *rp);
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_i_centered_divide, "centered/", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return the integer @var{q} and the real number @var{r}\n"
|
||
"such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
|
||
"and @math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}.\n"
|
||
"@lisp\n"
|
||
"(centered/ 123 10) @result{} 12 and 3\n"
|
||
"(centered/ 123 -10) @result{} -12 and 3\n"
|
||
"(centered/ -123 10) @result{} -12 and -3\n"
|
||
"(centered/ -123 -10) @result{} 12 and -3\n"
|
||
"(centered/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
|
||
"(centered/ 16/3 -10/7) @result{} -4 and -8/21\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_i_centered_divide
|
||
{
|
||
SCM q, r;
|
||
|
||
scm_centered_divide(x, y, &q, &r);
|
||
return scm_values_2 (q, r);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
#define s_scm_centered_divide s_scm_i_centered_divide
|
||
#define g_scm_centered_divide g_scm_i_centered_divide
|
||
|
||
void
|
||
scm_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
scm_integer_centered_divide_ii (SCM_I_INUM (x), SCM_I_INUM (y), qp, rp);
|
||
else if (SCM_BIGP (y))
|
||
scm_integer_centered_divide_iz (SCM_I_INUM (x), scm_bignum (y), qp, rp);
|
||
else if (SCM_REALP (y))
|
||
scm_i_inexact_centered_divide (SCM_I_INUM (x), SCM_REAL_VALUE (y),
|
||
qp, rp);
|
||
else if (SCM_FRACTIONP (y))
|
||
scm_i_exact_rational_centered_divide (x, y, qp, rp);
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG2,
|
||
s_scm_centered_divide, qp, rp);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
scm_integer_centered_divide_zi (scm_bignum (x), SCM_I_INUM (y), qp, rp);
|
||
else if (SCM_BIGP (y))
|
||
scm_integer_centered_divide_zz (scm_bignum (x), scm_bignum (y), qp, rp);
|
||
else if (SCM_REALP (y))
|
||
scm_i_inexact_centered_divide (scm_integer_to_double_z (scm_bignum (x)),
|
||
SCM_REAL_VALUE (y), qp, rp);
|
||
else if (SCM_FRACTIONP (y))
|
||
scm_i_exact_rational_centered_divide (x, y, qp, rp);
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG2,
|
||
s_scm_centered_divide, qp, rp);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_REALP (y) || SCM_I_INUMP (y) ||
|
||
SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
scm_i_inexact_centered_divide (SCM_REAL_VALUE (x), scm_to_double (y),
|
||
qp, rp);
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG2,
|
||
s_scm_centered_divide, qp, rp);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_REALP (y))
|
||
scm_i_inexact_centered_divide
|
||
(scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
|
||
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
scm_i_exact_rational_centered_divide (x, y, qp, rp);
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG2,
|
||
s_scm_centered_divide, qp, rp);
|
||
}
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG1,
|
||
s_scm_centered_divide, qp, rp);
|
||
}
|
||
|
||
static void
|
||
scm_i_inexact_centered_divide (double x, double y, SCM *qp, SCM *rp)
|
||
{
|
||
double q, r;
|
||
|
||
if (SCM_LIKELY (y > 0))
|
||
q = floor (x/y + 0.5);
|
||
else if (SCM_LIKELY (y < 0))
|
||
q = ceil (x/y - 0.5);
|
||
else if (y == 0)
|
||
scm_num_overflow (s_scm_centered_divide); /* or return a NaN? */
|
||
else
|
||
q = guile_NaN;
|
||
r = x - q * y;
|
||
*qp = scm_i_from_double (q);
|
||
*rp = scm_i_from_double (r);
|
||
}
|
||
|
||
static void
|
||
scm_i_exact_rational_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
|
||
{
|
||
SCM r1;
|
||
SCM xd = scm_denominator (x);
|
||
SCM yd = scm_denominator (y);
|
||
|
||
scm_centered_divide (scm_product (scm_numerator (x), yd),
|
||
scm_product (scm_numerator (y), xd),
|
||
qp, &r1);
|
||
*rp = scm_divide (r1, scm_product (xd, yd));
|
||
}
|
||
|
||
static SCM scm_i_inexact_round_quotient (double x, double y);
|
||
static SCM scm_i_exact_rational_round_quotient (SCM x, SCM y);
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_round_quotient, "round-quotient", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return @math{@var{x} / @var{y}} to the nearest integer,\n"
|
||
"with ties going to the nearest even integer.\n"
|
||
"@lisp\n"
|
||
"(round-quotient 123 10) @result{} 12\n"
|
||
"(round-quotient 123 -10) @result{} -12\n"
|
||
"(round-quotient -123 10) @result{} -12\n"
|
||
"(round-quotient -123 -10) @result{} 12\n"
|
||
"(round-quotient 125 10) @result{} 12\n"
|
||
"(round-quotient 127 10) @result{} 13\n"
|
||
"(round-quotient 135 10) @result{} 14\n"
|
||
"(round-quotient -123.2 -63.5) @result{} 2.0\n"
|
||
"(round-quotient 16/3 -10/7) @result{} -4\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_round_quotient
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_round_quotient_ii (SCM_I_INUM (x), SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_round_quotient_iz (SCM_I_INUM (x), scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_inexact_round_quotient (SCM_I_INUM (x),
|
||
SCM_REAL_VALUE (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_round_quotient (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
|
||
s_scm_round_quotient);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_round_quotient_zi (scm_bignum (x), SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_round_quotient_zz (scm_bignum (x), scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_inexact_round_quotient
|
||
(scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_round_quotient (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
|
||
s_scm_round_quotient);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_REALP (y) || SCM_I_INUMP (y) ||
|
||
SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
return scm_i_inexact_round_quotient
|
||
(SCM_REAL_VALUE (x), scm_to_double (y));
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
|
||
s_scm_round_quotient);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_REALP (y))
|
||
return scm_i_inexact_round_quotient
|
||
(scm_i_fraction2double (x), SCM_REAL_VALUE (y));
|
||
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_round_quotient (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
|
||
s_scm_round_quotient);
|
||
}
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG1,
|
||
s_scm_round_quotient);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static SCM
|
||
scm_i_inexact_round_quotient (double x, double y)
|
||
{
|
||
if (SCM_UNLIKELY (y == 0))
|
||
scm_num_overflow (s_scm_round_quotient); /* or return a NaN? */
|
||
else
|
||
return scm_i_from_double (scm_c_round (x / y));
|
||
}
|
||
|
||
static SCM
|
||
scm_i_exact_rational_round_quotient (SCM x, SCM y)
|
||
{
|
||
return scm_round_quotient
|
||
(scm_product (scm_numerator (x), scm_denominator (y)),
|
||
scm_product (scm_numerator (y), scm_denominator (x)));
|
||
}
|
||
|
||
static SCM scm_i_inexact_round_remainder (double x, double y);
|
||
static SCM scm_i_exact_rational_round_remainder (SCM x, SCM y);
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_round_remainder, "round-remainder", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return the real number @var{r} such that\n"
|
||
"@math{@var{x} = @var{q}*@var{y} + @var{r}}, where\n"
|
||
"@var{q} is @math{@var{x} / @var{y}} rounded to the\n"
|
||
"nearest integer, with ties going to the nearest\n"
|
||
"even integer.\n"
|
||
"@lisp\n"
|
||
"(round-remainder 123 10) @result{} 3\n"
|
||
"(round-remainder 123 -10) @result{} 3\n"
|
||
"(round-remainder -123 10) @result{} -3\n"
|
||
"(round-remainder -123 -10) @result{} -3\n"
|
||
"(round-remainder 125 10) @result{} 5\n"
|
||
"(round-remainder 127 10) @result{} -3\n"
|
||
"(round-remainder 135 10) @result{} -5\n"
|
||
"(round-remainder -123.2 -63.5) @result{} 3.8\n"
|
||
"(round-remainder 16/3 -10/7) @result{} -8/21\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_round_remainder
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_round_remainder_ii (SCM_I_INUM (x), SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_round_remainder_iz (SCM_I_INUM (x), scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_inexact_round_remainder (SCM_I_INUM (x),
|
||
SCM_REAL_VALUE (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_round_remainder (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
|
||
s_scm_round_remainder);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_round_remainder_zi (scm_bignum (x), SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_round_remainder_zz (scm_bignum (x), scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_inexact_round_remainder
|
||
(scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_round_remainder (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
|
||
s_scm_round_remainder);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_REALP (y) || SCM_I_INUMP (y) ||
|
||
SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
return scm_i_inexact_round_remainder
|
||
(SCM_REAL_VALUE (x), scm_to_double (y));
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
|
||
s_scm_round_remainder);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_REALP (y))
|
||
return scm_i_inexact_round_remainder
|
||
(scm_i_fraction2double (x), SCM_REAL_VALUE (y));
|
||
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
return scm_i_exact_rational_round_remainder (x, y);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
|
||
s_scm_round_remainder);
|
||
}
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG1,
|
||
s_scm_round_remainder);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static SCM
|
||
scm_i_inexact_round_remainder (double x, double y)
|
||
{
|
||
/* Although it would be more efficient to use fmod here, we can't
|
||
because it would in some cases produce results inconsistent with
|
||
scm_i_inexact_round_quotient, such that x != r + q * y (not even
|
||
close). In particular, when x-y/2 is very close to a multiple of
|
||
y, then r might be either -abs(y/2) or abs(y/2), but those two
|
||
cases must correspond to different choices of q. If quotient
|
||
chooses one and remainder chooses the other, it would be bad. */
|
||
|
||
if (SCM_UNLIKELY (y == 0))
|
||
scm_num_overflow (s_scm_round_remainder); /* or return a NaN? */
|
||
else
|
||
{
|
||
double q = scm_c_round (x / y);
|
||
return scm_i_from_double (x - q * y);
|
||
}
|
||
}
|
||
|
||
static SCM
|
||
scm_i_exact_rational_round_remainder (SCM x, SCM y)
|
||
{
|
||
SCM xd = scm_denominator (x);
|
||
SCM yd = scm_denominator (y);
|
||
SCM r1 = scm_round_remainder (scm_product (scm_numerator (x), yd),
|
||
scm_product (scm_numerator (y), xd));
|
||
return scm_divide (r1, scm_product (xd, yd));
|
||
}
|
||
|
||
|
||
static void scm_i_inexact_round_divide (double x, double y, SCM *qp, SCM *rp);
|
||
static void scm_i_exact_rational_round_divide (SCM x, SCM y, SCM *qp, SCM *rp);
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_i_round_divide, "round/", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return the integer @var{q} and the real number @var{r}\n"
|
||
"such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
|
||
"and @var{q} is @math{@var{x} / @var{y}} rounded to the\n"
|
||
"nearest integer, with ties going to the nearest even integer.\n"
|
||
"@lisp\n"
|
||
"(round/ 123 10) @result{} 12 and 3\n"
|
||
"(round/ 123 -10) @result{} -12 and 3\n"
|
||
"(round/ -123 10) @result{} -12 and -3\n"
|
||
"(round/ -123 -10) @result{} 12 and -3\n"
|
||
"(round/ 125 10) @result{} 12 and 5\n"
|
||
"(round/ 127 10) @result{} 13 and -3\n"
|
||
"(round/ 135 10) @result{} 14 and -5\n"
|
||
"(round/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
|
||
"(round/ 16/3 -10/7) @result{} -4 and -8/21\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_i_round_divide
|
||
{
|
||
SCM q, r;
|
||
|
||
scm_round_divide(x, y, &q, &r);
|
||
return scm_values_2 (q, r);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
#define s_scm_round_divide s_scm_i_round_divide
|
||
#define g_scm_round_divide g_scm_i_round_divide
|
||
|
||
void
|
||
scm_round_divide (SCM x, SCM y, SCM *qp, SCM *rp)
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
scm_integer_round_divide_ii (SCM_I_INUM (x), SCM_I_INUM (y), qp, rp);
|
||
else if (SCM_BIGP (y))
|
||
scm_integer_round_divide_iz (SCM_I_INUM (x), scm_bignum (y), qp, rp);
|
||
else if (SCM_REALP (y))
|
||
scm_i_inexact_round_divide (SCM_I_INUM (x), SCM_REAL_VALUE (y), qp, rp);
|
||
else if (SCM_FRACTIONP (y))
|
||
scm_i_exact_rational_round_divide (x, y, qp, rp);
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
|
||
s_scm_round_divide, qp, rp);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
scm_integer_round_divide_zi (scm_bignum (x), SCM_I_INUM (y), qp, rp);
|
||
else if (SCM_BIGP (y))
|
||
scm_integer_round_divide_zz (scm_bignum (x), scm_bignum (y), qp, rp);
|
||
else if (SCM_REALP (y))
|
||
scm_i_inexact_round_divide (scm_integer_to_double_z (scm_bignum (x)),
|
||
SCM_REAL_VALUE (y), qp, rp);
|
||
else if (SCM_FRACTIONP (y))
|
||
scm_i_exact_rational_round_divide (x, y, qp, rp);
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
|
||
s_scm_round_divide, qp, rp);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_REALP (y) || SCM_I_INUMP (y) ||
|
||
SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
scm_i_inexact_round_divide (SCM_REAL_VALUE (x), scm_to_double (y),
|
||
qp, rp);
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
|
||
s_scm_round_divide, qp, rp);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_REALP (y))
|
||
scm_i_inexact_round_divide
|
||
(scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
|
||
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
|
||
scm_i_exact_rational_round_divide (x, y, qp, rp);
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
|
||
s_scm_round_divide, qp, rp);
|
||
}
|
||
else
|
||
two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG1,
|
||
s_scm_round_divide, qp, rp);
|
||
}
|
||
|
||
static void
|
||
scm_i_inexact_round_divide (double x, double y, SCM *qp, SCM *rp)
|
||
{
|
||
if (SCM_UNLIKELY (y == 0))
|
||
scm_num_overflow (s_scm_round_divide); /* or return a NaN? */
|
||
else
|
||
{
|
||
double q = scm_c_round (x / y);
|
||
double r = x - q * y;
|
||
*qp = scm_i_from_double (q);
|
||
*rp = scm_i_from_double (r);
|
||
}
|
||
}
|
||
|
||
static void
|
||
scm_i_exact_rational_round_divide (SCM x, SCM y, SCM *qp, SCM *rp)
|
||
{
|
||
SCM r1;
|
||
SCM xd = scm_denominator (x);
|
||
SCM yd = scm_denominator (y);
|
||
|
||
scm_round_divide (scm_product (scm_numerator (x), yd),
|
||
scm_product (scm_numerator (y), xd),
|
||
qp, &r1);
|
||
*rp = scm_divide (r1, scm_product (xd, yd));
|
||
}
|
||
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_i_gcd, "gcd", 0, 2, 1,
|
||
(SCM x, SCM y, SCM rest),
|
||
"Return the greatest common divisor of all parameter values.\n"
|
||
"If called without arguments, 0 is returned.")
|
||
#define FUNC_NAME s_scm_i_gcd
|
||
{
|
||
while (!scm_is_null (rest))
|
||
{ x = scm_gcd (x, y);
|
||
y = scm_car (rest);
|
||
rest = scm_cdr (rest);
|
||
}
|
||
return scm_gcd (x, y);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
#define s_gcd s_scm_i_gcd
|
||
#define g_gcd g_scm_i_gcd
|
||
|
||
SCM
|
||
scm_gcd (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y))
|
||
return SCM_UNBNDP (x) ? SCM_INUM0 : scm_abs (x);
|
||
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_gcd_ii (SCM_I_INUM (x), SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_gcd_zi (scm_bignum (y), SCM_I_INUM (x));
|
||
else if (SCM_REALP (y) && scm_is_integer (y))
|
||
goto handle_inexacts;
|
||
else
|
||
return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_gcd_zi (scm_bignum (x), SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_gcd_zz (scm_bignum (x), scm_bignum (y));
|
||
else if (SCM_REALP (y) && scm_is_integer (y))
|
||
goto handle_inexacts;
|
||
else
|
||
return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
|
||
}
|
||
else if (SCM_REALP (x) && scm_is_integer (x))
|
||
{
|
||
if (SCM_I_INUMP (y) || SCM_BIGP (y)
|
||
|| (SCM_REALP (y) && scm_is_integer (y)))
|
||
{
|
||
handle_inexacts:
|
||
return scm_exact_to_inexact (scm_gcd (scm_inexact_to_exact (x),
|
||
scm_inexact_to_exact (y)));
|
||
}
|
||
else
|
||
return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
|
||
}
|
||
else
|
||
return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
|
||
}
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_i_lcm, "lcm", 0, 2, 1,
|
||
(SCM x, SCM y, SCM rest),
|
||
"Return the least common multiple of the arguments.\n"
|
||
"If called without arguments, 1 is returned.")
|
||
#define FUNC_NAME s_scm_i_lcm
|
||
{
|
||
while (!scm_is_null (rest))
|
||
{ x = scm_lcm (x, y);
|
||
y = scm_car (rest);
|
||
rest = scm_cdr (rest);
|
||
}
|
||
return scm_lcm (x, y);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
#define s_lcm s_scm_i_lcm
|
||
#define g_lcm g_scm_i_lcm
|
||
|
||
SCM
|
||
scm_lcm (SCM n1, SCM n2)
|
||
{
|
||
if (SCM_UNBNDP (n2))
|
||
return SCM_UNBNDP (n1) ? SCM_INUM1 : scm_abs (n1);
|
||
|
||
if (SCM_I_INUMP (n1))
|
||
{
|
||
if (SCM_I_INUMP (n2))
|
||
return scm_integer_lcm_ii (SCM_I_INUM (n1), SCM_I_INUM (n2));
|
||
else if (SCM_BIGP (n2))
|
||
return scm_integer_lcm_zi (scm_bignum (n2), SCM_I_INUM (n1));
|
||
else if (SCM_REALP (n2) && scm_is_integer (n2))
|
||
goto handle_inexacts;
|
||
else
|
||
return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG2, s_lcm);
|
||
}
|
||
else if (SCM_LIKELY (SCM_BIGP (n1)))
|
||
{
|
||
if (SCM_I_INUMP (n2))
|
||
return scm_integer_lcm_zi (scm_bignum (n1), SCM_I_INUM (n2));
|
||
else if (SCM_BIGP (n2))
|
||
return scm_integer_lcm_zz (scm_bignum (n1), scm_bignum (n2));
|
||
else if (SCM_REALP (n2) && scm_is_integer (n2))
|
||
goto handle_inexacts;
|
||
else
|
||
return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG2, s_lcm);
|
||
}
|
||
else if (SCM_REALP (n1) && scm_is_integer (n1))
|
||
{
|
||
if (SCM_I_INUMP (n2) || SCM_BIGP (n2)
|
||
|| (SCM_REALP (n2) && scm_is_integer (n2)))
|
||
{
|
||
handle_inexacts:
|
||
return scm_exact_to_inexact (scm_lcm (scm_inexact_to_exact (n1),
|
||
scm_inexact_to_exact (n2)));
|
||
}
|
||
else
|
||
return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG2, s_lcm);
|
||
}
|
||
else
|
||
return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG1, s_lcm);
|
||
}
|
||
|
||
/* Emulating 2's complement bignums with sign magnitude arithmetic:
|
||
|
||
Logand:
|
||
X Y Result Method:
|
||
(len)
|
||
+ + + x (map digit:logand X Y)
|
||
+ - + x (map digit:logand X (lognot (+ -1 Y)))
|
||
- + + y (map digit:logand (lognot (+ -1 X)) Y)
|
||
- - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
|
||
|
||
Logior:
|
||
X Y Result Method:
|
||
|
||
+ + + (map digit:logior X Y)
|
||
+ - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
|
||
- + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
|
||
- - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
|
||
|
||
Logxor:
|
||
X Y Result Method:
|
||
|
||
+ + + (map digit:logxor X Y)
|
||
+ - - (+ 1 (map digit:logxor X (+ -1 Y)))
|
||
- + - (+ 1 (map digit:logxor (+ -1 X) Y))
|
||
- - + (map digit:logxor (+ -1 X) (+ -1 Y))
|
||
|
||
Logtest:
|
||
X Y Result
|
||
|
||
+ + (any digit:logand X Y)
|
||
+ - (any digit:logand X (lognot (+ -1 Y)))
|
||
- + (any digit:logand (lognot (+ -1 X)) Y)
|
||
- - #t
|
||
|
||
*/
|
||
|
||
SCM_DEFINE (scm_i_logand, "logand", 0, 2, 1,
|
||
(SCM x, SCM y, SCM rest),
|
||
"Return the bitwise AND of the integer arguments.\n\n"
|
||
"@lisp\n"
|
||
"(logand) @result{} -1\n"
|
||
"(logand 7) @result{} 7\n"
|
||
"(logand #b111 #b011 #b001) @result{} 1\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_i_logand
|
||
{
|
||
while (!scm_is_null (rest))
|
||
{ x = scm_logand (x, y);
|
||
y = scm_car (rest);
|
||
rest = scm_cdr (rest);
|
||
}
|
||
return scm_logand (x, y);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
#define s_scm_logand s_scm_i_logand
|
||
|
||
SCM scm_logand (SCM n1, SCM n2)
|
||
#define FUNC_NAME s_scm_logand
|
||
{
|
||
if (SCM_UNBNDP (n2))
|
||
{
|
||
if (SCM_UNBNDP (n1))
|
||
return SCM_I_MAKINUM (-1);
|
||
else if (!SCM_NUMBERP (n1))
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
else if (SCM_NUMBERP (n1))
|
||
return n1;
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
}
|
||
|
||
if (SCM_I_INUMP (n1))
|
||
{
|
||
if (SCM_I_INUMP (n2))
|
||
return scm_integer_logand_ii (SCM_I_INUM (n1), SCM_I_INUM (n2));
|
||
else if (SCM_BIGP (n2))
|
||
return scm_integer_logand_zi (scm_bignum (n2), SCM_I_INUM (n1));
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
else if (SCM_BIGP (n1))
|
||
{
|
||
if (SCM_I_INUMP (n2))
|
||
return scm_integer_logand_zi (scm_bignum (n1), SCM_I_INUM (n2));
|
||
else if (SCM_BIGP (n2))
|
||
return scm_integer_logand_zz (scm_bignum (n1), scm_bignum (n2));
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_i_logior, "logior", 0, 2, 1,
|
||
(SCM x, SCM y, SCM rest),
|
||
"Return the bitwise OR of the integer arguments.\n\n"
|
||
"@lisp\n"
|
||
"(logior) @result{} 0\n"
|
||
"(logior 7) @result{} 7\n"
|
||
"(logior #b000 #b001 #b011) @result{} 3\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_i_logior
|
||
{
|
||
while (!scm_is_null (rest))
|
||
{ x = scm_logior (x, y);
|
||
y = scm_car (rest);
|
||
rest = scm_cdr (rest);
|
||
}
|
||
return scm_logior (x, y);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
#define s_scm_logior s_scm_i_logior
|
||
|
||
SCM scm_logior (SCM n1, SCM n2)
|
||
#define FUNC_NAME s_scm_logior
|
||
{
|
||
if (SCM_UNBNDP (n2))
|
||
{
|
||
if (SCM_UNBNDP (n1))
|
||
return SCM_INUM0;
|
||
else if (SCM_NUMBERP (n1))
|
||
return n1;
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
}
|
||
|
||
if (SCM_I_INUMP (n1))
|
||
{
|
||
if (SCM_I_INUMP (n2))
|
||
return scm_integer_logior_ii (SCM_I_INUM (n1), SCM_I_INUM (n2));
|
||
else if (SCM_BIGP (n2))
|
||
return scm_integer_logior_zi (scm_bignum (n2), SCM_I_INUM (n1));
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
else if (SCM_BIGP (n1))
|
||
{
|
||
if (SCM_I_INUMP (n2))
|
||
return scm_integer_logior_zi (scm_bignum (n1), SCM_I_INUM (n2));
|
||
else if (SCM_BIGP (n2))
|
||
return scm_integer_logior_zz (scm_bignum (n1), scm_bignum (n2));
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_i_logxor, "logxor", 0, 2, 1,
|
||
(SCM x, SCM y, SCM rest),
|
||
"Return the bitwise XOR of the integer arguments. A bit is\n"
|
||
"set in the result if it is set in an odd number of arguments.\n"
|
||
"@lisp\n"
|
||
"(logxor) @result{} 0\n"
|
||
"(logxor 7) @result{} 7\n"
|
||
"(logxor #b000 #b001 #b011) @result{} 2\n"
|
||
"(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_i_logxor
|
||
{
|
||
while (!scm_is_null (rest))
|
||
{ x = scm_logxor (x, y);
|
||
y = scm_car (rest);
|
||
rest = scm_cdr (rest);
|
||
}
|
||
return scm_logxor (x, y);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
#define s_scm_logxor s_scm_i_logxor
|
||
|
||
SCM scm_logxor (SCM n1, SCM n2)
|
||
#define FUNC_NAME s_scm_logxor
|
||
{
|
||
if (SCM_UNBNDP (n2))
|
||
{
|
||
if (SCM_UNBNDP (n1))
|
||
return SCM_INUM0;
|
||
else if (SCM_NUMBERP (n1))
|
||
return n1;
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
}
|
||
|
||
if (SCM_I_INUMP (n1))
|
||
{
|
||
if (SCM_I_INUMP (n2))
|
||
return scm_integer_logxor_ii (SCM_I_INUM (n1), SCM_I_INUM (n2));
|
||
else if (SCM_BIGP (n2))
|
||
return scm_integer_logxor_zi (scm_bignum (n2), SCM_I_INUM (n1));
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
else if (SCM_BIGP (n1))
|
||
{
|
||
if (SCM_I_INUMP (n2))
|
||
return scm_integer_logxor_zi (scm_bignum (n1), SCM_I_INUM (n2));
|
||
else if (SCM_BIGP (n2))
|
||
return scm_integer_logxor_zz (scm_bignum (n1), scm_bignum (n2));
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
|
||
(SCM j, SCM k),
|
||
"Test whether @var{j} and @var{k} have any 1 bits in common.\n"
|
||
"This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
|
||
"without actually calculating the @code{logand}, just testing\n"
|
||
"for non-zero.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(logtest #b0100 #b1011) @result{} #f\n"
|
||
"(logtest #b0100 #b0111) @result{} #t\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_logtest
|
||
{
|
||
if (SCM_I_INUMP (j))
|
||
{
|
||
if (SCM_I_INUMP (k))
|
||
return scm_from_bool (scm_integer_logtest_ii (SCM_I_INUM (j),
|
||
SCM_I_INUM (k)));
|
||
else if (SCM_BIGP (k))
|
||
return scm_from_bool (scm_integer_logtest_zi (scm_bignum (k),
|
||
SCM_I_INUM (j)));
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
|
||
}
|
||
else if (SCM_BIGP (j))
|
||
{
|
||
if (SCM_I_INUMP (k))
|
||
return scm_from_bool (scm_integer_logtest_zi (scm_bignum (j),
|
||
SCM_I_INUM (k)));
|
||
else if (SCM_BIGP (k))
|
||
return scm_from_bool (scm_integer_logtest_zz (scm_bignum (j),
|
||
scm_bignum (k)));
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
|
||
(SCM index, SCM j),
|
||
"Test whether bit number @var{index} in @var{j} is set.\n"
|
||
"@var{index} starts from 0 for the least significant bit.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(logbit? 0 #b1101) @result{} #t\n"
|
||
"(logbit? 1 #b1101) @result{} #f\n"
|
||
"(logbit? 2 #b1101) @result{} #t\n"
|
||
"(logbit? 3 #b1101) @result{} #t\n"
|
||
"(logbit? 4 #b1101) @result{} #f\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_logbit_p
|
||
{
|
||
unsigned long int iindex;
|
||
iindex = scm_to_ulong (index);
|
||
|
||
if (SCM_I_INUMP (j))
|
||
return scm_from_bool (scm_integer_logbit_ui (iindex, SCM_I_INUM (j)));
|
||
else if (SCM_BIGP (j))
|
||
return scm_from_bool (scm_integer_logbit_uz (iindex, scm_bignum (j)));
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
|
||
(SCM n),
|
||
"Return the integer which is the ones-complement of the integer\n"
|
||
"argument.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(number->string (lognot #b10000000) 2)\n"
|
||
" @result{} \"-10000001\"\n"
|
||
"(number->string (lognot #b0) 2)\n"
|
||
" @result{} \"-1\"\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_lognot
|
||
{
|
||
if (SCM_I_INUMP (n))
|
||
return scm_integer_lognot_i (SCM_I_INUM (n));
|
||
else if (SCM_BIGP (n))
|
||
return scm_integer_lognot_z (scm_bignum (n));
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
|
||
(SCM n, SCM k, SCM m),
|
||
"Return @var{n} raised to the integer exponent\n"
|
||
"@var{k}, modulo @var{m}.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(modulo-expt 2 3 5)\n"
|
||
" @result{} 3\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_modulo_expt
|
||
{
|
||
if (!scm_is_exact_integer (n))
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
|
||
if (!scm_is_exact_integer (k))
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
|
||
if (!scm_is_exact_integer (m))
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG3, m);
|
||
|
||
return scm_integer_modulo_expt_nnn (n, k, m);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static void
|
||
mpz_clear_on_unwind (void *mpz)
|
||
{
|
||
mpz_clear (mpz);
|
||
}
|
||
|
||
SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
|
||
(SCM n, SCM k),
|
||
"Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
|
||
"exact integer, @var{n} can be any number.\n"
|
||
"\n"
|
||
"Negative @var{k} is supported, and results in\n"
|
||
"@math{1/@var{n}^abs(@var{k})} in the usual way.\n"
|
||
"@math{@var{n}^0} is 1, as usual, and that\n"
|
||
"includes @math{0^0} is 1.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(integer-expt 2 5) @result{} 32\n"
|
||
"(integer-expt -3 3) @result{} -27\n"
|
||
"(integer-expt 5 -3) @result{} 1/125\n"
|
||
"(integer-expt 0 0) @result{} 1\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_integer_expt
|
||
{
|
||
// Fast cases first.
|
||
if (SCM_I_INUMP (k))
|
||
{
|
||
if (SCM_I_INUM (k) < 0)
|
||
{
|
||
if (SCM_NUMBERP (n) && scm_is_true (scm_zero_p (n)))
|
||
return scm_nan ();
|
||
k = scm_integer_negate_i (SCM_I_INUM (k));
|
||
n = scm_divide (n, SCM_UNDEFINED);
|
||
}
|
||
if (SCM_I_INUMP (n))
|
||
return scm_integer_expt_ii (SCM_I_INUM (n), SCM_I_INUM (k));
|
||
else if (SCM_BIGP (n))
|
||
return scm_integer_expt_zi (scm_bignum (n), SCM_I_INUM (k));
|
||
}
|
||
else if (SCM_BIGP (k))
|
||
{
|
||
if (scm_is_integer_negative_z (scm_bignum (k)))
|
||
{
|
||
if (SCM_NUMBERP (n) && scm_is_true (scm_zero_p (n)))
|
||
return scm_nan ();
|
||
k = scm_integer_negate_z (scm_bignum (k));
|
||
n = scm_divide (n, SCM_UNDEFINED);
|
||
}
|
||
if (scm_is_eq (n, SCM_INUM0) || scm_is_eq (n, SCM_INUM1))
|
||
return n;
|
||
else if (scm_is_eq (n, SCM_I_MAKINUM (-1)))
|
||
return scm_is_integer_odd_z (scm_bignum (k)) ? n : SCM_INUM1;
|
||
else if (scm_is_exact_integer (n))
|
||
scm_num_overflow ("integer-expt");
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (2, k);
|
||
|
||
// The general case.
|
||
if (scm_is_eq (k, SCM_INUM0))
|
||
return SCM_INUM1; /* n^(exact0) is exact 1, regardless of n */
|
||
|
||
if (SCM_FRACTIONP (n))
|
||
{
|
||
/* Optimize the fraction case by (a/b)^k ==> (a^k)/(b^k), to avoid
|
||
needless reduction of intermediate products to lowest terms.
|
||
If a and b have no common factors, then a^k and b^k have no
|
||
common factors. Use 'scm_i_make_ratio_already_reduced' to
|
||
construct the final result, so that no gcd computations are
|
||
needed to exponentiate a fraction. */
|
||
if (scm_is_true (scm_positive_p (k)))
|
||
return scm_i_make_ratio_already_reduced
|
||
(scm_integer_expt (SCM_FRACTION_NUMERATOR (n), k),
|
||
scm_integer_expt (SCM_FRACTION_DENOMINATOR (n), k));
|
||
else
|
||
{
|
||
k = scm_difference (k, SCM_UNDEFINED);
|
||
return scm_i_make_ratio_already_reduced
|
||
(scm_integer_expt (SCM_FRACTION_DENOMINATOR (n), k),
|
||
scm_integer_expt (SCM_FRACTION_NUMERATOR (n), k));
|
||
}
|
||
}
|
||
|
||
mpz_t zk;
|
||
mpz_init (zk);
|
||
scm_to_mpz (k, zk);
|
||
|
||
scm_dynwind_begin (0);
|
||
scm_dynwind_unwind_handler (mpz_clear_on_unwind, zk, SCM_F_WIND_EXPLICITLY);
|
||
if (mpz_sgn (zk) == -1)
|
||
{
|
||
mpz_neg (zk, zk);
|
||
n = scm_divide (n, SCM_UNDEFINED);
|
||
}
|
||
SCM acc = SCM_INUM1;
|
||
while (1)
|
||
{
|
||
if (mpz_sgn (zk) == 0)
|
||
break;
|
||
if (mpz_cmp_ui(zk, 1) == 0)
|
||
{
|
||
acc = scm_product (acc, n);
|
||
break;
|
||
}
|
||
if (mpz_tstbit(zk, 0))
|
||
acc = scm_product (acc, n);
|
||
n = scm_product (n, n);
|
||
mpz_fdiv_q_2exp (zk, zk, 1);
|
||
}
|
||
scm_dynwind_end ();
|
||
return acc;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static SCM
|
||
lsh (SCM n, SCM count, const char *fn)
|
||
{
|
||
if (scm_is_eq (n, SCM_INUM0))
|
||
return n;
|
||
if (!scm_is_unsigned_integer (count, 0, ULONG_MAX))
|
||
scm_num_overflow (fn);
|
||
|
||
unsigned long ucount = scm_to_ulong (count);
|
||
if (ucount == 0)
|
||
return n;
|
||
if (ucount / (sizeof (int) * 8) >= (unsigned long) INT_MAX)
|
||
scm_num_overflow (fn);
|
||
if (SCM_I_INUMP (n))
|
||
return scm_integer_lsh_iu (SCM_I_INUM (n), ucount);
|
||
return scm_integer_lsh_zu (scm_bignum (n), ucount);
|
||
}
|
||
|
||
static SCM
|
||
floor_rsh (SCM n, SCM count)
|
||
{
|
||
if (!scm_is_unsigned_integer (count, 0, ULONG_MAX))
|
||
return scm_is_false (scm_negative_p (n)) ? SCM_INUM0 : SCM_I_MAKINUM (-1);
|
||
|
||
unsigned long ucount = scm_to_ulong (count);
|
||
if (ucount == 0)
|
||
return n;
|
||
if (SCM_I_INUMP (n))
|
||
return scm_integer_floor_rsh_iu (SCM_I_INUM (n), ucount);
|
||
return scm_integer_floor_rsh_zu (scm_bignum (n), ucount);
|
||
}
|
||
|
||
static SCM
|
||
round_rsh (SCM n, SCM count)
|
||
{
|
||
if (!scm_is_unsigned_integer (count, 0, ULONG_MAX))
|
||
return SCM_INUM0;
|
||
|
||
unsigned long ucount = scm_to_ulong (count);
|
||
if (ucount == 0)
|
||
return n;
|
||
if (SCM_I_INUMP (n))
|
||
return scm_integer_round_rsh_iu (SCM_I_INUM (n), ucount);
|
||
return scm_integer_round_rsh_zu (scm_bignum (n), ucount);
|
||
}
|
||
|
||
SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
|
||
(SCM n, SCM count),
|
||
"Return @math{floor(@var{n} * 2^@var{count})}.\n"
|
||
"@var{n} and @var{count} must be exact integers.\n"
|
||
"\n"
|
||
"With @var{n} viewed as an infinite-precision twos-complement\n"
|
||
"integer, @code{ash} means a left shift introducing zero bits\n"
|
||
"when @var{count} is positive, or a right shift dropping bits\n"
|
||
"when @var{count} is negative. This is an ``arithmetic'' shift.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
|
||
"(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
|
||
"\n"
|
||
";; -23 is bits ...11101001, -6 is bits ...111010\n"
|
||
"(ash -23 -2) @result{} -6\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_ash
|
||
{
|
||
if (!scm_is_exact_integer (n))
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
|
||
if (!scm_is_exact_integer (count))
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, count);
|
||
|
||
if (scm_is_false (scm_negative_p (count)))
|
||
return lsh (n, count, "ash");
|
||
|
||
return floor_rsh (n, scm_difference (count, SCM_UNDEFINED));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_round_ash, "round-ash", 2, 0, 0,
|
||
(SCM n, SCM count),
|
||
"Return @math{round(@var{n} * 2^@var{count})}.\n"
|
||
"@var{n} and @var{count} must be exact integers.\n"
|
||
"\n"
|
||
"With @var{n} viewed as an infinite-precision twos-complement\n"
|
||
"integer, @code{round-ash} means a left shift introducing zero\n"
|
||
"bits when @var{count} is positive, or a right shift rounding\n"
|
||
"to the nearest integer (with ties going to the nearest even\n"
|
||
"integer) when @var{count} is negative. This is a rounded\n"
|
||
"``arithmetic'' shift.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(number->string (round-ash #b1 3) 2) @result{} \"1000\"\n"
|
||
"(number->string (round-ash #b1010 -1) 2) @result{} \"101\"\n"
|
||
"(number->string (round-ash #b1010 -2) 2) @result{} \"10\"\n"
|
||
"(number->string (round-ash #b1011 -2) 2) @result{} \"11\"\n"
|
||
"(number->string (round-ash #b1101 -2) 2) @result{} \"11\"\n"
|
||
"(number->string (round-ash #b1110 -2) 2) @result{} \"100\"\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_round_ash
|
||
{
|
||
if (!scm_is_exact_integer (n))
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
|
||
if (!scm_is_exact_integer (count))
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, count);
|
||
|
||
if (scm_is_false (scm_negative_p (count)))
|
||
return lsh (n, count, "round-ash");
|
||
|
||
return round_rsh (n, scm_difference (count, SCM_UNDEFINED));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
|
||
(SCM n, SCM start, SCM end),
|
||
"Return the integer composed of the @var{start} (inclusive)\n"
|
||
"through @var{end} (exclusive) bits of @var{n}. The\n"
|
||
"@var{start}th bit becomes the 0-th bit in the result.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(number->string (bit-extract #b1101101010 0 4) 2)\n"
|
||
" @result{} \"1010\"\n"
|
||
"(number->string (bit-extract #b1101101010 4 9) 2)\n"
|
||
" @result{} \"10110\"\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_bit_extract
|
||
{
|
||
if (!scm_is_exact_integer (n))
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
|
||
|
||
unsigned long istart = scm_to_ulong (start);
|
||
unsigned long iend = scm_to_ulong (end);
|
||
SCM_ASSERT_RANGE (3, end, (iend >= istart));
|
||
unsigned long bits = iend - istart;
|
||
|
||
if (SCM_I_INUMP (n))
|
||
return scm_integer_bit_extract_i (SCM_I_INUM (n), istart, bits);
|
||
else
|
||
return scm_integer_bit_extract_z (scm_bignum (n), istart, bits);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
|
||
(SCM n),
|
||
"Return the number of bits in integer @var{n}. If integer is\n"
|
||
"positive, the 1-bits in its binary representation are counted.\n"
|
||
"If negative, the 0-bits in its two's-complement binary\n"
|
||
"representation are counted. If 0, 0 is returned.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(logcount #b10101010)\n"
|
||
" @result{} 4\n"
|
||
"(logcount 0)\n"
|
||
" @result{} 0\n"
|
||
"(logcount -2)\n"
|
||
" @result{} 1\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_logcount
|
||
{
|
||
if (SCM_I_INUMP (n))
|
||
return scm_integer_logcount_i (SCM_I_INUM (n));
|
||
else if (SCM_BIGP (n))
|
||
return scm_integer_logcount_z (scm_bignum (n));
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
|
||
(SCM n),
|
||
"Return the number of bits necessary to represent @var{n}.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(integer-length #b10101010)\n"
|
||
" @result{} 8\n"
|
||
"(integer-length 0)\n"
|
||
" @result{} 0\n"
|
||
"(integer-length #b1111)\n"
|
||
" @result{} 4\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_integer_length
|
||
{
|
||
if (SCM_I_INUMP (n))
|
||
return scm_integer_length_i (SCM_I_INUM (n));
|
||
else if (SCM_BIGP (n))
|
||
return scm_integer_length_z (scm_bignum (n));
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
/*** NUMBERS -> STRINGS ***/
|
||
#define SCM_MAX_DBL_RADIX 36
|
||
|
||
/* use this array as a way to generate a single digit */
|
||
static const char number_chars[] = "0123456789abcdefghijklmnopqrstuvwxyz";
|
||
|
||
static mpz_t dbl_minimum_normal_mantissa;
|
||
|
||
static size_t
|
||
idbl2str (double dbl, char *a, int radix)
|
||
{
|
||
int ch = 0;
|
||
|
||
if (radix < 2 || radix > SCM_MAX_DBL_RADIX)
|
||
/* revert to existing behavior */
|
||
radix = 10;
|
||
|
||
if (isinf (dbl))
|
||
{
|
||
strcpy (a, (dbl > 0.0) ? "+inf.0" : "-inf.0");
|
||
return 6;
|
||
}
|
||
else if (dbl > 0.0)
|
||
;
|
||
else if (dbl < 0.0)
|
||
{
|
||
dbl = -dbl;
|
||
a[ch++] = '-';
|
||
}
|
||
else if (dbl == 0.0)
|
||
{
|
||
if (copysign (1.0, dbl) < 0.0)
|
||
a[ch++] = '-';
|
||
strcpy (a + ch, "0.0");
|
||
return ch + 3;
|
||
}
|
||
else if (isnan (dbl))
|
||
{
|
||
strcpy (a, "+nan.0");
|
||
return 6;
|
||
}
|
||
|
||
/* Algorithm taken from "Printing Floating-Point Numbers Quickly and
|
||
Accurately" by Robert G. Burger and R. Kent Dybvig */
|
||
{
|
||
int e, k;
|
||
mpz_t f, r, s, mplus, mminus, hi, digit;
|
||
int f_is_even, f_is_odd;
|
||
int expon;
|
||
int show_exp = 0;
|
||
|
||
mpz_inits (f, r, s, mplus, mminus, hi, digit, NULL);
|
||
mpz_set_d (f, ldexp (frexp (dbl, &e), DBL_MANT_DIG));
|
||
if (e < DBL_MIN_EXP)
|
||
{
|
||
mpz_tdiv_q_2exp (f, f, DBL_MIN_EXP - e);
|
||
e = DBL_MIN_EXP;
|
||
}
|
||
e -= DBL_MANT_DIG;
|
||
|
||
f_is_even = !mpz_odd_p (f);
|
||
f_is_odd = !f_is_even;
|
||
|
||
/* Initialize r, s, mplus, and mminus according
|
||
to Table 1 from the paper. */
|
||
if (e < 0)
|
||
{
|
||
mpz_set_ui (mminus, 1);
|
||
if (mpz_cmp (f, dbl_minimum_normal_mantissa) != 0
|
||
|| e == DBL_MIN_EXP - DBL_MANT_DIG)
|
||
{
|
||
mpz_set_ui (mplus, 1);
|
||
mpz_mul_2exp (r, f, 1);
|
||
mpz_mul_2exp (s, mminus, 1 - e);
|
||
}
|
||
else
|
||
{
|
||
mpz_set_ui (mplus, 2);
|
||
mpz_mul_2exp (r, f, 2);
|
||
mpz_mul_2exp (s, mminus, 2 - e);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mpz_set_ui (mminus, 1);
|
||
mpz_mul_2exp (mminus, mminus, e);
|
||
if (mpz_cmp (f, dbl_minimum_normal_mantissa) != 0)
|
||
{
|
||
mpz_set (mplus, mminus);
|
||
mpz_mul_2exp (r, f, 1 + e);
|
||
mpz_set_ui (s, 2);
|
||
}
|
||
else
|
||
{
|
||
mpz_mul_2exp (mplus, mminus, 1);
|
||
mpz_mul_2exp (r, f, 2 + e);
|
||
mpz_set_ui (s, 4);
|
||
}
|
||
}
|
||
|
||
/* Find the smallest k such that:
|
||
(r + mplus) / s < radix^k (if f is even)
|
||
(r + mplus) / s <= radix^k (if f is odd) */
|
||
{
|
||
/* IMPROVE-ME: Make an initial guess to speed this up */
|
||
mpz_add (hi, r, mplus);
|
||
k = 0;
|
||
while (mpz_cmp (hi, s) >= f_is_odd)
|
||
{
|
||
mpz_mul_ui (s, s, radix);
|
||
k++;
|
||
}
|
||
if (k == 0)
|
||
{
|
||
mpz_mul_ui (hi, hi, radix);
|
||
while (mpz_cmp (hi, s) < f_is_odd)
|
||
{
|
||
mpz_mul_ui (r, r, radix);
|
||
mpz_mul_ui (mplus, mplus, radix);
|
||
mpz_mul_ui (mminus, mminus, radix);
|
||
mpz_mul_ui (hi, hi, radix);
|
||
k--;
|
||
}
|
||
}
|
||
}
|
||
|
||
expon = k - 1;
|
||
if (k <= 0)
|
||
{
|
||
if (k <= -3)
|
||
{
|
||
/* Use scientific notation */
|
||
show_exp = 1;
|
||
k = 1;
|
||
}
|
||
else
|
||
{
|
||
int i;
|
||
|
||
/* Print leading zeroes */
|
||
a[ch++] = '0';
|
||
a[ch++] = '.';
|
||
for (i = 0; i > k; i--)
|
||
a[ch++] = '0';
|
||
}
|
||
}
|
||
|
||
for (;;)
|
||
{
|
||
int end_1_p, end_2_p;
|
||
int d;
|
||
|
||
mpz_mul_ui (mplus, mplus, radix);
|
||
mpz_mul_ui (mminus, mminus, radix);
|
||
mpz_mul_ui (r, r, radix);
|
||
mpz_fdiv_qr (digit, r, r, s);
|
||
d = mpz_get_ui (digit);
|
||
|
||
mpz_add (hi, r, mplus);
|
||
end_1_p = (mpz_cmp (r, mminus) < f_is_even);
|
||
end_2_p = (mpz_cmp (s, hi) < f_is_even);
|
||
if (end_1_p || end_2_p)
|
||
{
|
||
mpz_mul_2exp (r, r, 1);
|
||
if (!end_2_p)
|
||
;
|
||
else if (!end_1_p)
|
||
d++;
|
||
else if (mpz_cmp (r, s) >= !(d & 1))
|
||
d++;
|
||
a[ch++] = number_chars[d];
|
||
if (--k == 0)
|
||
a[ch++] = '.';
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
a[ch++] = number_chars[d];
|
||
if (--k == 0)
|
||
a[ch++] = '.';
|
||
}
|
||
}
|
||
|
||
if (k > 0)
|
||
{
|
||
if (expon >= 7 && k >= 4 && expon >= k)
|
||
{
|
||
/* Here we would have to print more than three zeroes
|
||
followed by a decimal point and another zero. It
|
||
makes more sense to use scientific notation. */
|
||
|
||
/* Adjust k to what it would have been if we had chosen
|
||
scientific notation from the beginning. */
|
||
k -= expon;
|
||
|
||
/* k will now be <= 0, with magnitude equal to the number of
|
||
digits that we printed which should now be put after the
|
||
decimal point. */
|
||
|
||
/* Insert a decimal point */
|
||
memmove (a + ch + k + 1, a + ch + k, -k);
|
||
a[ch + k] = '.';
|
||
ch++;
|
||
|
||
show_exp = 1;
|
||
}
|
||
else
|
||
{
|
||
for (; k > 0; k--)
|
||
a[ch++] = '0';
|
||
a[ch++] = '.';
|
||
}
|
||
}
|
||
|
||
if (k == 0)
|
||
a[ch++] = '0';
|
||
|
||
if (show_exp)
|
||
{
|
||
a[ch++] = 'e';
|
||
ch += scm_iint2str (expon, radix, a + ch);
|
||
}
|
||
|
||
mpz_clears (f, r, s, mplus, mminus, hi, digit, NULL);
|
||
}
|
||
return ch;
|
||
}
|
||
|
||
|
||
static size_t
|
||
icmplx2str (double real, double imag, char *str, int radix)
|
||
{
|
||
size_t i;
|
||
double sgn;
|
||
|
||
i = idbl2str (real, str, radix);
|
||
sgn = copysign (1.0, imag);
|
||
/* Don't output a '+' for negative numbers or for Inf and
|
||
NaN. They will provide their own sign. */
|
||
if (sgn >= 0 && isfinite (imag))
|
||
str[i++] = '+';
|
||
i += idbl2str (imag, &str[i], radix);
|
||
str[i++] = 'i';
|
||
return i;
|
||
}
|
||
|
||
static size_t
|
||
iflo2str (SCM flt, char *str, int radix)
|
||
{
|
||
size_t i;
|
||
if (SCM_REALP (flt))
|
||
i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
|
||
else
|
||
i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
|
||
str, radix);
|
||
return i;
|
||
}
|
||
|
||
/* convert a intmax_t to a string (unterminated). returns the number of
|
||
characters in the result.
|
||
rad is output base
|
||
p is destination: worst case (base 2) is SCM_INTBUFLEN */
|
||
size_t
|
||
scm_iint2str (intmax_t num, int rad, char *p)
|
||
{
|
||
if (num < 0)
|
||
{
|
||
*p++ = '-';
|
||
return scm_iuint2str (-num, rad, p) + 1;
|
||
}
|
||
else
|
||
return scm_iuint2str (num, rad, p);
|
||
}
|
||
|
||
/* convert a intmax_t to a string (unterminated). returns the number of
|
||
characters in the result.
|
||
rad is output base
|
||
p is destination: worst case (base 2) is SCM_INTBUFLEN */
|
||
size_t
|
||
scm_iuint2str (uintmax_t num, int rad, char *p)
|
||
{
|
||
size_t j = 1;
|
||
size_t i;
|
||
uintmax_t n = num;
|
||
|
||
if (rad < 2 || rad > 36)
|
||
scm_out_of_range ("scm_iuint2str", scm_from_int (rad));
|
||
|
||
for (n /= rad; n > 0; n /= rad)
|
||
j++;
|
||
|
||
i = j;
|
||
n = num;
|
||
while (i--)
|
||
{
|
||
int d = n % rad;
|
||
|
||
n /= rad;
|
||
p[i] = number_chars[d];
|
||
}
|
||
return j;
|
||
}
|
||
|
||
SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
|
||
(SCM n, SCM radix),
|
||
"Return a string holding the external representation of the\n"
|
||
"number @var{n} in the given @var{radix}. If @var{n} is\n"
|
||
"inexact, a radix of 10 will be used.")
|
||
#define FUNC_NAME s_scm_number_to_string
|
||
{
|
||
int base;
|
||
|
||
if (SCM_UNBNDP (radix))
|
||
base = 10;
|
||
else
|
||
base = scm_to_signed_integer (radix, 2, 36);
|
||
|
||
if (SCM_I_INUMP (n))
|
||
return scm_integer_to_string_i (SCM_I_INUM (n), base);
|
||
else if (SCM_BIGP (n))
|
||
return scm_integer_to_string_z (scm_bignum (n), base);
|
||
else if (SCM_FRACTIONP (n))
|
||
return scm_string_append
|
||
(scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
|
||
scm_from_latin1_string ("/"),
|
||
scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
|
||
else if (SCM_INEXACTP (n))
|
||
{
|
||
char num_buf [FLOBUFLEN];
|
||
return scm_from_latin1_stringn (num_buf, iflo2str (n, num_buf, base));
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (1, n);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
/* These print routines used to be stubbed here so that scm_repl.c
|
||
wouldn't need SCM_BIGDIG conditionals (pre GMP) */
|
||
|
||
int
|
||
scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
|
||
{
|
||
char num_buf[FLOBUFLEN];
|
||
scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
|
||
return !0;
|
||
}
|
||
|
||
void
|
||
scm_i_print_double (double val, SCM port)
|
||
{
|
||
char num_buf[FLOBUFLEN];
|
||
scm_lfwrite (num_buf, idbl2str (val, num_buf, 10), port);
|
||
}
|
||
|
||
int
|
||
scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
|
||
|
||
{
|
||
char num_buf[FLOBUFLEN];
|
||
scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
|
||
return !0;
|
||
}
|
||
|
||
void
|
||
scm_i_print_complex (double real, double imag, SCM port)
|
||
{
|
||
char num_buf[FLOBUFLEN];
|
||
scm_lfwrite (num_buf, icmplx2str (real, imag, num_buf, 10), port);
|
||
}
|
||
|
||
int
|
||
scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
|
||
{
|
||
SCM str;
|
||
str = scm_number_to_string (sexp, SCM_UNDEFINED);
|
||
scm_display (str, port);
|
||
scm_remember_upto_here_1 (str);
|
||
return !0;
|
||
}
|
||
|
||
int
|
||
scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
|
||
{
|
||
SCM str = scm_integer_to_string_z (scm_bignum (exp), 10);
|
||
scm_c_put_string (port, str, 0, scm_c_string_length (str));
|
||
return !0;
|
||
}
|
||
/*** END nums->strs ***/
|
||
|
||
|
||
/*** STRINGS -> NUMBERS ***/
|
||
|
||
/* The following functions implement the conversion from strings to numbers.
|
||
* The implementation somehow follows the grammar for numbers as it is given
|
||
* in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
|
||
* <uinteger R>, ...) that are used to build up numbers in the grammar. Some
|
||
* points should be noted about the implementation:
|
||
*
|
||
* * Each function keeps a local index variable 'idx' that points at the
|
||
* current position within the parsed string. The global index is only
|
||
* updated if the function could parse the corresponding syntactic unit
|
||
* successfully.
|
||
*
|
||
* * Similarly, the functions keep track of indicators of inexactness ('#',
|
||
* '.' or exponents) using local variables ('hash_seen', 'x').
|
||
*
|
||
* * Sequences of digits are parsed into temporary variables holding fixnums.
|
||
* Only if these fixnums would overflow, the result variables are updated
|
||
* using the standard functions scm_add, scm_product, scm_divide etc. Then,
|
||
* the temporary variables holding the fixnums are cleared, and the process
|
||
* starts over again. If for example fixnums were able to store five decimal
|
||
* digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
|
||
* and the result was computed as 12345 * 100000 + 67890. In other words,
|
||
* only every five digits two bignum operations were performed.
|
||
*
|
||
* Notes on the handling of exactness specifiers:
|
||
*
|
||
* When parsing non-real complex numbers, we apply exactness specifiers on
|
||
* per-component basis, as is done in PLT Scheme. For complex numbers
|
||
* written in rectangular form, exactness specifiers are applied to the
|
||
* real and imaginary parts before calling scm_make_rectangular. For
|
||
* complex numbers written in polar form, exactness specifiers are applied
|
||
* to the magnitude and angle before calling scm_make_polar.
|
||
*
|
||
* There are two kinds of exactness specifiers: forced and implicit. A
|
||
* forced exactness specifier is a "#e" or "#i" prefix at the beginning of
|
||
* the entire number, and applies to both components of a complex number.
|
||
* "#e" causes each component to be made exact, and "#i" causes each
|
||
* component to be made inexact. If no forced exactness specifier is
|
||
* present, then the exactness of each component is determined
|
||
* independently by the presence or absence of a decimal point or hash mark
|
||
* within that component. If a decimal point or hash mark is present, the
|
||
* component is made inexact, otherwise it is made exact.
|
||
*
|
||
* After the exactness specifiers have been applied to each component, they
|
||
* are passed to either scm_make_rectangular or scm_make_polar to produce
|
||
* the final result. Note that this will result in a real number if the
|
||
* imaginary part, magnitude, or angle is an exact 0.
|
||
*
|
||
* For example, (string->number "#i5.0+0i") does the equivalent of:
|
||
*
|
||
* (make-rectangular (exact->inexact 5) (exact->inexact 0))
|
||
*/
|
||
|
||
enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
|
||
|
||
/* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
|
||
|
||
/* Caller is responsible for checking that the return value is in range
|
||
for the given radix, which should be <= 36. */
|
||
static unsigned int
|
||
char_decimal_value (uint32_t c)
|
||
{
|
||
if (c >= (uint32_t) '0' && c <= (uint32_t) '9')
|
||
return c - (uint32_t) '0';
|
||
else
|
||
{
|
||
/* uc_decimal_value returns -1 on error. When cast to an unsigned int,
|
||
that's certainly above any valid decimal, so we take advantage of
|
||
that to elide some tests. */
|
||
unsigned int d = (unsigned int) uc_decimal_value (c);
|
||
|
||
/* If that failed, try extended hexadecimals, then. Only accept ascii
|
||
hexadecimals. */
|
||
if (d >= 10U)
|
||
{
|
||
c = uc_tolower (c);
|
||
if (c >= (uint32_t) 'a')
|
||
d = c - (uint32_t)'a' + 10U;
|
||
}
|
||
return d;
|
||
}
|
||
}
|
||
|
||
/* Parse the substring of MEM starting at *P_IDX for an unsigned integer
|
||
in base RADIX. Upon success, return the unsigned integer and update
|
||
*P_IDX and *P_EXACTNESS accordingly. Return #f on failure. */
|
||
static SCM
|
||
mem2uinteger (SCM mem, unsigned int *p_idx,
|
||
unsigned int radix, enum t_exactness *p_exactness)
|
||
{
|
||
unsigned int idx = *p_idx;
|
||
unsigned int hash_seen = 0;
|
||
scm_t_bits shift = 1;
|
||
scm_t_bits add = 0;
|
||
unsigned int digit_value;
|
||
SCM result;
|
||
char c;
|
||
size_t len = scm_i_string_length (mem);
|
||
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
|
||
c = scm_i_string_ref (mem, idx);
|
||
digit_value = char_decimal_value (c);
|
||
if (digit_value >= radix)
|
||
return SCM_BOOL_F;
|
||
|
||
idx++;
|
||
result = SCM_I_MAKINUM (digit_value);
|
||
while (idx != len)
|
||
{
|
||
scm_t_wchar c = scm_i_string_ref (mem, idx);
|
||
if (c == '#')
|
||
{
|
||
hash_seen = 1;
|
||
digit_value = 0;
|
||
}
|
||
else if (hash_seen)
|
||
break;
|
||
else
|
||
{
|
||
digit_value = char_decimal_value (c);
|
||
/* This check catches non-decimals in addition to out-of-range
|
||
decimals. */
|
||
if (digit_value >= radix)
|
||
break;
|
||
}
|
||
|
||
idx++;
|
||
if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
|
||
{
|
||
result = scm_product (result, SCM_I_MAKINUM (shift));
|
||
if (add > 0)
|
||
result = scm_sum (result, SCM_I_MAKINUM (add));
|
||
|
||
shift = radix;
|
||
add = digit_value;
|
||
}
|
||
else
|
||
{
|
||
shift = shift * radix;
|
||
add = add * radix + digit_value;
|
||
}
|
||
};
|
||
|
||
if (shift > 1)
|
||
result = scm_product (result, SCM_I_MAKINUM (shift));
|
||
if (add > 0)
|
||
result = scm_sum (result, SCM_I_MAKINUM (add));
|
||
|
||
*p_idx = idx;
|
||
if (hash_seen)
|
||
*p_exactness = INEXACT;
|
||
|
||
return result;
|
||
}
|
||
|
||
|
||
/* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
|
||
* covers the parts of the rules that start at a potential point. The value
|
||
* of the digits up to the point have been parsed by the caller and are given
|
||
* in variable result. The content of *p_exactness indicates, whether a hash
|
||
* has already been seen in the digits before the point.
|
||
*/
|
||
|
||
#define DIGIT2UINT(d) (uc_numeric_value(d).numerator)
|
||
|
||
static SCM
|
||
mem2decimal_from_point (SCM result, SCM mem,
|
||
unsigned int *p_idx, enum t_exactness *p_exactness)
|
||
{
|
||
unsigned int idx = *p_idx;
|
||
enum t_exactness x = *p_exactness;
|
||
size_t len = scm_i_string_length (mem);
|
||
|
||
if (idx == len)
|
||
return result;
|
||
|
||
if (scm_i_string_ref (mem, idx) == '.')
|
||
{
|
||
scm_t_bits shift = 1;
|
||
scm_t_bits add = 0;
|
||
unsigned int digit_value;
|
||
SCM big_shift = SCM_INUM1;
|
||
|
||
idx++;
|
||
while (idx != len)
|
||
{
|
||
scm_t_wchar c = scm_i_string_ref (mem, idx);
|
||
if (uc_is_property_decimal_digit ((uint32_t) c))
|
||
{
|
||
if (x == INEXACT)
|
||
return SCM_BOOL_F;
|
||
else
|
||
digit_value = DIGIT2UINT (c);
|
||
}
|
||
else if (c == '#')
|
||
{
|
||
x = INEXACT;
|
||
digit_value = 0;
|
||
}
|
||
else
|
||
break;
|
||
|
||
idx++;
|
||
if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
|
||
{
|
||
big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
|
||
result = scm_product (result, SCM_I_MAKINUM (shift));
|
||
if (add > 0)
|
||
result = scm_sum (result, SCM_I_MAKINUM (add));
|
||
|
||
shift = 10;
|
||
add = digit_value;
|
||
}
|
||
else
|
||
{
|
||
shift = shift * 10;
|
||
add = add * 10 + digit_value;
|
||
}
|
||
};
|
||
|
||
if (add > 0)
|
||
{
|
||
big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
|
||
result = scm_product (result, SCM_I_MAKINUM (shift));
|
||
result = scm_sum (result, SCM_I_MAKINUM (add));
|
||
}
|
||
|
||
result = scm_divide (result, big_shift);
|
||
|
||
/* We've seen a decimal point, thus the value is implicitly inexact. */
|
||
x = INEXACT;
|
||
}
|
||
|
||
if (idx != len)
|
||
{
|
||
int sign = 1;
|
||
unsigned int start;
|
||
scm_t_wchar c;
|
||
int exponent;
|
||
SCM e;
|
||
|
||
/* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
|
||
|
||
switch (scm_i_string_ref (mem, idx))
|
||
{
|
||
case 'd': case 'D':
|
||
case 'e': case 'E':
|
||
case 'f': case 'F':
|
||
case 'l': case 'L':
|
||
case 's': case 'S':
|
||
idx++;
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
|
||
start = idx;
|
||
c = scm_i_string_ref (mem, idx);
|
||
if (c == '-')
|
||
{
|
||
idx++;
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
|
||
sign = -1;
|
||
c = scm_i_string_ref (mem, idx);
|
||
}
|
||
else if (c == '+')
|
||
{
|
||
idx++;
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
|
||
sign = 1;
|
||
c = scm_i_string_ref (mem, idx);
|
||
}
|
||
else
|
||
sign = 1;
|
||
|
||
if (!uc_is_property_decimal_digit ((uint32_t) c))
|
||
return SCM_BOOL_F;
|
||
|
||
idx++;
|
||
exponent = DIGIT2UINT (c);
|
||
while (idx != len)
|
||
{
|
||
scm_t_wchar c = scm_i_string_ref (mem, idx);
|
||
if (uc_is_property_decimal_digit ((uint32_t) c))
|
||
{
|
||
idx++;
|
||
if (exponent <= SCM_MAXEXP)
|
||
exponent = exponent * 10 + DIGIT2UINT (c);
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
if (exponent > ((sign == 1) ? SCM_MAXEXP : SCM_MAXEXP + DBL_DIG + 1))
|
||
{
|
||
size_t exp_len = idx - start;
|
||
SCM exp_string = scm_i_substring_copy (mem, start, start + exp_len);
|
||
SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
|
||
scm_out_of_range ("string->number", exp_num);
|
||
}
|
||
|
||
e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
|
||
if (sign == 1)
|
||
result = scm_product (result, e);
|
||
else
|
||
result = scm_divide (result, e);
|
||
|
||
/* We've seen an exponent, thus the value is implicitly inexact. */
|
||
x = INEXACT;
|
||
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
*p_idx = idx;
|
||
if (x == INEXACT)
|
||
*p_exactness = x;
|
||
|
||
return result;
|
||
}
|
||
|
||
|
||
/* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
|
||
|
||
static SCM
|
||
mem2ureal (SCM mem, unsigned int *p_idx,
|
||
unsigned int radix, enum t_exactness forced_x,
|
||
int allow_inf_or_nan)
|
||
{
|
||
unsigned int idx = *p_idx;
|
||
SCM result;
|
||
size_t len = scm_i_string_length (mem);
|
||
|
||
/* Start off believing that the number will be exact. This changes
|
||
to INEXACT if we see a decimal point or a hash. */
|
||
enum t_exactness implicit_x = EXACT;
|
||
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
|
||
if (allow_inf_or_nan && forced_x != EXACT && idx+5 <= len)
|
||
switch (scm_i_string_ref (mem, idx))
|
||
{
|
||
case 'i': case 'I':
|
||
switch (scm_i_string_ref (mem, idx + 1))
|
||
{
|
||
case 'n': case 'N':
|
||
switch (scm_i_string_ref (mem, idx + 2))
|
||
{
|
||
case 'f': case 'F':
|
||
if (scm_i_string_ref (mem, idx + 3) == '.'
|
||
&& scm_i_string_ref (mem, idx + 4) == '0')
|
||
{
|
||
*p_idx = idx+5;
|
||
return scm_inf ();
|
||
}
|
||
}
|
||
}
|
||
case 'n': case 'N':
|
||
switch (scm_i_string_ref (mem, idx + 1))
|
||
{
|
||
case 'a': case 'A':
|
||
switch (scm_i_string_ref (mem, idx + 2))
|
||
{
|
||
case 'n': case 'N':
|
||
if (scm_i_string_ref (mem, idx + 3) == '.')
|
||
{
|
||
/* Cobble up the fractional part. We might want to
|
||
set the NaN's mantissa from it. */
|
||
idx += 4;
|
||
if (!scm_is_eq (mem2uinteger (mem, &idx, 10, &implicit_x),
|
||
SCM_INUM0))
|
||
return SCM_BOOL_F;
|
||
|
||
*p_idx = idx;
|
||
return scm_nan ();
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (scm_i_string_ref (mem, idx) == '.')
|
||
{
|
||
if (radix != 10)
|
||
return SCM_BOOL_F;
|
||
else if (idx + 1 == len)
|
||
return SCM_BOOL_F;
|
||
else if (!uc_is_property_decimal_digit ((uint32_t) scm_i_string_ref (mem, idx+1)))
|
||
return SCM_BOOL_F;
|
||
else
|
||
result = mem2decimal_from_point (SCM_INUM0, mem,
|
||
p_idx, &implicit_x);
|
||
}
|
||
else
|
||
{
|
||
SCM uinteger;
|
||
|
||
uinteger = mem2uinteger (mem, &idx, radix, &implicit_x);
|
||
if (scm_is_false (uinteger))
|
||
return SCM_BOOL_F;
|
||
|
||
if (idx == len)
|
||
result = uinteger;
|
||
else if (scm_i_string_ref (mem, idx) == '/')
|
||
{
|
||
SCM divisor;
|
||
|
||
idx++;
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
|
||
divisor = mem2uinteger (mem, &idx, radix, &implicit_x);
|
||
if (scm_is_false (divisor) || scm_is_eq (divisor, SCM_INUM0))
|
||
return SCM_BOOL_F;
|
||
|
||
/* both are int/big here, I assume */
|
||
result = scm_i_make_ratio (uinteger, divisor);
|
||
}
|
||
else if (radix == 10)
|
||
{
|
||
result = mem2decimal_from_point (uinteger, mem, &idx, &implicit_x);
|
||
if (scm_is_false (result))
|
||
return SCM_BOOL_F;
|
||
}
|
||
else
|
||
result = uinteger;
|
||
|
||
*p_idx = idx;
|
||
}
|
||
|
||
switch (forced_x)
|
||
{
|
||
case EXACT:
|
||
if (SCM_INEXACTP (result))
|
||
return scm_inexact_to_exact (result);
|
||
else
|
||
return result;
|
||
case INEXACT:
|
||
if (SCM_INEXACTP (result))
|
||
return result;
|
||
else
|
||
return scm_exact_to_inexact (result);
|
||
case NO_EXACTNESS:
|
||
if (implicit_x == INEXACT)
|
||
{
|
||
if (SCM_INEXACTP (result))
|
||
return result;
|
||
else
|
||
return scm_exact_to_inexact (result);
|
||
}
|
||
else
|
||
return result;
|
||
}
|
||
|
||
/* We should never get here */
|
||
assert (0);
|
||
}
|
||
|
||
|
||
/* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
|
||
|
||
static SCM
|
||
mem2complex (SCM mem, unsigned int idx,
|
||
unsigned int radix, enum t_exactness forced_x)
|
||
{
|
||
scm_t_wchar c;
|
||
int sign = 0;
|
||
SCM ureal;
|
||
size_t len = scm_i_string_length (mem);
|
||
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
|
||
c = scm_i_string_ref (mem, idx);
|
||
if (c == '+')
|
||
{
|
||
idx++;
|
||
sign = 1;
|
||
}
|
||
else if (c == '-')
|
||
{
|
||
idx++;
|
||
sign = -1;
|
||
}
|
||
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
|
||
ureal = mem2ureal (mem, &idx, radix, forced_x, sign != 0);
|
||
if (scm_is_false (ureal))
|
||
{
|
||
/* input must be either +i or -i */
|
||
|
||
if (sign == 0)
|
||
return SCM_BOOL_F;
|
||
|
||
if (scm_i_string_ref (mem, idx) == 'i'
|
||
|| scm_i_string_ref (mem, idx) == 'I')
|
||
{
|
||
idx++;
|
||
if (idx != len)
|
||
return SCM_BOOL_F;
|
||
|
||
return scm_make_rectangular (SCM_INUM0, SCM_I_MAKINUM (sign));
|
||
}
|
||
else
|
||
return SCM_BOOL_F;
|
||
}
|
||
else
|
||
{
|
||
if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
|
||
ureal = scm_difference (ureal, SCM_UNDEFINED);
|
||
|
||
if (idx == len)
|
||
return ureal;
|
||
|
||
c = scm_i_string_ref (mem, idx);
|
||
switch (c)
|
||
{
|
||
case 'i': case 'I':
|
||
/* either +<ureal>i or -<ureal>i */
|
||
|
||
idx++;
|
||
if (sign == 0)
|
||
return SCM_BOOL_F;
|
||
if (idx != len)
|
||
return SCM_BOOL_F;
|
||
return scm_make_rectangular (SCM_INUM0, ureal);
|
||
|
||
case '@':
|
||
/* polar input: <real>@<real>. */
|
||
|
||
idx++;
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
else
|
||
{
|
||
int sign;
|
||
SCM angle;
|
||
SCM result;
|
||
|
||
c = scm_i_string_ref (mem, idx);
|
||
if (c == '+')
|
||
{
|
||
idx++;
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
sign = 1;
|
||
}
|
||
else if (c == '-')
|
||
{
|
||
idx++;
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
sign = -1;
|
||
}
|
||
else
|
||
sign = 0;
|
||
|
||
angle = mem2ureal (mem, &idx, radix, forced_x, sign != 0);
|
||
if (scm_is_false (angle))
|
||
return SCM_BOOL_F;
|
||
if (idx != len)
|
||
return SCM_BOOL_F;
|
||
|
||
if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
|
||
angle = scm_difference (angle, SCM_UNDEFINED);
|
||
|
||
result = scm_make_polar (ureal, angle);
|
||
return result;
|
||
}
|
||
case '+':
|
||
case '-':
|
||
/* expecting input matching <real>[+-]<ureal>?i */
|
||
|
||
idx++;
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
else
|
||
{
|
||
int sign = (c == '+') ? 1 : -1;
|
||
SCM imag = mem2ureal (mem, &idx, radix, forced_x, sign != 0);
|
||
|
||
if (scm_is_false (imag))
|
||
imag = SCM_I_MAKINUM (sign);
|
||
else if (sign == -1 && scm_is_false (scm_nan_p (imag)))
|
||
imag = scm_difference (imag, SCM_UNDEFINED);
|
||
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
if (scm_i_string_ref (mem, idx) != 'i'
|
||
&& scm_i_string_ref (mem, idx) != 'I')
|
||
return SCM_BOOL_F;
|
||
|
||
idx++;
|
||
if (idx != len)
|
||
return SCM_BOOL_F;
|
||
|
||
return scm_make_rectangular (ureal, imag);
|
||
}
|
||
default:
|
||
return SCM_BOOL_F;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* R5RS, section 7.1.1, lexical structure of numbers: <number> */
|
||
|
||
enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
|
||
|
||
SCM
|
||
scm_i_string_to_number (SCM mem, unsigned int default_radix)
|
||
{
|
||
unsigned int idx = 0;
|
||
unsigned int radix = NO_RADIX;
|
||
enum t_exactness forced_x = NO_EXACTNESS;
|
||
size_t len = scm_i_string_length (mem);
|
||
|
||
/* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
|
||
while (idx + 2 < len && scm_i_string_ref (mem, idx) == '#')
|
||
{
|
||
switch (scm_i_string_ref (mem, idx + 1))
|
||
{
|
||
case 'b': case 'B':
|
||
if (radix != NO_RADIX)
|
||
return SCM_BOOL_F;
|
||
radix = DUAL;
|
||
break;
|
||
case 'd': case 'D':
|
||
if (radix != NO_RADIX)
|
||
return SCM_BOOL_F;
|
||
radix = DEC;
|
||
break;
|
||
case 'i': case 'I':
|
||
if (forced_x != NO_EXACTNESS)
|
||
return SCM_BOOL_F;
|
||
forced_x = INEXACT;
|
||
break;
|
||
case 'e': case 'E':
|
||
if (forced_x != NO_EXACTNESS)
|
||
return SCM_BOOL_F;
|
||
forced_x = EXACT;
|
||
break;
|
||
case 'o': case 'O':
|
||
if (radix != NO_RADIX)
|
||
return SCM_BOOL_F;
|
||
radix = OCT;
|
||
break;
|
||
case 'x': case 'X':
|
||
if (radix != NO_RADIX)
|
||
return SCM_BOOL_F;
|
||
radix = HEX;
|
||
break;
|
||
default:
|
||
return SCM_BOOL_F;
|
||
}
|
||
idx += 2;
|
||
}
|
||
|
||
/* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
|
||
if (radix == NO_RADIX)
|
||
radix = default_radix;
|
||
|
||
return mem2complex (mem, idx, radix, forced_x);
|
||
}
|
||
|
||
SCM
|
||
scm_c_locale_stringn_to_number (const char* mem, size_t len,
|
||
unsigned int default_radix)
|
||
{
|
||
SCM str = scm_from_locale_stringn (mem, len);
|
||
|
||
return scm_i_string_to_number (str, default_radix);
|
||
}
|
||
|
||
|
||
SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
|
||
(SCM string, SCM radix),
|
||
"Return a number of the maximally precise representation\n"
|
||
"expressed by the given @var{string}. @var{radix} must be an\n"
|
||
"exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
|
||
"is a default radix that may be overridden by an explicit radix\n"
|
||
"prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
|
||
"supplied, then the default radix is 10. If string is not a\n"
|
||
"syntactically valid notation for a number, then\n"
|
||
"@code{string->number} returns @code{#f}.")
|
||
#define FUNC_NAME s_scm_string_to_number
|
||
{
|
||
SCM answer;
|
||
unsigned int base;
|
||
SCM_VALIDATE_STRING (1, string);
|
||
|
||
if (SCM_UNBNDP (radix))
|
||
base = 10;
|
||
else
|
||
base = scm_to_unsigned_integer (radix, 2, INT_MAX);
|
||
|
||
answer = scm_i_string_to_number (string, base);
|
||
scm_remember_upto_here_1 (string);
|
||
return answer;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
/*** END strs->nums ***/
|
||
|
||
|
||
SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if @var{x} is a number, @code{#f}\n"
|
||
"otherwise.")
|
||
#define FUNC_NAME s_scm_number_p
|
||
{
|
||
return scm_from_bool (SCM_NUMBERP (x));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
|
||
"otherwise. Note that the sets of real, rational and integer\n"
|
||
"values form subsets of the set of complex numbers, i. e. the\n"
|
||
"predicate will also be fulfilled if @var{x} is a real,\n"
|
||
"rational or integer number.")
|
||
#define FUNC_NAME s_scm_complex_p
|
||
{
|
||
/* all numbers are complex. */
|
||
return scm_number_p (x);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if @var{x} is a real number, @code{#f}\n"
|
||
"otherwise. Note that the set of integer values forms a subset of\n"
|
||
"the set of real numbers, i. e. the predicate will also be\n"
|
||
"fulfilled if @var{x} is an integer number.")
|
||
#define FUNC_NAME s_scm_real_p
|
||
{
|
||
return scm_from_bool
|
||
(SCM_I_INUMP (x) || SCM_REALP (x) || SCM_BIGP (x) || SCM_FRACTIONP (x));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
|
||
"otherwise. Note that the set of integer values forms a subset of\n"
|
||
"the set of rational numbers, i. e. the predicate will also be\n"
|
||
"fulfilled if @var{x} is an integer number.")
|
||
#define FUNC_NAME s_scm_rational_p
|
||
{
|
||
if (SCM_I_INUMP (x) || SCM_BIGP (x) || SCM_FRACTIONP (x))
|
||
return SCM_BOOL_T;
|
||
else if (SCM_REALP (x))
|
||
/* due to their limited precision, finite floating point numbers are
|
||
rational as well. (finite means neither infinity nor a NaN) */
|
||
return scm_from_bool (isfinite (SCM_REAL_VALUE (x)));
|
||
else
|
||
return SCM_BOOL_F;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if @var{x} is an integer number,\n"
|
||
"else return @code{#f}.")
|
||
#define FUNC_NAME s_scm_integer_p
|
||
{
|
||
return scm_from_bool (scm_is_integer (x));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_exact_integer_p, "exact-integer?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if @var{x} is an exact integer number,\n"
|
||
"else return @code{#f}.")
|
||
#define FUNC_NAME s_scm_exact_integer_p
|
||
{
|
||
return scm_from_bool (scm_is_exact_integer (x));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM
|
||
scm_bigequal (SCM x, SCM y)
|
||
{
|
||
return scm_from_bool
|
||
(scm_is_integer_equal_zz (scm_bignum (x), scm_bignum (y)));
|
||
}
|
||
|
||
SCM scm_i_num_eq_p (SCM, SCM, SCM);
|
||
SCM_PRIMITIVE_GENERIC (scm_i_num_eq_p, "=", 0, 2, 1,
|
||
(SCM x, SCM y, SCM rest),
|
||
"Return @code{#t} if all parameters are numerically equal.")
|
||
#define FUNC_NAME s_scm_i_num_eq_p
|
||
{
|
||
if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
|
||
return SCM_BOOL_T;
|
||
while (!scm_is_null (rest))
|
||
{
|
||
if (scm_is_false (scm_num_eq_p (x, y)))
|
||
return SCM_BOOL_F;
|
||
x = y;
|
||
y = scm_car (rest);
|
||
rest = scm_cdr (rest);
|
||
}
|
||
return scm_num_eq_p (x, y);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM
|
||
scm_num_eq_p (SCM x, SCM y)
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_eq_p (x, y);
|
||
else if (SCM_BIGP (y))
|
||
return SCM_BOOL_F;
|
||
else if (SCM_REALP (y))
|
||
return scm_from_bool
|
||
(scm_is_integer_equal_ir (SCM_I_INUM (x), SCM_REAL_VALUE (y)));
|
||
else if (SCM_COMPLEXP (y))
|
||
return scm_from_bool
|
||
(scm_is_integer_equal_ic (SCM_I_INUM (x), SCM_COMPLEX_REAL (y),
|
||
SCM_COMPLEX_IMAG (y)));
|
||
else if (SCM_FRACTIONP (y))
|
||
return SCM_BOOL_F;
|
||
else
|
||
return scm_num_eq_p (y, x);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_BIGP (y))
|
||
return scm_from_bool
|
||
(scm_is_integer_equal_zz (scm_bignum (x), scm_bignum (y)));
|
||
else if (SCM_REALP (y))
|
||
return scm_from_bool
|
||
(scm_is_integer_equal_zr (scm_bignum (x), SCM_REAL_VALUE (y)));
|
||
else if (SCM_COMPLEXP (y))
|
||
return scm_from_bool
|
||
(scm_is_integer_equal_zc (scm_bignum (x), SCM_COMPLEX_REAL (y),
|
||
SCM_COMPLEX_IMAG (y)));
|
||
else if (SCM_FRACTIONP (y))
|
||
return SCM_BOOL_F;
|
||
else
|
||
return scm_num_eq_p (y, x);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_REALP (y))
|
||
return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
|
||
else if (SCM_COMPLEXP (y))
|
||
return scm_from_bool (SCM_COMPLEX_IMAG (y) == 0.0
|
||
&& SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
{
|
||
if (isnan (SCM_REAL_VALUE (x)) || isinf (SCM_REAL_VALUE (x)))
|
||
return SCM_BOOL_F;
|
||
return scm_num_eq_p (scm_inexact_to_exact (x), y);
|
||
}
|
||
else
|
||
return scm_num_eq_p (y, x);
|
||
}
|
||
else if (SCM_COMPLEXP (x))
|
||
{
|
||
if (SCM_COMPLEXP (y))
|
||
return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
|
||
&& (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
|
||
else if (SCM_FRACTIONP (y))
|
||
{
|
||
if (SCM_COMPLEX_IMAG (x) != 0.0
|
||
|| isnan (SCM_COMPLEX_REAL (x))
|
||
|| isinf (SCM_COMPLEX_REAL (x)))
|
||
return SCM_BOOL_F;
|
||
return scm_num_eq_p (scm_inexact_to_exact (x), y);
|
||
}
|
||
else
|
||
return scm_num_eq_p (y, x);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_FRACTIONP (y))
|
||
return scm_i_fraction_equalp (x, y);
|
||
else
|
||
return scm_num_eq_p (y, x);
|
||
}
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARG1,
|
||
s_scm_i_num_eq_p);
|
||
}
|
||
|
||
|
||
/* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
|
||
done are good for inums, but for bignums an answer can almost always be
|
||
had by just examining a few high bits of the operands, as done by GMP in
|
||
mpq_cmp. flonum/frac compares likewise, but with the slight complication
|
||
of the float exponent to take into account. */
|
||
|
||
static int scm_is_less_than (SCM x, SCM y);
|
||
static int scm_is_greater_than (SCM x, SCM y);
|
||
static int scm_is_less_than_or_equal (SCM x, SCM y);
|
||
static int scm_is_greater_than_or_equal (SCM x, SCM y);
|
||
|
||
static int
|
||
scm_is_less_than (SCM x, SCM y)
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return SCM_I_INUM (x) < SCM_I_INUM (y);
|
||
else if (SCM_BIGP (y))
|
||
return scm_is_integer_positive_z (scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_is_integer_less_than_ir (SCM_I_INUM (x), SCM_REAL_VALUE (y));
|
||
if (!SCM_FRACTIONP (y))
|
||
abort ();
|
||
/* "x < a/b" becomes "x*b < a" */
|
||
return scm_is_less_than (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
|
||
SCM_FRACTION_NUMERATOR (y));
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_is_integer_negative_z (scm_bignum (x));
|
||
else if (SCM_BIGP (y))
|
||
return scm_is_integer_less_than_zz (scm_bignum (x), scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_is_integer_less_than_zr (scm_bignum (x), SCM_REAL_VALUE (y));
|
||
if (!SCM_FRACTIONP (y))
|
||
abort ();
|
||
/* "x < a/b" becomes "x*b < a" */
|
||
return scm_is_less_than (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
|
||
SCM_FRACTION_NUMERATOR (y));
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_is_integer_less_than_ri (SCM_REAL_VALUE (x), SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_is_integer_less_than_rz (SCM_REAL_VALUE (x), scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y);
|
||
if (!SCM_FRACTIONP (y))
|
||
abort ();
|
||
/* REALP x FRACTIONP y, see symmetric case below */
|
||
if (isnan (SCM_REAL_VALUE (x)))
|
||
return 0;
|
||
if (isinf (SCM_REAL_VALUE (x)))
|
||
return SCM_REAL_VALUE (x) < 0.0;
|
||
return scm_is_less_than (scm_inexact_to_exact (x), y);
|
||
}
|
||
|
||
if (!SCM_FRACTIONP (x))
|
||
abort ();
|
||
|
||
if (SCM_REALP (y))
|
||
{
|
||
/* FRACTIONP x REALP y, see symmetric case above */
|
||
if (isnan (SCM_REAL_VALUE (y)))
|
||
return 0;
|
||
if (isinf (SCM_REAL_VALUE (y)))
|
||
return 0.0 < SCM_REAL_VALUE (y);
|
||
return scm_is_less_than (x, scm_inexact_to_exact (y));
|
||
}
|
||
else
|
||
/* "a/b < y" becomes "a < y*b" */
|
||
return scm_is_less_than (SCM_FRACTION_NUMERATOR (x),
|
||
scm_product (y, SCM_FRACTION_DENOMINATOR (x)));
|
||
}
|
||
|
||
static int
|
||
scm_is_greater_than (SCM x, SCM y)
|
||
{
|
||
return scm_is_less_than (y, x);
|
||
}
|
||
|
||
static int
|
||
scm_is_less_than_or_equal (SCM x, SCM y)
|
||
{
|
||
if ((SCM_REALP (x) && isnan (SCM_REAL_VALUE (x)))
|
||
|| (SCM_REALP (y) && isnan (SCM_REAL_VALUE (y))))
|
||
return 0;
|
||
|
||
return !scm_is_less_than (y, x);
|
||
}
|
||
|
||
static int
|
||
scm_is_greater_than_or_equal (SCM x, SCM y)
|
||
{
|
||
return scm_is_less_than_or_equal (y, x);
|
||
}
|
||
|
||
SCM_INTERNAL SCM scm_i_num_less_p (SCM, SCM, SCM);
|
||
SCM_PRIMITIVE_GENERIC (scm_i_num_less_p, "<", 0, 2, 1,
|
||
(SCM x, SCM y, SCM rest),
|
||
"Return @code{#t} if the list of parameters is monotonically\n"
|
||
"increasing.")
|
||
#define FUNC_NAME s_scm_i_num_less_p
|
||
{
|
||
if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
|
||
return SCM_BOOL_T;
|
||
while (!scm_is_null (rest))
|
||
{
|
||
if (scm_is_false (scm_less_p (x, y)))
|
||
return SCM_BOOL_F;
|
||
x = y;
|
||
y = scm_car (rest);
|
||
rest = scm_cdr (rest);
|
||
}
|
||
return scm_less_p (x, y);
|
||
}
|
||
#undef FUNC_NAME
|
||
#define FUNC_NAME s_scm_i_num_less_p
|
||
SCM
|
||
scm_less_p (SCM x, SCM y)
|
||
{
|
||
if (!scm_is_real (x))
|
||
return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARG1, FUNC_NAME);
|
||
if (!scm_is_real (y))
|
||
return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARG2, FUNC_NAME);
|
||
return scm_from_bool (scm_is_less_than (x, y));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM scm_i_num_gr_p (SCM, SCM, SCM);
|
||
SCM_PRIMITIVE_GENERIC (scm_i_num_gr_p, ">", 0, 2, 1,
|
||
(SCM x, SCM y, SCM rest),
|
||
"Return @code{#t} if the list of parameters is monotonically\n"
|
||
"decreasing.")
|
||
#define FUNC_NAME s_scm_i_num_gr_p
|
||
{
|
||
if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
|
||
return SCM_BOOL_T;
|
||
while (!scm_is_null (rest))
|
||
{
|
||
if (scm_is_false (scm_gr_p (x, y)))
|
||
return SCM_BOOL_F;
|
||
x = y;
|
||
y = scm_car (rest);
|
||
rest = scm_cdr (rest);
|
||
}
|
||
return scm_gr_p (x, y);
|
||
}
|
||
#undef FUNC_NAME
|
||
#define FUNC_NAME s_scm_i_num_gr_p
|
||
SCM
|
||
scm_gr_p (SCM x, SCM y)
|
||
{
|
||
if (!scm_is_real (x))
|
||
return scm_wta_dispatch_2 (g_scm_i_num_gr_p, x, y, SCM_ARG1, FUNC_NAME);
|
||
if (!scm_is_real (y))
|
||
return scm_wta_dispatch_2 (g_scm_i_num_gr_p, x, y, SCM_ARG2, FUNC_NAME);
|
||
return scm_from_bool (scm_is_greater_than (x, y));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM scm_i_num_leq_p (SCM, SCM, SCM);
|
||
SCM_PRIMITIVE_GENERIC (scm_i_num_leq_p, "<=", 0, 2, 1,
|
||
(SCM x, SCM y, SCM rest),
|
||
"Return @code{#t} if the list of parameters is monotonically\n"
|
||
"non-decreasing.")
|
||
#define FUNC_NAME s_scm_i_num_leq_p
|
||
{
|
||
if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
|
||
return SCM_BOOL_T;
|
||
while (!scm_is_null (rest))
|
||
{
|
||
if (scm_is_false (scm_leq_p (x, y)))
|
||
return SCM_BOOL_F;
|
||
x = y;
|
||
y = scm_car (rest);
|
||
rest = scm_cdr (rest);
|
||
}
|
||
return scm_leq_p (x, y);
|
||
}
|
||
#undef FUNC_NAME
|
||
#define FUNC_NAME s_scm_i_num_leq_p
|
||
SCM
|
||
scm_leq_p (SCM x, SCM y)
|
||
{
|
||
if (!scm_is_real (x))
|
||
return scm_wta_dispatch_2 (g_scm_i_num_leq_p, x, y, SCM_ARG1, FUNC_NAME);
|
||
if (!scm_is_real (y))
|
||
return scm_wta_dispatch_2 (g_scm_i_num_leq_p, x, y, SCM_ARG2, FUNC_NAME);
|
||
return scm_from_bool (scm_is_less_than_or_equal (x, y));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM scm_i_num_geq_p (SCM, SCM, SCM);
|
||
SCM_PRIMITIVE_GENERIC (scm_i_num_geq_p, ">=", 0, 2, 1,
|
||
(SCM x, SCM y, SCM rest),
|
||
"Return @code{#t} if the list of parameters is monotonically\n"
|
||
"non-increasing.")
|
||
#define FUNC_NAME s_scm_i_num_geq_p
|
||
{
|
||
if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
|
||
return SCM_BOOL_T;
|
||
while (!scm_is_null (rest))
|
||
{
|
||
if (scm_is_false (scm_geq_p (x, y)))
|
||
return SCM_BOOL_F;
|
||
x = y;
|
||
y = scm_car (rest);
|
||
rest = scm_cdr (rest);
|
||
}
|
||
return scm_geq_p (x, y);
|
||
}
|
||
#undef FUNC_NAME
|
||
#define FUNC_NAME s_scm_i_num_geq_p
|
||
SCM
|
||
scm_geq_p (SCM x, SCM y)
|
||
{
|
||
if (!scm_is_real (x))
|
||
return scm_wta_dispatch_2 (g_scm_i_num_geq_p, x, y, SCM_ARG1, FUNC_NAME);
|
||
if (!scm_is_real (y))
|
||
return scm_wta_dispatch_2 (g_scm_i_num_geq_p, x, y, SCM_ARG2, FUNC_NAME);
|
||
return scm_from_bool (scm_is_greater_than_or_equal (x, y));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_zero_p, "zero?", 1, 0, 0,
|
||
(SCM z),
|
||
"Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
|
||
"zero.")
|
||
#define FUNC_NAME s_scm_zero_p
|
||
{
|
||
if (SCM_I_INUMP (z))
|
||
return scm_from_bool (scm_is_eq (z, SCM_INUM0));
|
||
else if (SCM_BIGP (z))
|
||
return SCM_BOOL_F;
|
||
else if (SCM_REALP (z))
|
||
return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
|
||
else if (SCM_COMPLEXP (z))
|
||
return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
|
||
&& SCM_COMPLEX_IMAG (z) == 0.0);
|
||
else if (SCM_FRACTIONP (z))
|
||
return SCM_BOOL_F;
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_zero_p, z, SCM_ARG1, s_scm_zero_p);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_positive_p, "positive?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
|
||
"zero.")
|
||
#define FUNC_NAME s_scm_positive_p
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
return scm_from_bool (SCM_I_INUM (x) > 0);
|
||
else if (SCM_BIGP (x))
|
||
return scm_from_bool (scm_is_integer_positive_z (scm_bignum (x)));
|
||
else if (SCM_REALP (x))
|
||
return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
|
||
else if (SCM_FRACTIONP (x))
|
||
return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_positive_p, x, SCM_ARG1, s_scm_positive_p);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_negative_p, "negative?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if @var{x} is an exact or inexact number less than\n"
|
||
"zero.")
|
||
#define FUNC_NAME s_scm_negative_p
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
return scm_from_bool (SCM_I_INUM (x) < 0);
|
||
else if (SCM_BIGP (x))
|
||
return scm_from_bool (scm_is_integer_negative_z (scm_bignum (x)));
|
||
else if (SCM_REALP (x))
|
||
return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
|
||
else if (SCM_FRACTIONP (x))
|
||
return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_negative_p, x, SCM_ARG1, s_scm_negative_p);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
/* scm_min and scm_max return an inexact when either argument is inexact, as
|
||
required by r5rs. On that basis, for exact/inexact combinations the
|
||
exact is converted to inexact to compare and possibly return. This is
|
||
unlike scm_less_p above which takes some trouble to preserve all bits in
|
||
its test, such trouble is not required for min and max. */
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_i_max, "max", 0, 2, 1,
|
||
(SCM x, SCM y, SCM rest),
|
||
"Return the maximum of all parameter values.")
|
||
#define FUNC_NAME s_scm_i_max
|
||
{
|
||
while (!scm_is_null (rest))
|
||
{ x = scm_max (x, y);
|
||
y = scm_car (rest);
|
||
rest = scm_cdr (rest);
|
||
}
|
||
return scm_max (x, y);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM
|
||
scm_max (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y))
|
||
{
|
||
if (SCM_UNBNDP (x))
|
||
return scm_wta_dispatch_0 (g_scm_i_max, s_scm_i_max);
|
||
else if (scm_is_real (x))
|
||
return x;
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_i_max, x, SCM_ARG1, s_scm_i_max);
|
||
}
|
||
|
||
if (!scm_is_real (x))
|
||
return scm_wta_dispatch_2 (g_scm_i_max, x, y, SCM_ARG1, s_scm_i_max);
|
||
if (!scm_is_real (y))
|
||
return scm_wta_dispatch_2 (g_scm_i_max, x, y, SCM_ARG2, s_scm_i_max);
|
||
|
||
if (scm_is_exact (x) && scm_is_exact (y))
|
||
return scm_is_less_than (x, y) ? y : x;
|
||
|
||
x = SCM_REALP (x) ? x : scm_exact_to_inexact (x);
|
||
y = SCM_REALP (y) ? y : scm_exact_to_inexact (y);
|
||
double xx = SCM_REAL_VALUE (x);
|
||
double yy = SCM_REAL_VALUE (y);
|
||
if (isnan (xx))
|
||
return x;
|
||
if (isnan (yy))
|
||
return y;
|
||
if (xx < yy)
|
||
return y;
|
||
if (xx > yy)
|
||
return x;
|
||
// Distinguish -0.0 from 0.0.
|
||
return (copysign (1.0, xx) < 0) ? y : x;
|
||
}
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_i_min, "min", 0, 2, 1,
|
||
(SCM x, SCM y, SCM rest),
|
||
"Return the minimum of all parameter values.")
|
||
#define FUNC_NAME s_scm_i_min
|
||
{
|
||
while (!scm_is_null (rest))
|
||
{ x = scm_min (x, y);
|
||
y = scm_car (rest);
|
||
rest = scm_cdr (rest);
|
||
}
|
||
return scm_min (x, y);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM
|
||
scm_min (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y))
|
||
{
|
||
if (SCM_UNBNDP (x))
|
||
return scm_wta_dispatch_0 (g_scm_i_min, s_scm_i_min);
|
||
else if (scm_is_real (x))
|
||
return x;
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_i_min, x, SCM_ARG1, s_scm_i_min);
|
||
}
|
||
|
||
if (!scm_is_real (x))
|
||
return scm_wta_dispatch_2 (g_scm_i_min, x, y, SCM_ARG1, s_scm_i_min);
|
||
if (!scm_is_real (y))
|
||
return scm_wta_dispatch_2 (g_scm_i_min, x, y, SCM_ARG2, s_scm_i_min);
|
||
|
||
if (scm_is_exact (x) && scm_is_exact (y))
|
||
return scm_is_less_than (x, y) ? x : y;
|
||
|
||
x = SCM_REALP (x) ? x : scm_exact_to_inexact (x);
|
||
y = SCM_REALP (y) ? y : scm_exact_to_inexact (y);
|
||
double xx = SCM_REAL_VALUE (x);
|
||
double yy = SCM_REAL_VALUE (y);
|
||
if (isnan (xx))
|
||
return x;
|
||
if (isnan (yy))
|
||
return y;
|
||
if (xx < yy)
|
||
return x;
|
||
if (xx > yy)
|
||
return y;
|
||
// Distinguish -0.0 from 0.0.
|
||
return (copysign (1.0, xx) < 0) ? x : y;
|
||
}
|
||
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_i_sum, "+", 0, 2, 1,
|
||
(SCM x, SCM y, SCM rest),
|
||
"Return the sum of all parameter values. Return 0 if called without\n"
|
||
"any parameters." )
|
||
#define FUNC_NAME s_scm_i_sum
|
||
{
|
||
while (!scm_is_null (rest))
|
||
{ x = scm_sum (x, y);
|
||
y = scm_car (rest);
|
||
rest = scm_cdr (rest);
|
||
}
|
||
return scm_sum (x, y);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static SCM
|
||
sum (SCM x, SCM y)
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_add_ii (SCM_I_INUM (x), SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_add_zi (scm_bignum (y), SCM_I_INUM (x));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_from_double (SCM_I_INUM (x) + SCM_REAL_VALUE (y));
|
||
else if (SCM_COMPLEXP (y))
|
||
return scm_c_make_rectangular (SCM_I_INUM (x) + SCM_COMPLEX_REAL (y),
|
||
SCM_COMPLEX_IMAG (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_make_ratio
|
||
(scm_sum (SCM_FRACTION_NUMERATOR (y),
|
||
scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
|
||
SCM_FRACTION_DENOMINATOR (y));
|
||
abort (); /* Unreachable. */
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_BIGP (y))
|
||
return scm_integer_add_zz (scm_bignum (x), scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_from_double (scm_integer_to_double_z (scm_bignum (x))
|
||
+ SCM_REAL_VALUE (y));
|
||
else if (SCM_COMPLEXP (y))
|
||
return scm_c_make_rectangular (scm_integer_to_double_z (scm_bignum (x))
|
||
+ SCM_COMPLEX_REAL (y),
|
||
SCM_COMPLEX_IMAG (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
|
||
scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
|
||
SCM_FRACTION_DENOMINATOR (y));
|
||
else
|
||
return sum (y, x);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_REALP (y))
|
||
return scm_i_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
|
||
else if (SCM_COMPLEXP (y))
|
||
return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
|
||
SCM_COMPLEX_IMAG (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
|
||
else
|
||
return sum (y, x);
|
||
}
|
||
else if (SCM_COMPLEXP (x))
|
||
{
|
||
if (SCM_COMPLEXP (y))
|
||
return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
|
||
SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
|
||
SCM_COMPLEX_IMAG (x));
|
||
else
|
||
return sum (y, x);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_FRACTIONP (y))
|
||
{
|
||
SCM nx = SCM_FRACTION_NUMERATOR (x);
|
||
SCM ny = SCM_FRACTION_NUMERATOR (y);
|
||
SCM dx = SCM_FRACTION_DENOMINATOR (x);
|
||
SCM dy = SCM_FRACTION_DENOMINATOR (y);
|
||
return scm_i_make_ratio (scm_sum (scm_product (nx, dy),
|
||
scm_product (ny, dx)),
|
||
scm_product (dx, dy));
|
||
}
|
||
else
|
||
return sum (y, x);
|
||
}
|
||
else
|
||
abort (); /* Unreachable. */
|
||
}
|
||
|
||
SCM
|
||
scm_sum (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y))
|
||
{
|
||
if (SCM_NUMBERP (x)) return x;
|
||
if (SCM_UNBNDP (x)) return SCM_INUM0;
|
||
return scm_wta_dispatch_1 (g_scm_i_sum, x, SCM_ARG1, s_scm_i_sum);
|
||
}
|
||
|
||
if (!SCM_NUMBERP (x))
|
||
return scm_wta_dispatch_2 (g_scm_i_sum, x, y, SCM_ARG1, s_scm_i_sum);
|
||
if (!SCM_NUMBERP (y))
|
||
return scm_wta_dispatch_2 (g_scm_i_sum, x, y, SCM_ARG2, s_scm_i_sum);
|
||
|
||
return sum (x, y);
|
||
}
|
||
|
||
SCM_DEFINE (scm_oneplus, "1+", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @math{@var{x}+1}.")
|
||
#define FUNC_NAME s_scm_oneplus
|
||
{
|
||
return scm_sum (x, SCM_INUM1);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static SCM
|
||
negate (SCM x)
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
return scm_integer_negate_i (SCM_I_INUM (x));
|
||
else if (SCM_BIGP (x))
|
||
return scm_integer_negate_z (scm_bignum (x));
|
||
else if (SCM_REALP (x))
|
||
return scm_i_from_double (-SCM_REAL_VALUE (x));
|
||
else if (SCM_COMPLEXP (x))
|
||
return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
|
||
-SCM_COMPLEX_IMAG (x));
|
||
else if (SCM_FRACTIONP (x))
|
||
return scm_i_make_ratio_already_reduced
|
||
(negate (SCM_FRACTION_NUMERATOR (x)), SCM_FRACTION_DENOMINATOR (x));
|
||
else
|
||
abort (); /* Unreachable. */
|
||
}
|
||
|
||
static SCM
|
||
difference (SCM x, SCM y)
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (SCM_I_INUM (x) == 0)
|
||
/* We need to handle x == exact 0 specially because R6RS states
|
||
that:
|
||
(- 0.0) ==> -0.0 and
|
||
(- 0.0 0.0) ==> 0.0
|
||
and the scheme compiler changes
|
||
(- 0.0) into (- 0 0.0)
|
||
So we need to treat (- 0 0.0) like (- 0.0).
|
||
At the C level, (-x) is different than (0.0 - x).
|
||
(0.0 - 0.0) ==> 0.0, but (- 0.0) ==> -0.0. */
|
||
return negate (y);
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_sub_ii (SCM_I_INUM (x), SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_sub_iz (SCM_I_INUM (x), scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_from_double (SCM_I_INUM (x) - SCM_REAL_VALUE (y));
|
||
else if (SCM_COMPLEXP (y))
|
||
return scm_c_make_rectangular (SCM_I_INUM (x) - SCM_COMPLEX_REAL (y),
|
||
- SCM_COMPLEX_IMAG (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
/* a - b/c = (ac - b) / c */
|
||
return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
|
||
SCM_FRACTION_NUMERATOR (y)),
|
||
SCM_FRACTION_DENOMINATOR (y));
|
||
else
|
||
abort (); /* Unreachable. */
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_integer_sub_zi (scm_bignum (x), SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_sub_zz (scm_bignum (x), scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_from_double (scm_integer_to_double_z (scm_bignum (x))
|
||
- SCM_REAL_VALUE (y));
|
||
else if (SCM_COMPLEXP (y))
|
||
return scm_c_make_rectangular
|
||
(scm_integer_to_double_z (scm_bignum (x)) - SCM_COMPLEX_REAL (y),
|
||
-SCM_COMPLEX_IMAG (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_make_ratio
|
||
(difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
|
||
SCM_FRACTION_NUMERATOR (y)),
|
||
SCM_FRACTION_DENOMINATOR (y));
|
||
else
|
||
abort (); /* Unreachable. */
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
double r = SCM_REAL_VALUE (x);
|
||
if (SCM_I_INUMP (y))
|
||
return scm_i_from_double (r - SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_i_from_double (r - scm_integer_to_double_z (scm_bignum (y)));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_from_double (r - SCM_REAL_VALUE (y));
|
||
else if (SCM_COMPLEXP (y))
|
||
return scm_c_make_rectangular (r - SCM_COMPLEX_REAL (y),
|
||
-SCM_COMPLEX_IMAG (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_from_double (r - scm_i_fraction2double (y));
|
||
else
|
||
abort (); /* Unreachable. */
|
||
}
|
||
else if (SCM_COMPLEXP (x))
|
||
{
|
||
double r = SCM_COMPLEX_REAL (x);
|
||
double i = SCM_COMPLEX_IMAG (x);
|
||
if (SCM_I_INUMP (y))
|
||
r -= SCM_I_INUM (y);
|
||
else if (SCM_BIGP (y))
|
||
r -= scm_integer_to_double_z (scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
r -= SCM_REAL_VALUE (y);
|
||
else if (SCM_COMPLEXP (y))
|
||
r -= SCM_COMPLEX_REAL (y), i -= SCM_COMPLEX_IMAG (y);
|
||
else if (SCM_FRACTIONP (y))
|
||
r -= scm_i_fraction2double (y);
|
||
else
|
||
abort (); /* Unreachable. */
|
||
return scm_c_make_rectangular (r, i);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (scm_is_exact (y))
|
||
{
|
||
/* a/b - c/d = (ad - bc) / bd */
|
||
SCM n = scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x),
|
||
scm_denominator (y)),
|
||
scm_product (scm_numerator (y),
|
||
SCM_FRACTION_DENOMINATOR (x)));
|
||
SCM d = scm_product (SCM_FRACTION_DENOMINATOR (x),
|
||
scm_denominator (y));
|
||
return scm_i_make_ratio (n, d);
|
||
}
|
||
|
||
double xx = scm_i_fraction2double (x);
|
||
if (SCM_REALP (y))
|
||
return scm_i_from_double (xx - SCM_REAL_VALUE (y));
|
||
else if (SCM_COMPLEXP (y))
|
||
return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
|
||
-SCM_COMPLEX_IMAG (y));
|
||
else
|
||
abort (); /* Unreachable. */
|
||
}
|
||
else
|
||
abort (); /* Unreachable. */
|
||
}
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_i_difference, "-", 0, 2, 1,
|
||
(SCM x, SCM y, SCM rest),
|
||
"If called with one argument @var{z1}, -@var{z1} returned. Otherwise\n"
|
||
"the sum of all but the first argument are subtracted from the first\n"
|
||
"argument.")
|
||
#define FUNC_NAME s_scm_i_difference
|
||
{
|
||
while (!scm_is_null (rest))
|
||
{ x = scm_difference (x, y);
|
||
y = scm_car (rest);
|
||
rest = scm_cdr (rest);
|
||
}
|
||
return scm_difference (x, y);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM
|
||
scm_difference (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y))
|
||
{
|
||
if (SCM_NUMBERP (x)) return negate (x);
|
||
if (SCM_UNBNDP (x))
|
||
return scm_wta_dispatch_0 (g_scm_i_difference, s_scm_i_difference);
|
||
return scm_wta_dispatch_1 (g_scm_i_difference, x, SCM_ARG1,
|
||
s_scm_i_difference);
|
||
}
|
||
if (!SCM_NUMBERP (x))
|
||
return scm_wta_dispatch_2 (g_scm_i_difference, x, y, SCM_ARG1,
|
||
s_scm_i_difference);
|
||
if (!SCM_NUMBERP (y))
|
||
return scm_wta_dispatch_2 (g_scm_i_difference, x, y, SCM_ARG2,
|
||
s_scm_i_difference);
|
||
return difference (x, y);
|
||
}
|
||
|
||
SCM_DEFINE (scm_oneminus, "1-", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @math{@var{x}-1}.")
|
||
#define FUNC_NAME s_scm_oneminus
|
||
{
|
||
return scm_difference (x, SCM_INUM1);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static SCM
|
||
product (SCM x, SCM y)
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (scm_is_eq (x, SCM_I_MAKINUM (-1)))
|
||
return negate (y);
|
||
else if (SCM_I_INUMP (y))
|
||
return scm_integer_mul_ii (SCM_I_INUM (x), SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
return scm_integer_mul_zi (scm_bignum (y), SCM_I_INUM (x));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_from_double (SCM_I_INUM (x) * SCM_REAL_VALUE (y));
|
||
else if (SCM_COMPLEXP (y))
|
||
return scm_c_make_rectangular (SCM_I_INUM (x) * SCM_COMPLEX_REAL (y),
|
||
SCM_I_INUM (x) * SCM_COMPLEX_IMAG (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
|
||
SCM_FRACTION_DENOMINATOR (y));
|
||
abort (); /* Unreachable. */
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_BIGP (y))
|
||
return scm_integer_mul_zz (scm_bignum (x), scm_bignum (y));
|
||
else if (SCM_REALP (y))
|
||
return scm_from_double (scm_integer_to_double_z (scm_bignum (x))
|
||
* SCM_REAL_VALUE (y));
|
||
else if (SCM_COMPLEXP (y))
|
||
{
|
||
double z = scm_integer_to_double_z (scm_bignum (x));
|
||
return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
|
||
z * SCM_COMPLEX_IMAG (y));
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_make_ratio (product (x, SCM_FRACTION_NUMERATOR (y)),
|
||
SCM_FRACTION_DENOMINATOR (y));
|
||
else
|
||
return product (y, x);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_REALP (y))
|
||
return scm_i_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
|
||
else if (SCM_COMPLEXP (y))
|
||
return scm_c_make_rectangular
|
||
(SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
|
||
SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_from_double
|
||
(SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
|
||
else
|
||
return product (y, x);
|
||
}
|
||
else if (SCM_COMPLEXP (x))
|
||
{
|
||
if (SCM_COMPLEXP (y))
|
||
{
|
||
double rx = SCM_COMPLEX_REAL (x), ry = SCM_COMPLEX_REAL (y);
|
||
double ix = SCM_COMPLEX_IMAG (x), iy = SCM_COMPLEX_IMAG (y);
|
||
return scm_c_make_rectangular (rx * ry - ix * iy, rx * iy + ix * ry);
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
{
|
||
double yy = scm_i_fraction2double (y);
|
||
return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
|
||
yy * SCM_COMPLEX_IMAG (x));
|
||
}
|
||
else
|
||
return product (y, x);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_FRACTIONP (y))
|
||
/* a/b * c/d = ac / bd */
|
||
return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
|
||
SCM_FRACTION_NUMERATOR (y)),
|
||
scm_product (SCM_FRACTION_DENOMINATOR (x),
|
||
SCM_FRACTION_DENOMINATOR (y)));
|
||
else
|
||
return product (y, x);
|
||
}
|
||
else
|
||
abort (); /* Unreachable. */
|
||
}
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_i_product, "*", 0, 2, 1,
|
||
(SCM x, SCM y, SCM rest),
|
||
"Return the product of all arguments. If called without arguments,\n"
|
||
"1 is returned.")
|
||
#define FUNC_NAME s_scm_i_product
|
||
{
|
||
while (!scm_is_null (rest))
|
||
{ x = scm_product (x, y);
|
||
y = scm_car (rest);
|
||
rest = scm_cdr (rest);
|
||
}
|
||
return scm_product (x, y);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM
|
||
scm_product (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y))
|
||
{
|
||
if (SCM_UNBNDP (x))
|
||
return SCM_I_MAKINUM (1L);
|
||
else if (SCM_NUMBERP (x))
|
||
return x;
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_i_product, x, SCM_ARG1,
|
||
s_scm_i_product);
|
||
}
|
||
|
||
/* This is pretty gross! But (* 1 X) is apparently X in Guile, for
|
||
any type of X, even a pair. */
|
||
if (scm_is_eq (x, SCM_INUM1))
|
||
return y;
|
||
if (scm_is_eq (y, SCM_INUM1))
|
||
return x;
|
||
|
||
if (!SCM_NUMBERP (x))
|
||
return scm_wta_dispatch_2 (g_scm_i_product, x, y, SCM_ARG1,
|
||
s_scm_i_product);
|
||
if (!SCM_NUMBERP (y))
|
||
return scm_wta_dispatch_2 (g_scm_i_product, x, y, SCM_ARG2,
|
||
s_scm_i_product);
|
||
|
||
return product (x, y);
|
||
}
|
||
|
||
/* The code below for complex division is adapted from the GNU
|
||
libstdc++, which adapted it from f2c's libF77, and is subject to
|
||
this copyright: */
|
||
|
||
/****************************************************************
|
||
Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
|
||
|
||
Permission to use, copy, modify, and distribute this software
|
||
and its documentation for any purpose and without fee is hereby
|
||
granted, provided that the above copyright notice appear in all
|
||
copies and that both that the copyright notice and this
|
||
permission notice and warranty disclaimer appear in supporting
|
||
documentation, and that the names of AT&T Bell Laboratories or
|
||
Bellcore or any of their entities not be used in advertising or
|
||
publicity pertaining to distribution of the software without
|
||
specific, written prior permission.
|
||
|
||
AT&T and Bellcore disclaim all warranties with regard to this
|
||
software, including all implied warranties of merchantability
|
||
and fitness. In no event shall AT&T or Bellcore be liable for
|
||
any special, indirect or consequential damages or any damages
|
||
whatsoever resulting from loss of use, data or profits, whether
|
||
in an action of contract, negligence or other tortious action,
|
||
arising out of or in connection with the use or performance of
|
||
this software.
|
||
****************************************************************/
|
||
|
||
static SCM
|
||
invert (SCM x)
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
switch (SCM_I_INUM (x))
|
||
{
|
||
case -1: return x;
|
||
case 0: scm_num_overflow ("divide");
|
||
case 1: return x;
|
||
default: return scm_i_make_ratio_already_reduced (SCM_INUM1, x);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
return scm_i_make_ratio_already_reduced (SCM_INUM1, x);
|
||
else if (SCM_REALP (x))
|
||
return scm_i_from_double (1.0 / SCM_REAL_VALUE (x));
|
||
else if (SCM_COMPLEXP (x))
|
||
{
|
||
double r = SCM_COMPLEX_REAL (x);
|
||
double i = SCM_COMPLEX_IMAG (x);
|
||
if (fabs(r) <= fabs(i))
|
||
{
|
||
double t = r / i;
|
||
double d = i * (1.0 + t * t);
|
||
return scm_c_make_rectangular (t / d, -1.0 / d);
|
||
}
|
||
else
|
||
{
|
||
double t = i / r;
|
||
double d = r * (1.0 + t * t);
|
||
return scm_c_make_rectangular (1.0 / d, -t / d);
|
||
}
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
return scm_i_make_ratio_already_reduced (SCM_FRACTION_DENOMINATOR (x),
|
||
SCM_FRACTION_NUMERATOR (x));
|
||
else
|
||
abort (); /* Unreachable. */
|
||
}
|
||
|
||
static SCM
|
||
complex_div (double a, SCM y)
|
||
{
|
||
double r = SCM_COMPLEX_REAL (y);
|
||
double i = SCM_COMPLEX_IMAG (y);
|
||
if (fabs(r) <= fabs(i))
|
||
{
|
||
double t = r / i;
|
||
double d = i * (1.0 + t * t);
|
||
return scm_c_make_rectangular ((a * t) / d, -a / d);
|
||
}
|
||
else
|
||
{
|
||
double t = i / r;
|
||
double d = r * (1.0 + t * t);
|
||
return scm_c_make_rectangular (a / d, -(a * t) / d);
|
||
}
|
||
}
|
||
|
||
static SCM
|
||
divide (SCM x, SCM y)
|
||
{
|
||
if (scm_is_eq (y, SCM_INUM0))
|
||
scm_num_overflow ("divide");
|
||
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (scm_is_eq (x, SCM_INUM1))
|
||
return invert (y);
|
||
if (SCM_I_INUMP (y))
|
||
return scm_is_integer_divisible_ii (SCM_I_INUM (x), SCM_I_INUM (y))
|
||
? scm_integer_exact_quotient_ii (SCM_I_INUM (x), SCM_I_INUM (y))
|
||
: scm_i_make_ratio (x, y);
|
||
else if (SCM_BIGP (y))
|
||
return scm_i_make_ratio (x, y);
|
||
else if (SCM_REALP (y))
|
||
/* FIXME: Precision may be lost here due to:
|
||
(1) The cast from 'scm_t_inum' to 'double'
|
||
(2) Double rounding */
|
||
return scm_i_from_double ((double) SCM_I_INUM (x) / SCM_REAL_VALUE (y));
|
||
else if (SCM_COMPLEXP (y))
|
||
return complex_div (SCM_I_INUM (x), y);
|
||
else if (SCM_FRACTIONP (y))
|
||
/* a / b/c = ac / b */
|
||
return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
|
||
SCM_FRACTION_NUMERATOR (y));
|
||
else
|
||
abort (); /* Unreachable. */
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_is_integer_divisible_zi (scm_bignum (x), SCM_I_INUM (y))
|
||
? scm_integer_exact_quotient_zi (scm_bignum (x), SCM_I_INUM (y))
|
||
: scm_i_make_ratio (x, y);
|
||
else if (SCM_BIGP (y))
|
||
return scm_is_integer_divisible_zz (scm_bignum (x), scm_bignum (y))
|
||
? scm_integer_exact_quotient_zz (scm_bignum (x), scm_bignum (y))
|
||
: scm_i_make_ratio (x, y);
|
||
else if (SCM_REALP (y))
|
||
/* FIXME: Precision may be lost here due to:
|
||
(1) scm_integer_to_double_z (2) Double rounding */
|
||
return scm_i_from_double (scm_integer_to_double_z (scm_bignum (x))
|
||
/ SCM_REAL_VALUE (y));
|
||
else if (SCM_COMPLEXP (y))
|
||
return complex_div (scm_integer_to_double_z (scm_bignum (x)), y);
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
|
||
SCM_FRACTION_NUMERATOR (y));
|
||
else
|
||
abort (); /* Unreachable. */
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
double rx = SCM_REAL_VALUE (x);
|
||
if (SCM_I_INUMP (y))
|
||
/* FIXME: Precision may be lost here due to:
|
||
(1) The cast from 'scm_t_inum' to 'double'
|
||
(2) Double rounding */
|
||
return scm_i_from_double (rx / (double) SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
/* FIXME: Precision may be lost here due to:
|
||
(1) The conversion from bignum to double
|
||
(2) Double rounding */
|
||
return scm_i_from_double (rx / scm_integer_to_double_z (scm_bignum (y)));
|
||
else if (SCM_REALP (y))
|
||
return scm_i_from_double (rx / SCM_REAL_VALUE (y));
|
||
else if (SCM_COMPLEXP (y))
|
||
return complex_div (rx, y);
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_from_double (rx / scm_i_fraction2double (y));
|
||
else
|
||
abort () ; /* Unreachable. */
|
||
}
|
||
else if (SCM_COMPLEXP (x))
|
||
{
|
||
double rx = SCM_COMPLEX_REAL (x);
|
||
double ix = SCM_COMPLEX_IMAG (x);
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
/* FIXME: Precision may be lost here due to:
|
||
(1) The conversion from 'scm_t_inum' to double
|
||
(2) Double rounding */
|
||
double d = SCM_I_INUM (y);
|
||
return scm_c_make_rectangular (rx / d, ix / d);
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
/* FIXME: Precision may be lost here due to:
|
||
(1) The conversion from bignum to double
|
||
(2) Double rounding */
|
||
double d = scm_integer_to_double_z (scm_bignum (y));
|
||
return scm_c_make_rectangular (rx / d, ix / d);
|
||
}
|
||
else if (SCM_REALP (y))
|
||
{
|
||
double d = SCM_REAL_VALUE (y);
|
||
return scm_c_make_rectangular (rx / d, ix / d);
|
||
}
|
||
else if (SCM_COMPLEXP (y))
|
||
{
|
||
double ry = SCM_COMPLEX_REAL (y);
|
||
double iy = SCM_COMPLEX_IMAG (y);
|
||
if (fabs(ry) <= fabs(iy))
|
||
{
|
||
double t = ry / iy;
|
||
double d = iy * (1.0 + t * t);
|
||
return scm_c_make_rectangular ((rx * t + ix) / d,
|
||
(ix * t - rx) / d);
|
||
}
|
||
else
|
||
{
|
||
double t = iy / ry;
|
||
double d = ry * (1.0 + t * t);
|
||
return scm_c_make_rectangular ((rx + ix * t) / d,
|
||
(ix - rx * t) / d);
|
||
}
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
{
|
||
/* FIXME: Precision may be lost here due to:
|
||
(1) The conversion from fraction to double
|
||
(2) Double rounding */
|
||
double d = scm_i_fraction2double (y);
|
||
return scm_c_make_rectangular (rx / d, ix / d);
|
||
}
|
||
else
|
||
abort (); /* Unreachable. */
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (scm_is_exact_integer (y))
|
||
return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
|
||
scm_product (SCM_FRACTION_DENOMINATOR (x), y));
|
||
else if (SCM_REALP (y))
|
||
/* FIXME: Precision may be lost here due to:
|
||
(1) The conversion from fraction to double
|
||
(2) Double rounding */
|
||
return scm_i_from_double (scm_i_fraction2double (x) /
|
||
SCM_REAL_VALUE (y));
|
||
else if (SCM_COMPLEXP (y))
|
||
/* FIXME: Precision may be lost here due to:
|
||
(1) The conversion from fraction to double
|
||
(2) Double rounding */
|
||
return complex_div (scm_i_fraction2double (x), y);
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
|
||
SCM_FRACTION_DENOMINATOR (y)),
|
||
scm_product (SCM_FRACTION_NUMERATOR (y),
|
||
SCM_FRACTION_DENOMINATOR (x)));
|
||
else
|
||
abort (); /* Unreachable. */
|
||
}
|
||
else
|
||
abort (); /* Unreachable. */
|
||
}
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_i_divide, "/", 0, 2, 1,
|
||
(SCM x, SCM y, SCM rest),
|
||
"Divide the first argument by the product of the remaining\n"
|
||
"arguments. If called with one argument @var{z1}, 1/@var{z1} is\n"
|
||
"returned.")
|
||
#define FUNC_NAME s_scm_i_divide
|
||
{
|
||
while (!scm_is_null (rest))
|
||
{ x = scm_divide (x, y);
|
||
y = scm_car (rest);
|
||
rest = scm_cdr (rest);
|
||
}
|
||
return scm_divide (x, y);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM
|
||
scm_divide (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y))
|
||
{
|
||
if (SCM_UNBNDP (x))
|
||
return scm_wta_dispatch_0 (g_scm_i_divide, s_scm_i_divide);
|
||
if (SCM_NUMBERP (x))
|
||
return invert (x);
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_i_divide, x, SCM_ARG1,
|
||
s_scm_i_divide);
|
||
}
|
||
|
||
if (!SCM_NUMBERP (x))
|
||
return scm_wta_dispatch_2 (g_scm_i_divide, x, y, SCM_ARG1,
|
||
s_scm_i_divide);
|
||
if (!SCM_NUMBERP (y))
|
||
return scm_wta_dispatch_2 (g_scm_i_divide, x, y, SCM_ARG2,
|
||
s_scm_i_divide);
|
||
|
||
return divide (x, y);
|
||
}
|
||
|
||
double
|
||
scm_c_truncate (double x)
|
||
{
|
||
return trunc (x);
|
||
}
|
||
|
||
/* scm_c_round is done using floor(x+0.5) to round to nearest and with
|
||
half-way case (ie. when x is an integer plus 0.5) going upwards.
|
||
Then half-way cases are identified and adjusted down if the
|
||
round-upwards didn't give the desired even integer.
|
||
|
||
"plus_half == result" identifies a half-way case. If plus_half, which is
|
||
x + 0.5, is an integer then x must be an integer plus 0.5.
|
||
|
||
An odd "result" value is identified with result/2 != floor(result/2).
|
||
This is done with plus_half, since that value is ready for use sooner in
|
||
a pipelined cpu, and we're already requiring plus_half == result.
|
||
|
||
Note however that we need to be careful when x is big and already an
|
||
integer. In that case "x+0.5" may round to an adjacent integer, causing
|
||
us to return such a value, incorrectly. For instance if the hardware is
|
||
in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
|
||
(ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
|
||
returned. Or if the hardware is in round-upwards mode, then other bigger
|
||
values like say x == 2^128 will see x+0.5 rounding up to the next higher
|
||
representable value, 2^128+2^76 (or whatever), again incorrect.
|
||
|
||
These bad roundings of x+0.5 are avoided by testing at the start whether
|
||
x is already an integer. If it is then clearly that's the desired result
|
||
already. And if it's not then the exponent must be small enough to allow
|
||
an 0.5 to be represented, and hence added without a bad rounding. */
|
||
|
||
double
|
||
scm_c_round (double x)
|
||
{
|
||
double plus_half, result;
|
||
|
||
if (x == floor (x))
|
||
return x;
|
||
|
||
plus_half = x + 0.5;
|
||
result = floor (plus_half);
|
||
/* Adjust so that the rounding is towards even. */
|
||
return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
|
||
? result - 1
|
||
: result);
|
||
}
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_truncate_number, "truncate", 1, 0, 0,
|
||
(SCM x),
|
||
"Round the number @var{x} towards zero.")
|
||
#define FUNC_NAME s_scm_truncate_number
|
||
{
|
||
if (SCM_I_INUMP (x) || SCM_BIGP (x))
|
||
return x;
|
||
else if (SCM_REALP (x))
|
||
return scm_i_from_double (trunc (SCM_REAL_VALUE (x)));
|
||
else if (SCM_FRACTIONP (x))
|
||
return scm_truncate_quotient (SCM_FRACTION_NUMERATOR (x),
|
||
SCM_FRACTION_DENOMINATOR (x));
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_truncate_number, x, SCM_ARG1,
|
||
s_scm_truncate_number);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_round_number, "round", 1, 0, 0,
|
||
(SCM x),
|
||
"Round the number @var{x} towards the nearest integer. "
|
||
"When it is exactly halfway between two integers, "
|
||
"round towards the even one.")
|
||
#define FUNC_NAME s_scm_round_number
|
||
{
|
||
if (SCM_I_INUMP (x) || SCM_BIGP (x))
|
||
return x;
|
||
else if (SCM_REALP (x))
|
||
return scm_i_from_double (scm_c_round (SCM_REAL_VALUE (x)));
|
||
else if (SCM_FRACTIONP (x))
|
||
return scm_round_quotient (SCM_FRACTION_NUMERATOR (x),
|
||
SCM_FRACTION_DENOMINATOR (x));
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_round_number, x, SCM_ARG1,
|
||
s_scm_round_number);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
|
||
(SCM x),
|
||
"Round the number @var{x} towards minus infinity.")
|
||
#define FUNC_NAME s_scm_floor
|
||
{
|
||
if (SCM_I_INUMP (x) || SCM_BIGP (x))
|
||
return x;
|
||
else if (SCM_REALP (x))
|
||
return scm_i_from_double (floor (SCM_REAL_VALUE (x)));
|
||
else if (SCM_FRACTIONP (x))
|
||
return scm_floor_quotient (SCM_FRACTION_NUMERATOR (x),
|
||
SCM_FRACTION_DENOMINATOR (x));
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_floor, x, 1, s_scm_floor);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
|
||
(SCM x),
|
||
"Round the number @var{x} towards infinity.")
|
||
#define FUNC_NAME s_scm_ceiling
|
||
{
|
||
if (SCM_I_INUMP (x) || SCM_BIGP (x))
|
||
return x;
|
||
else if (SCM_REALP (x))
|
||
return scm_i_from_double (ceil (SCM_REAL_VALUE (x)));
|
||
else if (SCM_FRACTIONP (x))
|
||
return scm_ceiling_quotient (SCM_FRACTION_NUMERATOR (x),
|
||
SCM_FRACTION_DENOMINATOR (x));
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_expt, "expt", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return @var{x} raised to the power of @var{y}.")
|
||
#define FUNC_NAME s_scm_expt
|
||
{
|
||
if (scm_is_integer (y))
|
||
{
|
||
if (scm_is_true (scm_exact_p (y)))
|
||
return scm_integer_expt (x, y);
|
||
else
|
||
{
|
||
/* Here we handle the case where the exponent is an inexact
|
||
integer. We make the exponent exact in order to use
|
||
scm_integer_expt, and thus avoid the spurious imaginary
|
||
parts that may result from round-off errors in the general
|
||
e^(y log x) method below (for example when squaring a large
|
||
negative number). In this case, we must return an inexact
|
||
result for correctness. We also make the base inexact so
|
||
that scm_integer_expt will use fast inexact arithmetic
|
||
internally. Note that making the base inexact is not
|
||
sufficient to guarantee an inexact result, because
|
||
scm_integer_expt will return an exact 1 when the exponent
|
||
is 0, even if the base is inexact. */
|
||
return scm_exact_to_inexact
|
||
(scm_integer_expt (scm_exact_to_inexact (x),
|
||
scm_inexact_to_exact (y)));
|
||
}
|
||
}
|
||
else if (scm_is_real (x) && scm_is_real (y) && scm_to_double (x) >= 0.0)
|
||
{
|
||
return scm_i_from_double (pow (scm_to_double (x), scm_to_double (y)));
|
||
}
|
||
else if (scm_is_complex (x) && scm_is_complex (y))
|
||
return scm_exp (scm_product (scm_log (x), y));
|
||
else if (scm_is_complex (x))
|
||
return scm_wta_dispatch_2 (g_scm_expt, x, y, SCM_ARG2, s_scm_expt);
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_expt, x, y, SCM_ARG1, s_scm_expt);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
/* sin/cos/tan/asin/acos/atan
|
||
sinh/cosh/tanh/asinh/acosh/atanh
|
||
Derived from "Transcen.scm", Complex trancendental functions for SCM.
|
||
Written by Jerry D. Hedden, (C) FSF.
|
||
See the file `COPYING' for terms applying to this program. */
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_sin, "sin", 1, 0, 0,
|
||
(SCM z),
|
||
"Compute the sine of @var{z}.")
|
||
#define FUNC_NAME s_scm_sin
|
||
{
|
||
if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
|
||
return z; /* sin(exact0) = exact0 */
|
||
else if (scm_is_real (z))
|
||
return scm_i_from_double (sin (scm_to_double (z)));
|
||
else if (SCM_COMPLEXP (z))
|
||
{ double x, y;
|
||
x = SCM_COMPLEX_REAL (z);
|
||
y = SCM_COMPLEX_IMAG (z);
|
||
return scm_c_make_rectangular (sin (x) * cosh (y),
|
||
cos (x) * sinh (y));
|
||
}
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_sin, z, 1, s_scm_sin);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_cos, "cos", 1, 0, 0,
|
||
(SCM z),
|
||
"Compute the cosine of @var{z}.")
|
||
#define FUNC_NAME s_scm_cos
|
||
{
|
||
if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
|
||
return SCM_INUM1; /* cos(exact0) = exact1 */
|
||
else if (scm_is_real (z))
|
||
return scm_i_from_double (cos (scm_to_double (z)));
|
||
else if (SCM_COMPLEXP (z))
|
||
{ double x, y;
|
||
x = SCM_COMPLEX_REAL (z);
|
||
y = SCM_COMPLEX_IMAG (z);
|
||
return scm_c_make_rectangular (cos (x) * cosh (y),
|
||
-sin (x) * sinh (y));
|
||
}
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_cos, z, 1, s_scm_cos);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_tan, "tan", 1, 0, 0,
|
||
(SCM z),
|
||
"Compute the tangent of @var{z}.")
|
||
#define FUNC_NAME s_scm_tan
|
||
{
|
||
if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
|
||
return z; /* tan(exact0) = exact0 */
|
||
else if (scm_is_real (z))
|
||
return scm_i_from_double (tan (scm_to_double (z)));
|
||
else if (SCM_COMPLEXP (z))
|
||
{ double x, y, w;
|
||
x = 2.0 * SCM_COMPLEX_REAL (z);
|
||
y = 2.0 * SCM_COMPLEX_IMAG (z);
|
||
w = cos (x) + cosh (y);
|
||
return scm_c_make_rectangular (sin (x) / w, sinh (y) / w);
|
||
}
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_tan, z, 1, s_scm_tan);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_sinh, "sinh", 1, 0, 0,
|
||
(SCM z),
|
||
"Compute the hyperbolic sine of @var{z}.")
|
||
#define FUNC_NAME s_scm_sinh
|
||
{
|
||
if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
|
||
return z; /* sinh(exact0) = exact0 */
|
||
else if (scm_is_real (z))
|
||
return scm_i_from_double (sinh (scm_to_double (z)));
|
||
else if (SCM_COMPLEXP (z))
|
||
{ double x, y;
|
||
x = SCM_COMPLEX_REAL (z);
|
||
y = SCM_COMPLEX_IMAG (z);
|
||
return scm_c_make_rectangular (sinh (x) * cos (y),
|
||
cosh (x) * sin (y));
|
||
}
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_sinh, z, 1, s_scm_sinh);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_cosh, "cosh", 1, 0, 0,
|
||
(SCM z),
|
||
"Compute the hyperbolic cosine of @var{z}.")
|
||
#define FUNC_NAME s_scm_cosh
|
||
{
|
||
if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
|
||
return SCM_INUM1; /* cosh(exact0) = exact1 */
|
||
else if (scm_is_real (z))
|
||
return scm_i_from_double (cosh (scm_to_double (z)));
|
||
else if (SCM_COMPLEXP (z))
|
||
{ double x, y;
|
||
x = SCM_COMPLEX_REAL (z);
|
||
y = SCM_COMPLEX_IMAG (z);
|
||
return scm_c_make_rectangular (cosh (x) * cos (y),
|
||
sinh (x) * sin (y));
|
||
}
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_cosh, z, 1, s_scm_cosh);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_tanh, "tanh", 1, 0, 0,
|
||
(SCM z),
|
||
"Compute the hyperbolic tangent of @var{z}.")
|
||
#define FUNC_NAME s_scm_tanh
|
||
{
|
||
if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
|
||
return z; /* tanh(exact0) = exact0 */
|
||
else if (scm_is_real (z))
|
||
return scm_i_from_double (tanh (scm_to_double (z)));
|
||
else if (SCM_COMPLEXP (z))
|
||
{ double x, y, w;
|
||
x = 2.0 * SCM_COMPLEX_REAL (z);
|
||
y = 2.0 * SCM_COMPLEX_IMAG (z);
|
||
w = cosh (x) + cos (y);
|
||
return scm_c_make_rectangular (sinh (x) / w, sin (y) / w);
|
||
}
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_tanh, z, 1, s_scm_tanh);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_asin, "asin", 1, 0, 0,
|
||
(SCM z),
|
||
"Compute the arc sine of @var{z}.")
|
||
#define FUNC_NAME s_scm_asin
|
||
{
|
||
if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
|
||
return z; /* asin(exact0) = exact0 */
|
||
else if (scm_is_real (z))
|
||
{
|
||
double w = scm_to_double (z);
|
||
if (w >= -1.0 && w <= 1.0)
|
||
return scm_i_from_double (asin (w));
|
||
else
|
||
return scm_product (scm_c_make_rectangular (0, -1),
|
||
scm_sys_asinh (scm_c_make_rectangular (0, w)));
|
||
}
|
||
else if (SCM_COMPLEXP (z))
|
||
{ double x, y;
|
||
x = SCM_COMPLEX_REAL (z);
|
||
y = SCM_COMPLEX_IMAG (z);
|
||
return scm_product (scm_c_make_rectangular (0, -1),
|
||
scm_sys_asinh (scm_c_make_rectangular (-y, x)));
|
||
}
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_asin, z, 1, s_scm_asin);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_acos, "acos", 1, 0, 0,
|
||
(SCM z),
|
||
"Compute the arc cosine of @var{z}.")
|
||
#define FUNC_NAME s_scm_acos
|
||
{
|
||
if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM1)))
|
||
return SCM_INUM0; /* acos(exact1) = exact0 */
|
||
else if (scm_is_real (z))
|
||
{
|
||
double w = scm_to_double (z);
|
||
if (w >= -1.0 && w <= 1.0)
|
||
return scm_i_from_double (acos (w));
|
||
else
|
||
return scm_sum (scm_i_from_double (acos (0.0)),
|
||
scm_product (scm_c_make_rectangular (0, 1),
|
||
scm_sys_asinh (scm_c_make_rectangular (0, w))));
|
||
}
|
||
else if (SCM_COMPLEXP (z))
|
||
{ double x, y;
|
||
x = SCM_COMPLEX_REAL (z);
|
||
y = SCM_COMPLEX_IMAG (z);
|
||
return scm_sum (scm_i_from_double (acos (0.0)),
|
||
scm_product (scm_c_make_rectangular (0, 1),
|
||
scm_sys_asinh (scm_c_make_rectangular (-y, x))));
|
||
}
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_acos, z, 1, s_scm_acos);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_atan, "atan", 1, 1, 0,
|
||
(SCM z, SCM y),
|
||
"With one argument, compute the arc tangent of @var{z}.\n"
|
||
"If @var{y} is present, compute the arc tangent of @var{z}/@var{y},\n"
|
||
"using the sign of @var{z} and @var{y} to determine the quadrant.")
|
||
#define FUNC_NAME s_scm_atan
|
||
{
|
||
if (SCM_UNBNDP (y))
|
||
{
|
||
if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
|
||
return z; /* atan(exact0) = exact0 */
|
||
else if (scm_is_real (z))
|
||
return scm_i_from_double (atan (scm_to_double (z)));
|
||
else if (SCM_COMPLEXP (z))
|
||
{
|
||
double v, w;
|
||
v = SCM_COMPLEX_REAL (z);
|
||
w = SCM_COMPLEX_IMAG (z);
|
||
return scm_divide (scm_log (scm_divide (scm_c_make_rectangular (-v, 1.0 - w),
|
||
scm_c_make_rectangular ( v, 1.0 + w))),
|
||
scm_c_make_rectangular (0, 2));
|
||
}
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_atan, z, SCM_ARG1, s_scm_atan);
|
||
}
|
||
else if (scm_is_real (z))
|
||
{
|
||
if (scm_is_real (y))
|
||
return scm_i_from_double (atan2 (scm_to_double (z), scm_to_double (y)));
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_atan, z, y, SCM_ARG2, s_scm_atan);
|
||
}
|
||
else
|
||
return scm_wta_dispatch_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_sys_asinh, "asinh", 1, 0, 0,
|
||
(SCM z),
|
||
"Compute the inverse hyperbolic sine of @var{z}.")
|
||
#define FUNC_NAME s_scm_sys_asinh
|
||
{
|
||
if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
|
||
return z; /* asinh(exact0) = exact0 */
|
||
else if (scm_is_real (z))
|
||
return scm_i_from_double (asinh (scm_to_double (z)));
|
||
else if (scm_is_number (z))
|
||
return scm_log (scm_sum (z,
|
||
scm_sqrt (scm_sum (scm_product (z, z),
|
||
SCM_INUM1))));
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_sys_asinh, z, 1, s_scm_sys_asinh);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_sys_acosh, "acosh", 1, 0, 0,
|
||
(SCM z),
|
||
"Compute the inverse hyperbolic cosine of @var{z}.")
|
||
#define FUNC_NAME s_scm_sys_acosh
|
||
{
|
||
if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM1)))
|
||
return SCM_INUM0; /* acosh(exact1) = exact0 */
|
||
else if (scm_is_real (z) && scm_to_double (z) >= 1.0)
|
||
return scm_i_from_double (acosh (scm_to_double (z)));
|
||
else if (scm_is_number (z))
|
||
return scm_log (scm_sum (z,
|
||
scm_sqrt (scm_difference (scm_product (z, z),
|
||
SCM_INUM1))));
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_sys_acosh, z, 1, s_scm_sys_acosh);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_sys_atanh, "atanh", 1, 0, 0,
|
||
(SCM z),
|
||
"Compute the inverse hyperbolic tangent of @var{z}.")
|
||
#define FUNC_NAME s_scm_sys_atanh
|
||
{
|
||
if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
|
||
return z; /* atanh(exact0) = exact0 */
|
||
else if (scm_is_real (z) && scm_to_double (z) >= -1.0 && scm_to_double (z) <= 1.0)
|
||
return scm_i_from_double (atanh (scm_to_double (z)));
|
||
else if (scm_is_number (z))
|
||
return scm_divide (scm_log (scm_divide (scm_sum (SCM_INUM1, z),
|
||
scm_difference (SCM_INUM1, z))),
|
||
SCM_I_MAKINUM (2));
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_sys_atanh, z, 1, s_scm_sys_atanh);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM
|
||
scm_c_make_rectangular (double re, double im)
|
||
{
|
||
SCM z;
|
||
|
||
z = SCM_PACK_POINTER (scm_gc_malloc_pointerless (sizeof (scm_t_complex),
|
||
"complex"));
|
||
SCM_SET_CELL_TYPE (z, scm_tc16_complex);
|
||
SCM_COMPLEX_REAL (z) = re;
|
||
SCM_COMPLEX_IMAG (z) = im;
|
||
return z;
|
||
}
|
||
|
||
SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
|
||
(SCM real_part, SCM imaginary_part),
|
||
"Return a complex number constructed of the given @var{real_part} "
|
||
"and @var{imaginary_part} parts.")
|
||
#define FUNC_NAME s_scm_make_rectangular
|
||
{
|
||
SCM_ASSERT_TYPE (scm_is_real (real_part), real_part,
|
||
SCM_ARG1, FUNC_NAME, "real");
|
||
SCM_ASSERT_TYPE (scm_is_real (imaginary_part), imaginary_part,
|
||
SCM_ARG2, FUNC_NAME, "real");
|
||
|
||
/* Return a real if and only if the imaginary_part is an _exact_ 0 */
|
||
if (scm_is_eq (imaginary_part, SCM_INUM0))
|
||
return real_part;
|
||
else
|
||
return scm_c_make_rectangular (scm_to_double (real_part),
|
||
scm_to_double (imaginary_part));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM
|
||
scm_c_make_polar (double mag, double ang)
|
||
{
|
||
double s, c;
|
||
|
||
/* The sincos(3) function is undocumented an broken on Tru64. Thus we only
|
||
use it on Glibc-based systems that have it (it's a GNU extension). See
|
||
http://lists.gnu.org/archive/html/guile-user/2009-04/msg00033.html for
|
||
details. */
|
||
#if (defined HAVE_SINCOS) && (defined __GLIBC__) && (defined _GNU_SOURCE)
|
||
sincos (ang, &s, &c);
|
||
#elif (defined HAVE___SINCOS)
|
||
__sincos (ang, &s, &c);
|
||
#else
|
||
s = sin (ang);
|
||
c = cos (ang);
|
||
#endif
|
||
|
||
/* If s and c are NaNs, this indicates that the angle is a NaN,
|
||
infinite, or perhaps simply too large to determine its value
|
||
mod 2*pi. However, we know something that the floating-point
|
||
implementation doesn't know: We know that s and c are finite.
|
||
Therefore, if the magnitude is zero, return a complex zero.
|
||
|
||
The reason we check for the NaNs instead of using this case
|
||
whenever mag == 0.0 is because when the angle is known, we'd
|
||
like to return the correct kind of non-real complex zero:
|
||
+0.0+0.0i, -0.0+0.0i, -0.0-0.0i, or +0.0-0.0i, depending
|
||
on which quadrant the angle is in.
|
||
*/
|
||
if (SCM_UNLIKELY (isnan(s)) && isnan(c) && (mag == 0.0))
|
||
return scm_c_make_rectangular (0.0, 0.0);
|
||
else
|
||
return scm_c_make_rectangular (mag * c, mag * s);
|
||
}
|
||
|
||
SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
|
||
(SCM mag, SCM ang),
|
||
"Return the complex number @var{mag} * e^(i * @var{ang}).")
|
||
#define FUNC_NAME s_scm_make_polar
|
||
{
|
||
SCM_ASSERT_TYPE (scm_is_real (mag), mag, SCM_ARG1, FUNC_NAME, "real");
|
||
SCM_ASSERT_TYPE (scm_is_real (ang), ang, SCM_ARG2, FUNC_NAME, "real");
|
||
|
||
/* If mag is exact0, return exact0 */
|
||
if (scm_is_eq (mag, SCM_INUM0))
|
||
return SCM_INUM0;
|
||
/* Return a real if ang is exact0 */
|
||
else if (scm_is_eq (ang, SCM_INUM0))
|
||
return mag;
|
||
else
|
||
return scm_c_make_polar (scm_to_double (mag), scm_to_double (ang));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_real_part, "real-part", 1, 0, 0,
|
||
(SCM z),
|
||
"Return the real part of the number @var{z}.")
|
||
#define FUNC_NAME s_scm_real_part
|
||
{
|
||
if (SCM_COMPLEXP (z))
|
||
return scm_i_from_double (SCM_COMPLEX_REAL (z));
|
||
else if (SCM_I_INUMP (z) || SCM_BIGP (z) || SCM_REALP (z) || SCM_FRACTIONP (z))
|
||
return z;
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_real_part, z, SCM_ARG1, s_scm_real_part);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_imag_part, "imag-part", 1, 0, 0,
|
||
(SCM z),
|
||
"Return the imaginary part of the number @var{z}.")
|
||
#define FUNC_NAME s_scm_imag_part
|
||
{
|
||
if (SCM_COMPLEXP (z))
|
||
return scm_i_from_double (SCM_COMPLEX_IMAG (z));
|
||
else if (SCM_I_INUMP (z) || SCM_REALP (z) || SCM_BIGP (z) || SCM_FRACTIONP (z))
|
||
return SCM_INUM0;
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_imag_part, z, SCM_ARG1, s_scm_imag_part);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_numerator, "numerator", 1, 0, 0,
|
||
(SCM z),
|
||
"Return the numerator of the number @var{z}.")
|
||
#define FUNC_NAME s_scm_numerator
|
||
{
|
||
if (SCM_I_INUMP (z) || SCM_BIGP (z))
|
||
return z;
|
||
else if (SCM_FRACTIONP (z))
|
||
return SCM_FRACTION_NUMERATOR (z);
|
||
else if (SCM_REALP (z))
|
||
{
|
||
double zz = SCM_REAL_VALUE (z);
|
||
if (zz == floor (zz))
|
||
/* Handle -0.0 and infinities in accordance with R6RS
|
||
flnumerator, and optimize handling of integers. */
|
||
return z;
|
||
else
|
||
return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
|
||
}
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_numerator, z, SCM_ARG1, s_scm_numerator);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_denominator, "denominator", 1, 0, 0,
|
||
(SCM z),
|
||
"Return the denominator of the number @var{z}.")
|
||
#define FUNC_NAME s_scm_denominator
|
||
{
|
||
if (SCM_I_INUMP (z) || SCM_BIGP (z))
|
||
return SCM_INUM1;
|
||
else if (SCM_FRACTIONP (z))
|
||
return SCM_FRACTION_DENOMINATOR (z);
|
||
else if (SCM_REALP (z))
|
||
{
|
||
double zz = SCM_REAL_VALUE (z);
|
||
if (zz == floor (zz))
|
||
/* Handle infinities in accordance with R6RS fldenominator, and
|
||
optimize handling of integers. */
|
||
return scm_i_from_double (1.0);
|
||
else
|
||
return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
|
||
}
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_denominator, z, SCM_ARG1,
|
||
s_scm_denominator);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_magnitude, "magnitude", 1, 0, 0,
|
||
(SCM z),
|
||
"Return the magnitude of the number @var{z}. This is the same as\n"
|
||
"@code{abs} for real arguments, but also allows complex numbers.")
|
||
#define FUNC_NAME s_scm_magnitude
|
||
{
|
||
if (SCM_COMPLEXP (z))
|
||
return scm_i_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
|
||
else if (SCM_NUMBERP (z))
|
||
return scm_abs (z);
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_magnitude, z, SCM_ARG1,
|
||
s_scm_magnitude);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_angle, "angle", 1, 0, 0,
|
||
(SCM z),
|
||
"Return the angle of the complex number @var{z}.")
|
||
#define FUNC_NAME s_scm_angle
|
||
{
|
||
/* atan(0,-1) is pi and it'd be possible to have that as a constant like
|
||
flo0 to save allocating a new flonum with scm_i_from_double each time.
|
||
But if atan2 follows the floating point rounding mode, then the value
|
||
is not a constant. Maybe it'd be close enough though. */
|
||
if (SCM_COMPLEXP (z))
|
||
return scm_i_from_double (atan2 (SCM_COMPLEX_IMAG (z),
|
||
SCM_COMPLEX_REAL (z)));
|
||
else if (SCM_NUMBERP (z))
|
||
return (SCM_REALP (z)
|
||
? copysign (1.0, SCM_REAL_VALUE (z)) < 0.0
|
||
: scm_is_true (scm_negative_p (z)))
|
||
? scm_i_from_double (atan2 (0.0, -1.0))
|
||
: flo0;
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_angle, z, SCM_ARG1, s_scm_angle);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_exact_to_inexact, "exact->inexact", 1, 0, 0,
|
||
(SCM z),
|
||
"Convert the number @var{z} to its inexact representation.\n")
|
||
#define FUNC_NAME s_scm_exact_to_inexact
|
||
{
|
||
if (SCM_I_INUMP (z))
|
||
return scm_i_from_double ((double) SCM_I_INUM (z));
|
||
else if (SCM_BIGP (z))
|
||
return scm_i_from_double (scm_integer_to_double_z (scm_bignum (z)));
|
||
else if (SCM_FRACTIONP (z))
|
||
return scm_i_from_double (scm_i_fraction2double (z));
|
||
else if (SCM_INEXACTP (z))
|
||
return z;
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_exact_to_inexact, z, 1,
|
||
s_scm_exact_to_inexact);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
|
||
(SCM z),
|
||
"Return an exact number that is numerically closest to @var{z}.")
|
||
#define FUNC_NAME s_scm_inexact_to_exact
|
||
{
|
||
if (SCM_I_INUMP (z) || SCM_BIGP (z) || SCM_FRACTIONP (z))
|
||
return z;
|
||
|
||
double val;
|
||
|
||
if (SCM_REALP (z))
|
||
val = SCM_REAL_VALUE (z);
|
||
else if (SCM_COMPLEXP (z) && SCM_COMPLEX_IMAG (z) == 0.0)
|
||
val = SCM_COMPLEX_REAL (z);
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_inexact_to_exact, z, 1,
|
||
s_scm_inexact_to_exact);
|
||
|
||
if (!SCM_LIKELY (isfinite (val)))
|
||
SCM_OUT_OF_RANGE (1, z);
|
||
if (val == 0)
|
||
return SCM_INUM0;
|
||
|
||
int expon;
|
||
mpz_t zn;
|
||
|
||
mpz_init_set_d (zn, ldexp (frexp (val, &expon), DBL_MANT_DIG));
|
||
expon -= DBL_MANT_DIG;
|
||
if (expon < 0)
|
||
{
|
||
int shift = mpz_scan1 (zn, 0);
|
||
|
||
if (shift > -expon)
|
||
shift = -expon;
|
||
mpz_fdiv_q_2exp (zn, zn, shift);
|
||
expon += shift;
|
||
}
|
||
SCM numerator = scm_integer_from_mpz (zn);
|
||
mpz_clear (zn);
|
||
if (expon < 0)
|
||
return scm_i_make_ratio_already_reduced
|
||
(numerator, scm_integer_lsh_iu (1, -expon));
|
||
else if (expon > 0)
|
||
return lsh (numerator, scm_from_int (expon), FUNC_NAME);
|
||
else
|
||
return numerator;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
|
||
(SCM x, SCM eps),
|
||
"Returns the @emph{simplest} rational number differing\n"
|
||
"from @var{x} by no more than @var{eps}.\n"
|
||
"\n"
|
||
"As required by @acronym{R5RS}, @code{rationalize} only returns an\n"
|
||
"exact result when both its arguments are exact. Thus, you might need\n"
|
||
"to use @code{inexact->exact} on the arguments.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(rationalize (inexact->exact 1.2) 1/100)\n"
|
||
"@result{} 6/5\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_rationalize
|
||
{
|
||
SCM_ASSERT_TYPE (scm_is_real (x), x, SCM_ARG1, FUNC_NAME, "real");
|
||
SCM_ASSERT_TYPE (scm_is_real (eps), eps, SCM_ARG2, FUNC_NAME, "real");
|
||
|
||
if (SCM_UNLIKELY (!scm_is_exact (eps) || !scm_is_exact (x)))
|
||
{
|
||
if (SCM_UNLIKELY (scm_is_false (scm_finite_p (eps))))
|
||
{
|
||
if (scm_is_false (scm_nan_p (eps)) && scm_is_true (scm_finite_p (x)))
|
||
return flo0;
|
||
else
|
||
return scm_nan ();
|
||
}
|
||
else if (SCM_UNLIKELY (scm_is_false (scm_finite_p (x))))
|
||
return x;
|
||
else
|
||
return scm_exact_to_inexact
|
||
(scm_rationalize (scm_inexact_to_exact (x),
|
||
scm_inexact_to_exact (eps)));
|
||
}
|
||
else
|
||
{
|
||
/* X and EPS are exact rationals.
|
||
|
||
The code that follows is equivalent to the following Scheme code:
|
||
|
||
(define (exact-rationalize x eps)
|
||
(let ((n1 (if (negative? x) -1 1))
|
||
(x (abs x))
|
||
(eps (abs eps)))
|
||
(let ((lo (- x eps))
|
||
(hi (+ x eps)))
|
||
(if (<= lo 0)
|
||
0
|
||
(let loop ((nlo (numerator lo)) (dlo (denominator lo))
|
||
(nhi (numerator hi)) (dhi (denominator hi))
|
||
(n1 n1) (d1 0) (n2 0) (d2 1))
|
||
(let-values (((qlo rlo) (floor/ nlo dlo))
|
||
((qhi rhi) (floor/ nhi dhi)))
|
||
(let ((n0 (+ n2 (* n1 qlo)))
|
||
(d0 (+ d2 (* d1 qlo))))
|
||
(cond ((zero? rlo) (/ n0 d0))
|
||
((< qlo qhi) (/ (+ n0 n1) (+ d0 d1)))
|
||
(else (loop dhi rhi dlo rlo n0 d0 n1 d1))))))))))
|
||
*/
|
||
|
||
int n1_init = 1;
|
||
SCM lo, hi;
|
||
|
||
eps = scm_abs (eps);
|
||
if (scm_is_true (scm_negative_p (x)))
|
||
{
|
||
n1_init = -1;
|
||
x = scm_difference (x, SCM_UNDEFINED);
|
||
}
|
||
|
||
/* X and EPS are non-negative exact rationals. */
|
||
|
||
lo = scm_difference (x, eps);
|
||
hi = scm_sum (x, eps);
|
||
|
||
if (scm_is_false (scm_positive_p (lo)))
|
||
/* If zero is included in the interval, return it.
|
||
It is the simplest rational of all. */
|
||
return SCM_INUM0;
|
||
else
|
||
{
|
||
SCM result;
|
||
mpz_t n0, d0, n1, d1, n2, d2;
|
||
mpz_t nlo, dlo, nhi, dhi;
|
||
mpz_t qlo, rlo, qhi, rhi;
|
||
|
||
/* LO and HI are positive exact rationals. */
|
||
|
||
/* Our approach here follows the method described by Alan
|
||
Bawden in a message entitled "(rationalize x y)" on the
|
||
rrrs-authors mailing list, dated 16 Feb 1988 14:08:28 EST:
|
||
|
||
http://groups.csail.mit.edu/mac/ftpdir/scheme-mail/HTML/rrrs-1988/msg00063.html
|
||
|
||
In brief, we compute the continued fractions of the two
|
||
endpoints of the interval (LO and HI). The continued
|
||
fraction of the result consists of the common prefix of the
|
||
continued fractions of LO and HI, plus one final term. The
|
||
final term of the result is the smallest integer contained
|
||
in the interval between the remainders of LO and HI after
|
||
the common prefix has been removed.
|
||
|
||
The following code lazily computes the continued fraction
|
||
representations of LO and HI, and simultaneously converts
|
||
the continued fraction of the result into a rational
|
||
number. We use MPZ functions directly to avoid type
|
||
dispatch and GC allocation during the loop. */
|
||
|
||
mpz_inits (n0, d0, n1, d1, n2, d2,
|
||
nlo, dlo, nhi, dhi,
|
||
qlo, rlo, qhi, rhi,
|
||
NULL);
|
||
|
||
/* The variables N1, D1, N2 and D2 are used to compute the
|
||
resulting rational from its continued fraction. At each
|
||
step, N2/D2 and N1/D1 are the last two convergents. They
|
||
are normally initialized to 0/1 and 1/0, respectively.
|
||
However, if we negated X then we must negate the result as
|
||
well, and we do that by initializing N1/D1 to -1/0. */
|
||
mpz_set_si (n1, n1_init);
|
||
mpz_set_ui (d1, 0);
|
||
mpz_set_ui (n2, 0);
|
||
mpz_set_ui (d2, 1);
|
||
|
||
/* The variables NLO, DLO, NHI, and DHI are used to lazily
|
||
compute the continued fraction representations of LO and HI
|
||
using Euclid's algorithm. Initially, NLO/DLO == LO and
|
||
NHI/DHI == HI. */
|
||
scm_to_mpz (scm_numerator (lo), nlo);
|
||
scm_to_mpz (scm_denominator (lo), dlo);
|
||
scm_to_mpz (scm_numerator (hi), nhi);
|
||
scm_to_mpz (scm_denominator (hi), dhi);
|
||
|
||
/* As long as we're using exact arithmetic, the following loop
|
||
is guaranteed to terminate. */
|
||
for (;;)
|
||
{
|
||
/* Compute the next terms (QLO and QHI) of the continued
|
||
fractions of LO and HI. */
|
||
mpz_fdiv_qr (qlo, rlo, nlo, dlo); /* QLO <-- floor (NLO/DLO), RLO <-- NLO - QLO * DLO */
|
||
mpz_fdiv_qr (qhi, rhi, nhi, dhi); /* QHI <-- floor (NHI/DHI), RHI <-- NHI - QHI * DHI */
|
||
|
||
/* The next term of the result will be either QLO or
|
||
QLO+1. Here we compute the next convergent of the
|
||
result based on the assumption that QLO is the next
|
||
term. If that turns out to be wrong, we'll adjust
|
||
these later by adding N1 to N0 and D1 to D0. */
|
||
mpz_set (n0, n2); mpz_addmul (n0, n1, qlo); /* N0 <-- N2 + (QLO * N1) */
|
||
mpz_set (d0, d2); mpz_addmul (d0, d1, qlo); /* D0 <-- D2 + (QLO * D1) */
|
||
|
||
/* We stop iterating when an integer is contained in the
|
||
interval between the remainders NLO/DLO and NHI/DHI.
|
||
There are two cases to consider: either NLO/DLO == QLO
|
||
is an integer (indicated by RLO == 0), or QLO < QHI. */
|
||
if (mpz_sgn (rlo) == 0 || mpz_cmp (qlo, qhi) != 0)
|
||
break;
|
||
|
||
/* Efficiently shuffle variables around for the next
|
||
iteration. First we shift the recent convergents. */
|
||
mpz_swap (n2, n1); mpz_swap (n1, n0); /* N2 <-- N1 <-- N0 */
|
||
mpz_swap (d2, d1); mpz_swap (d1, d0); /* D2 <-- D1 <-- D0 */
|
||
|
||
/* The following shuffling is a bit confusing, so some
|
||
explanation is in order. Conceptually, we're doing a
|
||
couple of things here. After substracting the floor of
|
||
NLO/DLO, the remainder is RLO/DLO. The rest of the
|
||
continued fraction will represent the remainder's
|
||
reciprocal DLO/RLO. Similarly for the HI endpoint.
|
||
So in the next iteration, the new endpoints will be
|
||
DLO/RLO and DHI/RHI. However, when we take the
|
||
reciprocals of these endpoints, their order is
|
||
switched. So in summary, we want NLO/DLO <-- DHI/RHI
|
||
and NHI/DHI <-- DLO/RLO. */
|
||
mpz_swap (nlo, dhi); mpz_swap (dhi, rlo); /* NLO <-- DHI <-- RLO */
|
||
mpz_swap (nhi, dlo); mpz_swap (dlo, rhi); /* NHI <-- DLO <-- RHI */
|
||
}
|
||
|
||
/* There is now an integer in the interval [NLO/DLO NHI/DHI].
|
||
The last term of the result will be the smallest integer in
|
||
that interval, which is ceiling(NLO/DLO). We have already
|
||
computed floor(NLO/DLO) in QLO, so now we adjust QLO to be
|
||
equal to the ceiling. */
|
||
if (mpz_sgn (rlo) != 0)
|
||
{
|
||
/* If RLO is non-zero, then NLO/DLO is not an integer and
|
||
the next term will be QLO+1. QLO was used in the
|
||
computation of N0 and D0 above. Here we adjust N0 and
|
||
D0 to be based on QLO+1 instead of QLO. */
|
||
mpz_add (n0, n0, n1); /* N0 <-- N0 + N1 */
|
||
mpz_add (d0, d0, d1); /* D0 <-- D0 + D1 */
|
||
}
|
||
|
||
/* The simplest rational in the interval is N0/D0 */
|
||
result = scm_i_make_ratio_already_reduced (scm_from_mpz (n0),
|
||
scm_from_mpz (d0));
|
||
mpz_clears (n0, d0, n1, d1, n2, d2,
|
||
nlo, dlo, nhi, dhi,
|
||
qlo, rlo, qhi, rhi,
|
||
NULL);
|
||
return result;
|
||
}
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
/* conversion functions */
|
||
|
||
int
|
||
scm_is_integer (SCM val)
|
||
{
|
||
if (scm_is_exact_integer (val))
|
||
return 1;
|
||
if (SCM_REALP (val))
|
||
{
|
||
double x = SCM_REAL_VALUE (val);
|
||
return !isinf (x) && (x == floor (x));
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
scm_is_exact_integer (SCM val)
|
||
{
|
||
return SCM_I_INUMP (val) || SCM_BIGP (val);
|
||
}
|
||
|
||
// Given that there is no way to extend intmax_t to encompass types
|
||
// larger than int64, and that we must have int64, intmax will always be
|
||
// 8 bytes wide, and we can treat intmax arguments as int64's.
|
||
verify(SCM_SIZEOF_INTMAX == 8);
|
||
|
||
int
|
||
scm_is_signed_integer (SCM val, intmax_t min, intmax_t max)
|
||
{
|
||
if (SCM_I_INUMP (val))
|
||
{
|
||
scm_t_signed_bits n = SCM_I_INUM (val);
|
||
return min <= n && n <= max;
|
||
}
|
||
else if (SCM_BIGP (val))
|
||
{
|
||
int64_t n;
|
||
return scm_integer_to_int64_z (scm_bignum (val), &n)
|
||
&& min <= n && n <= max;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
scm_is_unsigned_integer (SCM val, uintmax_t min, uintmax_t max)
|
||
{
|
||
if (SCM_I_INUMP (val))
|
||
{
|
||
scm_t_signed_bits n = SCM_I_INUM (val);
|
||
return n >= 0 && ((uintmax_t)n) >= min && ((uintmax_t)n) <= max;
|
||
}
|
||
else if (SCM_BIGP (val))
|
||
{
|
||
uint64_t n;
|
||
return scm_integer_to_uint64_z (scm_bignum (val), &n)
|
||
&& min <= n && n <= max;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
static void range_error (SCM bad_val, SCM min, SCM max) SCM_NORETURN;
|
||
static void
|
||
range_error (SCM bad_val, SCM min, SCM max)
|
||
{
|
||
scm_error (scm_out_of_range_key,
|
||
NULL,
|
||
"Value out of range ~S to< ~S: ~S",
|
||
scm_list_3 (min, max, bad_val),
|
||
scm_list_1 (bad_val));
|
||
}
|
||
#define scm_i_range_error range_error
|
||
|
||
static scm_t_inum
|
||
inum_in_range (SCM x, scm_t_inum min, scm_t_inum max)
|
||
{
|
||
if (SCM_LIKELY (SCM_I_INUMP (x)))
|
||
{
|
||
scm_t_inum val = SCM_I_INUM (x);
|
||
if (min <= val && val <= max)
|
||
return val;
|
||
}
|
||
else if (!SCM_BIGP (x))
|
||
scm_wrong_type_arg_msg (NULL, 0, x, "exact integer");
|
||
range_error (x, scm_from_long (min), scm_from_long (max));
|
||
}
|
||
|
||
SCM
|
||
scm_from_signed_integer (intmax_t arg)
|
||
{
|
||
return scm_integer_from_int64 (arg);
|
||
}
|
||
|
||
intmax_t
|
||
scm_to_signed_integer (SCM arg, intmax_t min, intmax_t max)
|
||
{
|
||
int64_t ret;
|
||
if (SCM_I_INUMP (arg))
|
||
ret = SCM_I_INUM (arg);
|
||
else if (SCM_BIGP (arg))
|
||
{
|
||
if (!scm_integer_to_int64_z (scm_bignum (arg), &ret))
|
||
goto out_of_range;
|
||
}
|
||
else
|
||
scm_wrong_type_arg_msg (NULL, 0, arg, "exact integer");
|
||
if (min <= ret && ret <= max)
|
||
return ret;
|
||
out_of_range:
|
||
range_error (arg, scm_from_intmax (min), scm_from_intmax (max));
|
||
}
|
||
|
||
SCM
|
||
scm_from_unsigned_integer (uintmax_t arg)
|
||
{
|
||
return scm_integer_from_uint64 (arg);
|
||
}
|
||
|
||
uintmax_t
|
||
scm_to_unsigned_integer (SCM arg, uintmax_t min, uintmax_t max)
|
||
{
|
||
uint64_t ret;
|
||
if (SCM_I_INUMP (arg))
|
||
{
|
||
scm_t_inum n = SCM_I_INUM (arg);
|
||
if (n < 0)
|
||
goto out_of_range;
|
||
ret = n;
|
||
}
|
||
else if (SCM_BIGP (arg))
|
||
{
|
||
if (!scm_integer_to_uint64_z (scm_bignum (arg), &ret))
|
||
goto out_of_range;
|
||
}
|
||
else
|
||
scm_wrong_type_arg_msg (NULL, 0, arg, "exact integer");
|
||
if (min <= ret && ret <= max)
|
||
return ret;
|
||
out_of_range:
|
||
range_error (arg, scm_from_uintmax (min), scm_from_uintmax (max));
|
||
}
|
||
|
||
int8_t
|
||
scm_to_int8 (SCM arg)
|
||
{
|
||
return inum_in_range (arg, INT8_MIN, INT8_MAX);
|
||
}
|
||
|
||
SCM
|
||
scm_from_int8 (int8_t arg)
|
||
{
|
||
return SCM_I_MAKINUM (arg);
|
||
}
|
||
|
||
uint8_t
|
||
scm_to_uint8 (SCM arg)
|
||
{
|
||
return inum_in_range (arg, 0, UINT8_MAX);
|
||
}
|
||
|
||
SCM
|
||
scm_from_uint8 (uint8_t arg)
|
||
{
|
||
return SCM_I_MAKINUM (arg);
|
||
}
|
||
|
||
int16_t
|
||
scm_to_int16 (SCM arg)
|
||
{
|
||
return inum_in_range (arg, INT16_MIN, INT16_MAX);
|
||
}
|
||
|
||
SCM
|
||
scm_from_int16 (int16_t arg)
|
||
{
|
||
return SCM_I_MAKINUM (arg);
|
||
}
|
||
|
||
uint16_t
|
||
scm_to_uint16 (SCM arg)
|
||
{
|
||
return inum_in_range (arg, 0, UINT16_MAX);
|
||
}
|
||
|
||
SCM
|
||
scm_from_uint16 (uint16_t arg)
|
||
{
|
||
return SCM_I_MAKINUM (arg);
|
||
}
|
||
|
||
int32_t
|
||
scm_to_int32 (SCM arg)
|
||
{
|
||
#if SCM_SIZEOF_LONG == 4
|
||
if (SCM_I_INUMP (arg))
|
||
return SCM_I_INUM (arg);
|
||
else if (!SCM_BIGP (arg))
|
||
scm_wrong_type_arg_msg (NULL, 0, arg, "exact integer");
|
||
int32_t ret;
|
||
if (scm_integer_to_int32_z (scm_bignum (arg), &ret))
|
||
return ret;
|
||
range_error (arg, scm_integer_from_int32 (INT32_MIN),
|
||
scm_integer_from_int32 (INT32_MAX));
|
||
#elif SCM_SIZEOF_LONG == 8
|
||
return inum_in_range (arg, INT32_MIN, INT32_MAX);
|
||
#else
|
||
#error bad inum size
|
||
#endif
|
||
}
|
||
|
||
SCM
|
||
scm_from_int32 (int32_t arg)
|
||
{
|
||
#if SCM_SIZEOF_LONG == 4
|
||
return scm_integer_from_int32 (arg);
|
||
#elif SCM_SIZEOF_LONG == 8
|
||
return SCM_I_MAKINUM (arg);
|
||
#else
|
||
#error bad inum size
|
||
#endif
|
||
}
|
||
|
||
uint32_t
|
||
scm_to_uint32 (SCM arg)
|
||
{
|
||
#if SCM_SIZEOF_LONG == 4
|
||
if (SCM_I_INUMP (arg))
|
||
{
|
||
if (SCM_I_INUM (arg) >= 0)
|
||
return SCM_I_INUM (arg);
|
||
}
|
||
else if (SCM_BIGP (arg))
|
||
{
|
||
uint32_t ret;
|
||
if (scm_integer_to_uint32_z (scm_bignum (arg), &ret))
|
||
return ret;
|
||
}
|
||
else
|
||
scm_wrong_type_arg_msg (NULL, 0, arg, "exact integer");
|
||
range_error (arg, scm_integer_from_uint32 (0), scm_integer_from_uint32 (UINT32_MAX));
|
||
#elif SCM_SIZEOF_LONG == 8
|
||
return inum_in_range (arg, 0, UINT32_MAX);
|
||
#else
|
||
#error bad inum size
|
||
#endif
|
||
}
|
||
|
||
SCM
|
||
scm_from_uint32 (uint32_t arg)
|
||
{
|
||
#if SCM_SIZEOF_LONG == 4
|
||
return scm_integer_from_uint32 (arg);
|
||
#elif SCM_SIZEOF_LONG == 8
|
||
return SCM_I_MAKINUM (arg);
|
||
#else
|
||
#error bad inum size
|
||
#endif
|
||
}
|
||
|
||
int64_t
|
||
scm_to_int64 (SCM arg)
|
||
{
|
||
if (SCM_I_INUMP (arg))
|
||
return SCM_I_INUM (arg);
|
||
else if (!SCM_BIGP (arg))
|
||
scm_wrong_type_arg_msg (NULL, 0, arg, "exact integer");
|
||
int64_t ret;
|
||
if (scm_integer_to_int64_z (scm_bignum (arg), &ret))
|
||
return ret;
|
||
range_error (arg, scm_integer_from_int64 (INT64_MIN),
|
||
scm_integer_from_int64 (INT64_MAX));
|
||
}
|
||
|
||
SCM
|
||
scm_from_int64 (int64_t arg)
|
||
{
|
||
return scm_integer_from_int64 (arg);
|
||
}
|
||
|
||
uint64_t
|
||
scm_to_uint64 (SCM arg)
|
||
{
|
||
if (SCM_I_INUMP (arg))
|
||
{
|
||
if (SCM_I_INUM (arg) >= 0)
|
||
return SCM_I_INUM (arg);
|
||
}
|
||
else if (SCM_BIGP (arg))
|
||
{
|
||
uint64_t ret;
|
||
if (scm_integer_to_uint64_z (scm_bignum (arg), &ret))
|
||
return ret;
|
||
}
|
||
else
|
||
scm_wrong_type_arg_msg (NULL, 0, arg, "exact integer");
|
||
range_error (arg, scm_integer_from_uint64(0), scm_integer_from_uint64 (UINT64_MAX));
|
||
}
|
||
|
||
SCM
|
||
scm_from_uint64 (uint64_t arg)
|
||
{
|
||
return scm_integer_from_uint64 (arg);
|
||
}
|
||
|
||
scm_t_wchar
|
||
scm_to_wchar (SCM arg)
|
||
{
|
||
return inum_in_range (arg, -1, 0x10ffff);
|
||
}
|
||
|
||
SCM
|
||
scm_from_wchar (scm_t_wchar arg)
|
||
{
|
||
return SCM_I_MAKINUM (arg);
|
||
}
|
||
|
||
void
|
||
scm_to_mpz (SCM val, mpz_t rop)
|
||
{
|
||
if (SCM_I_INUMP (val))
|
||
mpz_set_si (rop, SCM_I_INUM (val));
|
||
else if (SCM_BIGP (val))
|
||
scm_integer_set_mpz_z (scm_bignum (val), rop);
|
||
else
|
||
scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
|
||
}
|
||
|
||
SCM
|
||
scm_from_mpz (mpz_t val)
|
||
{
|
||
return scm_integer_from_mpz (val);
|
||
}
|
||
|
||
int
|
||
scm_is_real (SCM val)
|
||
{
|
||
return scm_is_true (scm_real_p (val));
|
||
}
|
||
|
||
int
|
||
scm_is_rational (SCM val)
|
||
{
|
||
return scm_is_true (scm_rational_p (val));
|
||
}
|
||
|
||
double
|
||
scm_to_double (SCM val)
|
||
{
|
||
if (SCM_I_INUMP (val))
|
||
return SCM_I_INUM (val);
|
||
else if (SCM_BIGP (val))
|
||
return scm_integer_to_double_z (scm_bignum (val));
|
||
else if (SCM_FRACTIONP (val))
|
||
return scm_i_fraction2double (val);
|
||
else if (SCM_REALP (val))
|
||
return SCM_REAL_VALUE (val);
|
||
else
|
||
scm_wrong_type_arg_msg (NULL, 0, val, "real number");
|
||
}
|
||
|
||
SCM
|
||
scm_from_double (double val)
|
||
{
|
||
return scm_i_from_double (val);
|
||
}
|
||
|
||
int
|
||
scm_is_complex (SCM val)
|
||
{
|
||
return scm_is_true (scm_complex_p (val));
|
||
}
|
||
|
||
double
|
||
scm_c_real_part (SCM z)
|
||
{
|
||
if (SCM_COMPLEXP (z))
|
||
return SCM_COMPLEX_REAL (z);
|
||
else
|
||
{
|
||
/* Use the scm_real_part to get proper error checking and
|
||
dispatching.
|
||
*/
|
||
return scm_to_double (scm_real_part (z));
|
||
}
|
||
}
|
||
|
||
double
|
||
scm_c_imag_part (SCM z)
|
||
{
|
||
if (SCM_COMPLEXP (z))
|
||
return SCM_COMPLEX_IMAG (z);
|
||
else
|
||
{
|
||
/* Use the scm_imag_part to get proper error checking and
|
||
dispatching. The result will almost always be 0.0, but not
|
||
always.
|
||
*/
|
||
return scm_to_double (scm_imag_part (z));
|
||
}
|
||
}
|
||
|
||
double
|
||
scm_c_magnitude (SCM z)
|
||
{
|
||
return scm_to_double (scm_magnitude (z));
|
||
}
|
||
|
||
double
|
||
scm_c_angle (SCM z)
|
||
{
|
||
return scm_to_double (scm_angle (z));
|
||
}
|
||
|
||
int
|
||
scm_is_number (SCM z)
|
||
{
|
||
return scm_is_true (scm_number_p (z));
|
||
}
|
||
|
||
|
||
/* Returns log(x * 2^shift) */
|
||
static SCM
|
||
log_of_shifted_double (double x, long shift)
|
||
{
|
||
/* cf scm_log10 */
|
||
double ans = log (fabs (x)) + shift * M_LN2;
|
||
if (signbit (x) && SCM_LIKELY (!isnan (x)))
|
||
return scm_c_make_rectangular (ans, M_PI);
|
||
else
|
||
return scm_i_from_double (ans);
|
||
}
|
||
|
||
/* Returns log(n), for exact integer n */
|
||
static SCM
|
||
log_of_exact_integer (SCM n)
|
||
{
|
||
if (SCM_I_INUMP (n))
|
||
return log_of_shifted_double (SCM_I_INUM (n), 0);
|
||
else if (SCM_BIGP (n))
|
||
{
|
||
long expon;
|
||
double signif = scm_integer_frexp_z (scm_bignum (n), &expon);
|
||
return log_of_shifted_double (signif, expon);
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* Returns log(n/d), for exact non-zero integers n and d */
|
||
static SCM
|
||
log_of_fraction (SCM n, SCM d)
|
||
{
|
||
long n_size = scm_to_long (scm_integer_length (n));
|
||
long d_size = scm_to_long (scm_integer_length (d));
|
||
|
||
if (labs (n_size - d_size) > 1)
|
||
return (scm_difference (log_of_exact_integer (n),
|
||
log_of_exact_integer (d)));
|
||
else if (scm_is_false (scm_negative_p (n)))
|
||
return scm_i_from_double
|
||
(log1p (scm_i_divide2double (scm_difference (n, d), d)));
|
||
else
|
||
return scm_c_make_rectangular
|
||
(log1p (scm_i_divide2double (scm_difference (scm_abs (n), d),
|
||
d)),
|
||
M_PI);
|
||
}
|
||
|
||
|
||
/* In the following functions we dispatch to the real-arg funcs like log()
|
||
when we know the arg is real, instead of just handing everything to
|
||
clog() for instance. This is in case clog() doesn't optimize for a
|
||
real-only case, and because we have to test SCM_COMPLEXP anyway so may as
|
||
well use it to go straight to the applicable C func. */
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_log, "log", 1, 0, 0,
|
||
(SCM z),
|
||
"Return the natural logarithm of @var{z}.")
|
||
#define FUNC_NAME s_scm_log
|
||
{
|
||
if (SCM_COMPLEXP (z))
|
||
{
|
||
#if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CLOG \
|
||
&& defined (SCM_COMPLEX_VALUE)
|
||
return scm_from_complex_double (clog (SCM_COMPLEX_VALUE (z)));
|
||
#else
|
||
double re = SCM_COMPLEX_REAL (z);
|
||
double im = SCM_COMPLEX_IMAG (z);
|
||
return scm_c_make_rectangular (log (hypot (re, im)),
|
||
atan2 (im, re));
|
||
#endif
|
||
}
|
||
else if (SCM_REALP (z))
|
||
return log_of_shifted_double (SCM_REAL_VALUE (z), 0);
|
||
else if (SCM_I_INUMP (z))
|
||
{
|
||
if (scm_is_eq (z, SCM_INUM0))
|
||
scm_num_overflow (s_scm_log);
|
||
return log_of_shifted_double (SCM_I_INUM (z), 0);
|
||
}
|
||
else if (SCM_BIGP (z))
|
||
return log_of_exact_integer (z);
|
||
else if (SCM_FRACTIONP (z))
|
||
return log_of_fraction (SCM_FRACTION_NUMERATOR (z),
|
||
SCM_FRACTION_DENOMINATOR (z));
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_log, z, 1, s_scm_log);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_log10, "log10", 1, 0, 0,
|
||
(SCM z),
|
||
"Return the base 10 logarithm of @var{z}.")
|
||
#define FUNC_NAME s_scm_log10
|
||
{
|
||
if (SCM_COMPLEXP (z))
|
||
{
|
||
/* Mingw has clog() but not clog10(). (Maybe it'd be worth using
|
||
clog() and a multiply by M_LOG10E, rather than the fallback
|
||
log10+hypot+atan2.) */
|
||
#if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CLOG10 \
|
||
&& defined SCM_COMPLEX_VALUE
|
||
return scm_from_complex_double (clog10 (SCM_COMPLEX_VALUE (z)));
|
||
#else
|
||
double re = SCM_COMPLEX_REAL (z);
|
||
double im = SCM_COMPLEX_IMAG (z);
|
||
return scm_c_make_rectangular (log10 (hypot (re, im)),
|
||
M_LOG10E * atan2 (im, re));
|
||
#endif
|
||
}
|
||
else if (SCM_REALP (z) || SCM_I_INUMP (z))
|
||
{
|
||
if (scm_is_eq (z, SCM_INUM0))
|
||
scm_num_overflow (s_scm_log10);
|
||
{
|
||
double re = scm_to_double (z);
|
||
double l = log10 (fabs (re));
|
||
/* cf log_of_shifted_double */
|
||
if (signbit (re) && SCM_LIKELY (!isnan (re)))
|
||
return scm_c_make_rectangular (l, M_LOG10E * M_PI);
|
||
else
|
||
return scm_i_from_double (l);
|
||
}
|
||
}
|
||
else if (SCM_BIGP (z))
|
||
return scm_product (flo_log10e, log_of_exact_integer (z));
|
||
else if (SCM_FRACTIONP (z))
|
||
return scm_product (flo_log10e,
|
||
log_of_fraction (SCM_FRACTION_NUMERATOR (z),
|
||
SCM_FRACTION_DENOMINATOR (z)));
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_log10, z, 1, s_scm_log10);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_exp, "exp", 1, 0, 0,
|
||
(SCM z),
|
||
"Return @math{e} to the power of @var{z}, where @math{e} is the\n"
|
||
"base of natural logarithms (2.71828@dots{}).")
|
||
#define FUNC_NAME s_scm_exp
|
||
{
|
||
if (SCM_COMPLEXP (z))
|
||
{
|
||
#if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CEXP \
|
||
&& defined (SCM_COMPLEX_VALUE)
|
||
return scm_from_complex_double (cexp (SCM_COMPLEX_VALUE (z)));
|
||
#else
|
||
return scm_c_make_polar (exp (SCM_COMPLEX_REAL (z)),
|
||
SCM_COMPLEX_IMAG (z));
|
||
#endif
|
||
}
|
||
else if (SCM_NUMBERP (z))
|
||
{
|
||
/* When z is a negative bignum the conversion to double overflows,
|
||
giving -infinity, but that's ok, the exp is still 0.0. */
|
||
return scm_i_from_double (exp (scm_to_double (z)));
|
||
}
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_exp, z, 1, s_scm_exp);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_i_exact_integer_sqrt, "exact-integer-sqrt", 1, 0, 0,
|
||
(SCM k),
|
||
"Return two exact non-negative integers @var{s} and @var{r}\n"
|
||
"such that @math{@var{k} = @var{s}^2 + @var{r}} and\n"
|
||
"@math{@var{s}^2 <= @var{k} < (@var{s} + 1)^2}.\n"
|
||
"An error is raised if @var{k} is not an exact non-negative integer.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(exact-integer-sqrt 10) @result{} 3 and 1\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_i_exact_integer_sqrt
|
||
{
|
||
SCM s, r;
|
||
|
||
scm_exact_integer_sqrt (k, &s, &r);
|
||
return scm_values_2 (s, r);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
void
|
||
scm_exact_integer_sqrt (SCM k, SCM *sp, SCM *rp)
|
||
{
|
||
if (SCM_I_INUMP (k))
|
||
{
|
||
scm_t_inum kk = SCM_I_INUM (k);
|
||
if (kk >= 0)
|
||
return scm_integer_exact_sqrt_i (kk, sp, rp);
|
||
}
|
||
else if (SCM_BIGP (k))
|
||
{
|
||
struct scm_bignum *zk = scm_bignum (k);
|
||
if (!scm_is_integer_negative_z (zk))
|
||
return scm_integer_exact_sqrt_z (zk, sp, rp);
|
||
}
|
||
scm_wrong_type_arg_msg ("exact-integer-sqrt", SCM_ARG1, k,
|
||
"exact non-negative integer");
|
||
}
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_sqrt, "sqrt", 1, 0, 0,
|
||
(SCM z),
|
||
"Return the square root of @var{z}. Of the two possible roots\n"
|
||
"(positive and negative), the one with positive real part\n"
|
||
"is returned, or if that's zero then a positive imaginary part.\n"
|
||
"Thus,\n"
|
||
"\n"
|
||
"@example\n"
|
||
"(sqrt 9.0) @result{} 3.0\n"
|
||
"(sqrt -9.0) @result{} 0.0+3.0i\n"
|
||
"(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i\n"
|
||
"(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i\n"
|
||
"@end example")
|
||
#define FUNC_NAME s_scm_sqrt
|
||
{
|
||
if (SCM_I_INUMP (z))
|
||
{
|
||
scm_t_inum i = SCM_I_INUM (z);
|
||
if (scm_is_integer_perfect_square_i (i))
|
||
return scm_integer_floor_sqrt_i (i);
|
||
double root = scm_integer_inexact_sqrt_i (i);
|
||
return (root < 0)
|
||
? scm_c_make_rectangular (0.0, -root)
|
||
: scm_i_from_double (root);
|
||
}
|
||
else if (SCM_BIGP (z))
|
||
{
|
||
struct scm_bignum *k = scm_bignum (z);
|
||
if (scm_is_integer_perfect_square_z (k))
|
||
return scm_integer_floor_sqrt_z (k);
|
||
double root = scm_integer_inexact_sqrt_z (k);
|
||
return (root < 0)
|
||
? scm_c_make_rectangular (0.0, -root)
|
||
: scm_i_from_double (root);
|
||
}
|
||
else if (SCM_REALP (z))
|
||
{
|
||
double xx = SCM_REAL_VALUE (z);
|
||
if (xx < 0)
|
||
return scm_c_make_rectangular (0.0, sqrt (-xx));
|
||
else
|
||
return scm_i_from_double (sqrt (xx));
|
||
}
|
||
else if (SCM_COMPLEXP (z))
|
||
{
|
||
#if defined HAVE_COMPLEX_DOUBLE && defined HAVE_USABLE_CSQRT \
|
||
&& defined SCM_COMPLEX_VALUE
|
||
return scm_from_complex_double (csqrt (SCM_COMPLEX_VALUE (z)));
|
||
#else
|
||
double re = SCM_COMPLEX_REAL (z);
|
||
double im = SCM_COMPLEX_IMAG (z);
|
||
return scm_c_make_polar (sqrt (hypot (re, im)),
|
||
0.5 * atan2 (im, re));
|
||
#endif
|
||
}
|
||
else if (SCM_FRACTIONP (z))
|
||
{
|
||
SCM n = SCM_FRACTION_NUMERATOR (z);
|
||
SCM d = SCM_FRACTION_DENOMINATOR (z);
|
||
SCM nr = scm_sqrt (n);
|
||
SCM dr = scm_sqrt (d);
|
||
if (scm_is_exact_integer (nr) && scm_is_exact_integer (dr))
|
||
return scm_i_make_ratio_already_reduced (nr, dr);
|
||
|
||
double xx = scm_i_divide2double (n, d);
|
||
double abs_xx = fabs (xx);
|
||
long shift = 0;
|
||
|
||
if (abs_xx > DBL_MAX || abs_xx < DBL_MIN)
|
||
{
|
||
shift = (scm_to_long (scm_integer_length (n))
|
||
- scm_to_long (scm_integer_length (d))) / 2;
|
||
if (shift > 0)
|
||
d = lsh (d, scm_from_long (2 * shift), FUNC_NAME);
|
||
else
|
||
n = lsh (n, scm_from_long (-2 * shift), FUNC_NAME);
|
||
xx = scm_i_divide2double (n, d);
|
||
}
|
||
|
||
if (xx < 0)
|
||
return scm_c_make_rectangular (0.0, ldexp (sqrt (-xx), shift));
|
||
else
|
||
return scm_i_from_double (ldexp (sqrt (xx), shift));
|
||
}
|
||
else
|
||
return scm_wta_dispatch_1 (g_scm_sqrt, z, 1, s_scm_sqrt);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
|
||
void
|
||
scm_init_numbers ()
|
||
{
|
||
/* It may be possible to tune the performance of some algorithms by using
|
||
* the following constants to avoid the creation of bignums. Please, before
|
||
* using these values, remember the two rules of program optimization:
|
||
* 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
|
||
scm_c_define ("most-positive-fixnum",
|
||
SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
|
||
scm_c_define ("most-negative-fixnum",
|
||
SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
|
||
|
||
scm_add_feature ("complex");
|
||
scm_add_feature ("inexact");
|
||
flo0 = scm_i_from_double (0.0);
|
||
flo_log10e = scm_i_from_double (M_LOG10E);
|
||
|
||
exactly_one_half = scm_divide (SCM_INUM1, SCM_I_MAKINUM (2));
|
||
|
||
{
|
||
/* Set scm_i_divide2double_lo2b to (2 b^p - 1) */
|
||
mpz_init_set_ui (scm_i_divide2double_lo2b, 1);
|
||
mpz_mul_2exp (scm_i_divide2double_lo2b,
|
||
scm_i_divide2double_lo2b,
|
||
DBL_MANT_DIG + 1); /* 2 b^p */
|
||
mpz_sub_ui (scm_i_divide2double_lo2b, scm_i_divide2double_lo2b, 1);
|
||
}
|
||
|
||
{
|
||
/* Set dbl_minimum_normal_mantissa to b^{p-1} */
|
||
mpz_init_set_ui (dbl_minimum_normal_mantissa, 1);
|
||
mpz_mul_2exp (dbl_minimum_normal_mantissa,
|
||
dbl_minimum_normal_mantissa,
|
||
DBL_MANT_DIG - 1);
|
||
}
|
||
|
||
#include "numbers.x"
|
||
}
|