1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-30 20:00:19 +02:00
guile/module/language/tree-il/peval.scm
Andy Wingo dfadcf85cb Merge remote-tracking branch 'origin/stable-2.0'
Conflicts:
	libguile/debug.h
	module/ice-9/psyntax-pp.scm
	module/ice-9/psyntax.scm
	module/language/tree-il/peval.scm
	module/language/tree-il/primitives.scm
2012-01-30 20:27:35 +01:00

1260 lines
50 KiB
Scheme
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

;;; Tree-IL partial evaluator
;; Copyright (C) 2011, 2012 Free Software Foundation, Inc.
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
(define-module (language tree-il peval)
#:use-module (language tree-il)
#:use-module (language tree-il primitives)
#:use-module (ice-9 vlist)
#:use-module (ice-9 match)
#:use-module (srfi srfi-1)
#:use-module (srfi srfi-9)
#:use-module (srfi srfi-11)
#:use-module (srfi srfi-26)
#:export (peval))
;;;
;;; Partial evaluation is Guile's most important source-to-source
;;; optimization pass. It performs copy propagation, dead code
;;; elimination, inlining, and constant folding, all while preserving
;;; the order of effects in the residual program.
;;;
;;; For more on partial evaluation, see William Cooks excellent
;;; tutorial on partial evaluation at DSL 2011, called “Build your own
;;; partial evaluator in 90 minutes”[0].
;;;
;;; Our implementation of this algorithm was heavily influenced by
;;; Waddell and Dybvig's paper, "Fast and Effective Procedure Inlining",
;;; IU CS Dept. TR 484.
;;;
;;; [0] http://www.cs.utexas.edu/~wcook/tutorial/.
;;;
;; First, some helpers.
;;
(define-syntax *logging* (identifier-syntax #f))
;; For efficiency we define *logging* to inline to #f, so that the call
;; to log* gets optimized out. If you want to log, uncomment these
;; lines:
;;
;; (define %logging #f)
;; (define-syntax *logging* (identifier-syntax %logging))
;;
;; Then you can change %logging at runtime.
(define-syntax log
(syntax-rules (quote)
((log 'event arg ...)
(if (and *logging*
(or (eq? *logging* #t)
(memq 'event *logging*)))
(log* 'event arg ...)))))
(define (log* event . args)
(let ((pp (module-ref (resolve-interface '(ice-9 pretty-print))
'pretty-print)))
(pp `(log ,event . ,args))
(newline)
(values)))
(define-syntax-rule (let/ec k e e* ...)
(let ((tag (make-prompt-tag)))
(call-with-prompt
tag
(lambda ()
(let ((k (lambda args (apply abort-to-prompt tag args))))
e e* ...))
(lambda (_ res) res))))
(define (tree-il-any proc exp)
(let/ec k
(tree-il-fold (lambda (exp res)
(let ((res (proc exp)))
(if res (k res) #f)))
(lambda (exp res)
(let ((res (proc exp)))
(if res (k res) #f)))
(lambda (exp res) #f)
#f exp)))
(define (vlist-any proc vlist)
(let ((len (vlist-length vlist)))
(let lp ((i 0))
(and (< i len)
(or (proc (vlist-ref vlist i))
(lp (1+ i)))))))
(define (singly-valued-expression? exp)
(match exp
(($ <const>) #t)
(($ <lexical-ref>) #t)
(($ <void>) #t)
(($ <lexical-ref>) #t)
(($ <primitive-ref>) #t)
(($ <module-ref>) #t)
(($ <toplevel-ref>) #t)
(($ <primcall> _ (? singly-valued-primitive?)) #t)
(($ <primcall> _ 'values (val)) #t)
(($ <lambda>) #t)
(else #f)))
(define (truncate-values x)
"Discard all but the first value of X."
(if (singly-valued-expression? x)
x
(make-primcall (tree-il-src x) 'values (list x))))
;; Peval will do a one-pass analysis on the source program to determine
;; the set of assigned lexicals, and to identify unreferenced and
;; singly-referenced lexicals.
;;
(define-record-type <var>
(make-var name gensym refcount set?)
var?
(name var-name)
(gensym var-gensym)
(refcount var-refcount set-var-refcount!)
(set? var-set? set-var-set?!))
(define* (build-var-table exp #:optional (table vlist-null))
(tree-il-fold
(lambda (exp res)
(match exp
(($ <lexical-ref> src name gensym)
(let ((var (cdr (vhash-assq gensym res))))
(set-var-refcount! var (1+ (var-refcount var)))
res))
(_ res)))
(lambda (exp res)
(match exp
(($ <lambda-case> src req opt rest kw init gensyms body alt)
(fold (lambda (name sym res)
(vhash-consq sym (make-var name sym 0 #f) res))
res
(append req (or opt '()) (if rest (list rest) '())
(match kw
((aok? (kw name sym) ...) name)
(_ '())))
gensyms))
(($ <let> src names gensyms vals body)
(fold (lambda (name sym res)
(vhash-consq sym (make-var name sym 0 #f) res))
res names gensyms))
(($ <letrec> src in-order? names gensyms vals body)
(fold (lambda (name sym res)
(vhash-consq sym (make-var name sym 0 #f) res))
res names gensyms))
(($ <fix> src names gensyms vals body)
(fold (lambda (name sym res)
(vhash-consq sym (make-var name sym 0 #f) res))
res names gensyms))
(($ <lexical-set> src name gensym exp)
(set-var-set?! (cdr (vhash-assq gensym res)) #t)
res)
(_ res)))
(lambda (exp res) res)
table exp))
;; Counters are data structures used to limit the effort that peval
;; spends on particular inlining attempts. Each call site in the source
;; program is allocated some amount of effort. If peval exceeds the
;; effort counter while attempting to inline a call site, it aborts the
;; inlining attempt and residualizes a call instead.
;;
;; As there is a fixed number of call sites, that makes `peval' O(N) in
;; the number of call sites in the source program.
;;
;; Counters should limit the size of the residual program as well, but
;; currently this is not implemented.
;;
;; At the top level, before seeing any peval call, there is no counter,
;; because inlining will terminate as there is no recursion. When peval
;; sees a call at the top level, it will make a new counter, allocating
;; it some amount of effort and size.
;;
;; This top-level effort counter effectively "prints money". Within a
;; toplevel counter, no more effort is printed ex nihilo; for a nested
;; inlining attempt to proceed, effort must be transferred from the
;; toplevel counter to the nested counter.
;;
;; Via `data' and `prev', counters form a linked list, terminating in a
;; toplevel counter. In practice `data' will be the a pointer to the
;; source expression of the procedure being inlined.
;;
;; In this way peval can detect a recursive inlining attempt, by walking
;; back on the `prev' links looking for matching `data'. Recursive
;; counters receive a more limited effort allocation, as we don't want
;; to spend all of the effort for a toplevel inlining site on loops.
;; Also, recursive counters don't need a prompt at each inlining site:
;; either the call chain folds entirely, or it will be residualized at
;; its original call.
;;
(define-record-type <counter>
(%make-counter effort size continuation recursive? data prev)
counter?
(effort effort-counter)
(size size-counter)
(continuation counter-continuation)
(recursive? counter-recursive? set-counter-recursive?!)
(data counter-data)
(prev counter-prev))
(define (abort-counter c)
((counter-continuation c)))
(define (record-effort! c)
(let ((e (effort-counter c)))
(if (zero? (variable-ref e))
(abort-counter c)
(variable-set! e (1- (variable-ref e))))))
(define (record-size! c)
(let ((s (size-counter c)))
(if (zero? (variable-ref s))
(abort-counter c)
(variable-set! s (1- (variable-ref s))))))
(define (find-counter data counter)
(and counter
(if (eq? data (counter-data counter))
counter
(find-counter data (counter-prev counter)))))
(define* (transfer! from to #:optional
(effort (variable-ref (effort-counter from)))
(size (variable-ref (size-counter from))))
(define (transfer-counter! from-v to-v amount)
(let* ((from-balance (variable-ref from-v))
(to-balance (variable-ref to-v))
(amount (min amount from-balance)))
(variable-set! from-v (- from-balance amount))
(variable-set! to-v (+ to-balance amount))))
(transfer-counter! (effort-counter from) (effort-counter to) effort)
(transfer-counter! (size-counter from) (size-counter to) size))
(define (make-top-counter effort-limit size-limit continuation data)
(%make-counter (make-variable effort-limit)
(make-variable size-limit)
continuation
#t
data
#f))
(define (make-nested-counter continuation data current)
(let ((c (%make-counter (make-variable 0)
(make-variable 0)
continuation
#f
data
current)))
(transfer! current c)
c))
(define (make-recursive-counter effort-limit size-limit orig current)
(let ((c (%make-counter (make-variable 0)
(make-variable 0)
(counter-continuation orig)
#t
(counter-data orig)
current)))
(transfer! current c effort-limit size-limit)
c))
;; Operand structures allow bindings to be processed lazily instead of
;; eagerly. By doing so, hopefully we can get process them in a way
;; appropriate to their use contexts. Operands also prevent values from
;; being visited multiple times, wasting effort.
;;
;; TODO: Record value size in operand structure?
;;
(define-record-type <operand>
(%make-operand var sym visit source visit-count residualize?
copyable? residual-value constant-value)
operand?
(var operand-var)
(sym operand-sym)
(visit %operand-visit)
(source operand-source)
(visit-count operand-visit-count set-operand-visit-count!)
(residualize? operand-residualize? set-operand-residualize?!)
(copyable? operand-copyable? set-operand-copyable?!)
(residual-value operand-residual-value %set-operand-residual-value!)
(constant-value operand-constant-value set-operand-constant-value!))
(define* (make-operand var sym #:optional source visit)
;; Bind SYM to VAR, with value SOURCE. Bound operands are considered
;; copyable until we prove otherwise. If we have a source expression,
;; truncate it to one value. Copy propagation does not work on
;; multiply-valued expressions.
(let ((source (and=> source truncate-values)))
(%make-operand var sym visit source 0 #f (and source #t) #f #f)))
(define (make-bound-operands vars syms sources visit)
(map (lambda (x y z) (make-operand x y z visit)) vars syms sources))
(define (make-unbound-operands vars syms)
(map make-operand vars syms))
(define (set-operand-residual-value! op val)
(%set-operand-residual-value!
op
(match val
(($ <primcall> src 'values (first))
;; The continuation of a residualized binding does not need the
;; introduced `values' node, so undo the effects of truncation.
first)
(else
val))))
(define* (visit-operand op counter ctx #:optional effort-limit size-limit)
;; Peval is O(N) in call sites of the source program. However,
;; visiting an operand can introduce new call sites. If we visit an
;; operand outside a counter -- i.e., outside an inlining attempt --
;; this can lead to divergence. So, if we are visiting an operand to
;; try to copy it, and there is no counter, make a new one.
;;
;; This will only happen at most as many times as there are lexical
;; references in the source program.
(and (zero? (operand-visit-count op))
(dynamic-wind
(lambda ()
(set-operand-visit-count! op (1+ (operand-visit-count op))))
(lambda ()
(and (operand-source op)
(if (or counter (and (not effort-limit) (not size-limit)))
((%operand-visit op) (operand-source op) counter ctx)
(let/ec k
(define (abort) (k #f))
((%operand-visit op)
(operand-source op)
(make-top-counter effort-limit size-limit abort op)
ctx)))))
(lambda ()
(set-operand-visit-count! op (1- (operand-visit-count op)))))))
;; A helper for constant folding.
;;
(define (types-check? primitive-name args)
(case primitive-name
((values) #t)
((not pair? null? list? symbol? vector? struct?)
(= (length args) 1))
((eq? eqv? equal?)
(= (length args) 2))
;; FIXME: add more cases?
(else #f)))
(define* (peval exp #:optional (cenv (current-module)) (env vlist-null)
#:key
(operator-size-limit 40)
(operand-size-limit 20)
(value-size-limit 10)
(effort-limit 500)
(recursive-effort-limit 100))
"Partially evaluate EXP in compilation environment CENV, with
top-level bindings from ENV and return the resulting expression."
;; This is a simple partial evaluator. It effectively performs
;; constant folding, copy propagation, dead code elimination, and
;; inlining.
;; TODO:
;;
;; Propagate copies across toplevel bindings, if we can prove the
;; bindings to be immutable.
;;
;; Specialize lambda expressions with invariant arguments.
(define local-toplevel-env
;; The top-level environment of the module being compiled.
(let ()
(define (env-folder x env)
(match x
(($ <toplevel-define> _ name)
(vhash-consq name #t env))
(($ <seq> _ head tail)
(env-folder tail (env-folder head env)))
(_ env)))
(env-folder exp vlist-null)))
(define (local-toplevel? name)
(vhash-assq name local-toplevel-env))
;; gensym -> <var>
;; renamed-term -> original-term
;;
(define store (build-var-table exp))
(define (record-new-temporary! name sym refcount)
(set! store (vhash-consq sym (make-var name sym refcount #f) store)))
(define (lookup-var sym)
(let ((v (vhash-assq sym store)))
(if v (cdr v) (error "unbound var" sym (vlist->list store)))))
(define (fresh-gensyms vars)
(map (lambda (var)
(let ((new (gensym (string-append (symbol->string (var-name var))
"-"))))
(set! store (vhash-consq new var store))
new))
vars))
(define (assigned-lexical? sym)
(var-set? (lookup-var sym)))
(define (lexical-refcount sym)
(var-refcount (lookup-var sym)))
;; ORIG has been alpha-renamed to NEW. Analyze NEW and record a link
;; from it to ORIG.
;;
(define (record-source-expression! orig new)
(set! store (vhash-consq new (source-expression orig) store))
new)
;; Find the source expression corresponding to NEW. Used to detect
;; recursive inlining attempts.
;;
(define (source-expression new)
(let ((x (vhash-assq new store)))
(if x (cdr x) new)))
(define* (residualize-lexical op #:optional ctx val)
(log 'residualize op)
(set-operand-residualize?! op #t)
(if (eq? ctx 'value)
(set-operand-residual-value! op val))
(make-lexical-ref #f (var-name (operand-var op)) (operand-sym op)))
(define (fold-constants src name args ctx)
(define (apply-primitive name args)
;; todo: further optimize commutative primitives
(catch #t
(lambda ()
(call-with-values
(lambda ()
(apply (module-ref the-scm-module name) args))
(lambda results
(values #t results))))
(lambda _
(values #f '()))))
(define (make-values src values)
(match values
((single) single) ; 1 value
((_ ...) ; 0, or 2 or more values
(make-primcall src 'values values))))
(define (residualize-call)
(make-primcall src name args))
(cond
((every const? args)
(let-values (((success? values)
(apply-primitive name (map const-exp args))))
(log 'fold success? values name args)
(if success?
(case ctx
((effect) (make-void src))
((test)
;; Values truncation: only take the first
;; value.
(if (pair? values)
(make-const src (car values))
(make-values src '())))
(else
(make-values src (map (cut make-const src <>) values))))
(residualize-call))))
((and (eq? ctx 'effect) (types-check? name args))
(make-void #f))
(else
(residualize-call))))
(define (inline-values exp src names gensyms body)
(let loop ((exp exp))
(match exp
;; Some expression types are always singly-valued.
((or ($ <const>)
($ <void>)
($ <lambda>)
($ <lexical-ref>)
($ <toplevel-ref>)
($ <module-ref>)
($ <primitive-ref>)
($ <dynref>)
($ <lexical-set>) ; FIXME: these set! expressions
($ <toplevel-set>) ; could return zero values in
($ <toplevel-define>) ; the future
($ <module-set>) ;
($ <dynset>)) ;
(and (= (length names) 1)
(make-let src names gensyms (list exp) body)))
(($ <primcall> src (? singly-valued-primitive? name))
(and (= (length names) 1)
(make-let src names gensyms (list exp) body)))
;; Statically-known number of values.
(($ <primcall> src 'values vals)
(and (= (length names) (length vals))
(make-let src names gensyms vals body)))
;; Not going to copy code into both branches.
(($ <conditional>) #f)
;; Bail on other applications.
(($ <call>) #f)
(($ <primcall>) #f)
;; Bail on prompt and abort.
(($ <prompt>) #f)
(($ <abort>) #f)
;; Propagate to tail positions.
(($ <let> src names gensyms vals body)
(let ((body (loop body)))
(and body
(make-let src names gensyms vals body))))
(($ <letrec> src in-order? names gensyms vals body)
(let ((body (loop body)))
(and body
(make-letrec src in-order? names gensyms vals body))))
(($ <fix> src names gensyms vals body)
(let ((body (loop body)))
(and body
(make-fix src names gensyms vals body))))
(($ <let-values> src exp
($ <lambda-case> src2 req opt rest kw inits gensyms body #f))
(let ((body (loop body)))
(and body
(make-let-values src exp
(make-lambda-case src2 req opt rest kw
inits gensyms body #f)))))
(($ <dynwind> src winder pre body post unwinder)
(let ((body (loop body)))
(and body
(make-dynwind src winder pre body post unwinder))))
(($ <dynlet> src fluids vals body)
(let ((body (loop body)))
(and body
(make-dynlet src fluids vals body))))
(($ <seq> src head tail)
(let ((tail (loop tail)))
(and tail (make-seq src head tail)))))))
(define (constant-expression? x)
;; Return true if X is constant, for the purposes of copying or
;; elision---i.e., if it is known to have no effects, does not
;; allocate storage for a mutable object, and does not access
;; mutable data (like `car' or toplevel references).
(let loop ((x x))
(match x
(($ <void>) #t)
(($ <const>) #t)
(($ <lambda>) #t)
(($ <lambda-case> _ req opt rest kw inits syms body alternate)
(and (not (any assigned-lexical? syms))
(every loop inits) (loop body)
(or (not alternate) (loop alternate))))
(($ <lexical-ref> _ _ gensym)
(not (assigned-lexical? gensym)))
(($ <primitive-ref>) #t)
(($ <conditional> _ condition subsequent alternate)
(and (loop condition) (loop subsequent) (loop alternate)))
(($ <primcall> _ 'values exps)
(and (not (null? exps))
(every loop exps)))
(($ <primcall> _ name args)
(and (effect-free-primitive? name)
(not (constructor-primitive? name))
(types-check? name args)
(if (accessor-primitive? name)
(every const? args)
(every loop args))))
(($ <call> _ ($ <lambda> _ _ body) args)
(and (loop body) (every loop args)))
(($ <seq> _ head tail)
(and (loop head) (loop tail)))
(($ <let> _ _ syms vals body)
(and (not (any assigned-lexical? syms))
(every loop vals) (loop body)))
(($ <letrec> _ _ _ syms vals body)
(and (not (any assigned-lexical? syms))
(every loop vals) (loop body)))
(($ <fix> _ _ _ vals body)
(and (every loop vals) (loop body)))
(($ <let-values> _ exp body)
(and (loop exp) (loop body)))
(($ <prompt> _ tag body handler)
(and (loop tag) (loop body) (loop handler)))
(_ #f))))
(define (prune-bindings ops in-order? body counter ctx build-result)
;; This helper handles both `let' and `letrec'/`fix'. In the latter
;; cases we need to make sure that if referenced binding A needs
;; as-yet-unreferenced binding B, that B is processed for value.
;; Likewise if C, when processed for effect, needs otherwise
;; unreferenced D, then D needs to be processed for value too.
;;
(define (referenced? op)
;; When we visit lambdas in operator context, we just copy them,
;; as we will process their body later. However this does have
;; the problem that any free var referenced by the lambda is not
;; marked as needing residualization. Here we hack around this
;; and treat all bindings as referenced if we are in operator
;; context.
(or (eq? ctx 'operator) (operand-residualize? op)))
;; values := (op ...)
;; effects := (op ...)
(define (residualize values effects)
;; Note, values and effects are reversed.
(cond
(in-order?
(let ((values (filter operand-residual-value ops)))
(if (null? values)
body
(build-result (map (compose var-name operand-var) values)
(map operand-sym values)
(map operand-residual-value values)
body))))
(else
(let ((body
(if (null? effects)
body
(let ((effect-vals (map operand-residual-value effects)))
(list->seq #f (reverse (cons body effect-vals)))))))
(if (null? values)
body
(let ((values (reverse values)))
(build-result (map (compose var-name operand-var) values)
(map operand-sym values)
(map operand-residual-value values)
body)))))))
;; old := (bool ...)
;; values := (op ...)
;; effects := ((op . value) ...)
(let prune ((old (map referenced? ops)) (values '()) (effects '()))
(let lp ((ops* ops) (values values) (effects effects))
(cond
((null? ops*)
(let ((new (map referenced? ops)))
(if (not (equal? new old))
(prune new values '())
(residualize values
(map (lambda (op val)
(set-operand-residual-value! op val)
op)
(map car effects) (map cdr effects))))))
(else
(let ((op (car ops*)))
(cond
((memq op values)
(lp (cdr ops*) values effects))
((operand-residual-value op)
(lp (cdr ops*) (cons op values) effects))
((referenced? op)
(set-operand-residual-value! op (visit-operand op counter 'value))
(lp (cdr ops*) (cons op values) effects))
(else
(lp (cdr ops*)
values
(let ((effect (visit-operand op counter 'effect)))
(if (void? effect)
effects
(acons op effect effects))))))))))))
(define (small-expression? x limit)
(let/ec k
(tree-il-fold
(lambda (x res) ; leaf
(1+ res))
(lambda (x res) ; down
(1+ res))
(lambda (x res) ; up
(if (< res limit)
res
(k #f)))
0 x)
#t))
(define (extend-env sym op env)
(vhash-consq (operand-sym op) op (vhash-consq sym op env)))
(let loop ((exp exp)
(env vlist-null) ; vhash of gensym -> <operand>
(counter #f) ; inlined call stack
(ctx 'values)) ; effect, value, values, test, operator, or call
(define (lookup var)
(cond
((vhash-assq var env) => cdr)
(else (error "unbound var" var))))
(define (visit exp ctx)
(loop exp env counter ctx))
(define (for-value exp) (visit exp 'value))
(define (for-values exp) (visit exp 'values))
(define (for-test exp) (visit exp 'test))
(define (for-effect exp) (visit exp 'effect))
(define (for-call exp) (visit exp 'call))
(define (for-tail exp) (visit exp ctx))
(if counter
(record-effort! counter))
(log 'visit ctx (and=> counter effort-counter)
(unparse-tree-il exp))
(match exp
(($ <const>)
(case ctx
((effect) (make-void #f))
(else exp)))
(($ <void>)
(case ctx
((test) (make-const #f #t))
(else exp)))
(($ <lexical-ref> _ _ gensym)
(log 'begin-copy gensym)
(let ((op (lookup gensym)))
(cond
((eq? ctx 'effect)
(log 'lexical-for-effect gensym)
(make-void #f))
((eq? ctx 'call)
;; Don't propagate copies if we are residualizing a call.
(log 'residualize-lexical-call gensym op)
(residualize-lexical op))
((var-set? (operand-var op))
;; Assigned lexicals don't copy-propagate.
(log 'assigned-var gensym op)
(residualize-lexical op))
((not (operand-copyable? op))
;; We already know that this operand is not copyable.
(log 'not-copyable gensym op)
(residualize-lexical op))
((and=> (operand-constant-value op)
(lambda (x) (or (const? x) (void? x) (primitive-ref? x))))
;; A cache hit.
(let ((val (operand-constant-value op)))
(log 'memoized-constant gensym val)
(for-tail val)))
((visit-operand op counter (if (eq? ctx 'values) 'value ctx)
recursive-effort-limit operand-size-limit)
=>
;; If we end up deciding to residualize this value instead of
;; copying it, save that residualized value.
(lambda (val)
(cond
((not (constant-expression? val))
(log 'not-constant gensym op)
;; At this point, ctx is operator, test, or value. A
;; value that is non-constant in one context will be
;; non-constant in the others, so it's safe to record
;; that here, and avoid future visits.
(set-operand-copyable?! op #f)
(residualize-lexical op ctx val))
((or (const? val)
(void? val)
(primitive-ref? val))
;; Always propagate simple values that cannot lead to
;; code bloat.
(log 'copy-simple gensym val)
;; It could be this constant is the result of folding.
;; If that is the case, cache it. This helps loop
;; unrolling get farther.
(if (or (eq? ctx 'value) (eq? ctx 'values))
(begin
(log 'memoize-constant gensym val)
(set-operand-constant-value! op val)))
val)
((= 1 (var-refcount (operand-var op)))
;; Always propagate values referenced only once.
(log 'copy-single gensym val)
val)
;; FIXME: do demand-driven size accounting rather than
;; these heuristics.
((eq? ctx 'operator)
;; A pure expression in the operator position. Inline
;; if it's a lambda that's small enough.
(if (and (lambda? val)
(small-expression? val operator-size-limit))
(begin
(log 'copy-operator gensym val)
val)
(begin
(log 'too-big-for-operator gensym val)
(residualize-lexical op ctx val))))
(else
;; A pure expression, processed for call or for value.
;; Don't inline lambdas, because they will probably won't
;; fold because we don't know the operator.
(if (and (small-expression? val value-size-limit)
(not (tree-il-any lambda? val)))
(begin
(log 'copy-value gensym val)
val)
(begin
(log 'too-big-or-has-lambda gensym val)
(residualize-lexical op ctx val)))))))
(else
;; Visit failed. Either the operand isn't bound, as in
;; lambda formal parameters, or the copy was aborted.
(log 'unbound-or-aborted gensym op)
(residualize-lexical op)))))
(($ <lexical-set> src name gensym exp)
(let ((op (lookup gensym)))
(if (zero? (var-refcount (operand-var op)))
(let ((exp (for-effect exp)))
(if (void? exp)
exp
(make-seq src exp (make-void #f))))
(begin
(set-operand-residualize?! op #t)
(make-lexical-set src name (operand-sym op) (for-value exp))))))
(($ <let> src names gensyms vals body)
(let* ((vars (map lookup-var gensyms))
(new (fresh-gensyms vars))
(ops (make-bound-operands vars new vals
(lambda (exp counter ctx)
(loop exp env counter ctx))))
(env (fold extend-env env gensyms ops))
(body (loop body env counter ctx)))
(cond
((const? body)
(for-tail (list->seq src (append vals (list body)))))
((and (lexical-ref? body)
(memq (lexical-ref-gensym body) new))
(let ((sym (lexical-ref-gensym body))
(pairs (map cons new vals)))
;; (let ((x foo) (y bar) ...) x) => (begin bar ... foo)
(for-tail
(list->seq
src
(append (map cdr (alist-delete sym pairs eq?))
(list (assq-ref pairs sym)))))))
(else
;; Only include bindings for which lexical references
;; have been residualized.
(prune-bindings ops #f body counter ctx
(lambda (names gensyms vals body)
(if (null? names) (error "what!" names))
(make-let src names gensyms vals body)))))))
(($ <letrec> src in-order? names gensyms vals body)
;; Note the difference from the `let' case: here we use letrec*
;; so that the `visit' procedure for the new operands closes over
;; an environment that includes the operands.
(letrec* ((visit (lambda (exp counter ctx)
(loop exp env* counter ctx)))
(vars (map lookup-var gensyms))
(new (fresh-gensyms vars))
(ops (make-bound-operands vars new vals visit))
(env* (fold extend-env env gensyms ops))
(body* (visit body counter ctx)))
(if (and (const? body*) (every constant-expression? vals))
;; We may have folded a loop completely, even though there
;; might be cyclical references between the bound values.
;; Handle this degenerate case specially.
body*
(prune-bindings ops in-order? body* counter ctx
(lambda (names gensyms vals body)
(make-letrec src in-order?
names gensyms vals body))))))
(($ <fix> src names gensyms vals body)
(letrec* ((visit (lambda (exp counter ctx)
(loop exp env* counter ctx)))
(vars (map lookup-var gensyms))
(new (fresh-gensyms vars))
(ops (make-bound-operands vars new vals visit))
(env* (fold extend-env env gensyms ops))
(body* (visit body counter ctx)))
(if (const? body*)
body*
(prune-bindings ops #f body* counter ctx
(lambda (names gensyms vals body)
(make-fix src names gensyms vals body))))))
(($ <let-values> lv-src producer consumer)
;; Peval the producer, then try to inline the consumer into
;; the producer. If that succeeds, peval again. Otherwise
;; reconstruct the let-values, pevaling the consumer.
(let ((producer (for-values producer)))
(or (match consumer
(($ <lambda-case> src req #f #f #f () gensyms body #f)
(cond
((inline-values producer src req gensyms body)
=> for-tail)
(else #f)))
(_ #f))
(make-let-values lv-src producer (for-tail consumer)))))
(($ <dynwind> src winder pre body post unwinder)
(make-dynwind src (for-value winder) (for-effect pre)
(for-tail body)
(for-effect post) (for-value unwinder)))
(($ <dynlet> src fluids vals body)
(make-dynlet src (map for-value fluids) (map for-value vals)
(for-tail body)))
(($ <dynref> src fluid)
(make-dynref src (for-value fluid)))
(($ <dynset> src fluid exp)
(make-dynset src (for-value fluid) (for-value exp)))
(($ <toplevel-ref> src (? effect-free-primitive? name))
exp)
(($ <toplevel-ref>)
;; todo: open private local bindings.
exp)
(($ <module-ref> src module (? effect-free-primitive? name) #f)
(let ((module (false-if-exception
(resolve-module module #:ensure #f))))
(if (module? module)
(let ((var (module-variable module name)))
(if (eq? var (module-variable the-scm-module name))
(make-primitive-ref src name)
exp))
exp)))
(($ <module-ref>)
exp)
(($ <module-set> src mod name public? exp)
(make-module-set src mod name public? (for-value exp)))
(($ <toplevel-define> src name exp)
(make-toplevel-define src name (for-value exp)))
(($ <toplevel-set> src name exp)
(make-toplevel-set src name (for-value exp)))
(($ <primitive-ref>)
(case ctx
((effect) (make-void #f))
((test) (make-const #f #t))
(else exp)))
(($ <conditional> src condition subsequent alternate)
(let ((condition (for-test condition)))
(if (const? condition)
(if (const-exp condition)
(for-tail subsequent)
(for-tail alternate))
(make-conditional src condition
(for-tail subsequent)
(for-tail alternate)))))
(($ <primcall> src '@call-with-values
(producer
($ <lambda> _ _
(and consumer
;; No optional or kwargs.
($ <lambda-case>
_ req #f rest #f () gensyms body #f)))))
(for-tail (make-let-values src (make-call src producer '())
consumer)))
(($ <primcall> src 'dynamic-wind (w thunk u))
(for-tail
(cond
((not (constant-expression? w))
(cond
((not (constant-expression? u))
(let ((w-sym (gensym "w ")) (u-sym (gensym "u ")))
(record-new-temporary! 'w w-sym 2)
(record-new-temporary! 'u u-sym 2)
(make-let src '(w u) (list w-sym u-sym) (list w u)
(make-dynwind
src
(make-lexical-ref #f 'w w-sym)
(make-call #f (make-lexical-ref #f 'w w-sym) '())
(make-call #f thunk '())
(make-call #f (make-lexical-ref #f 'u u-sym) '())
(make-lexical-ref #f 'u u-sym)))))
(else
(let ((w-sym (gensym "w ")))
(record-new-temporary! 'w w-sym 2)
(make-let src '(w) (list w-sym) (list w)
(make-dynwind
src
(make-lexical-ref #f 'w w-sym)
(make-call #f (make-lexical-ref #f 'w w-sym) '())
(make-call #f thunk '())
(make-call #f u '())
u))))))
((not (constant-expression? u))
(let ((u-sym (gensym "u ")))
(record-new-temporary! 'u u-sym 2)
(make-let src '(u) (list u-sym) (list u)
(make-dynwind
src
w
(make-call #f w '())
(make-call #f thunk '())
(make-call #f (make-lexical-ref #f 'u u-sym) '())
(make-lexical-ref #f 'u u-sym)))))
(else
(make-dynwind src w (make-call #f w '()) (make-call #f thunk '())
(make-call #f u '()) u)))))
(($ <primcall> src 'values exps)
(cond
((null? exps)
(if (eq? ctx 'effect)
(make-void #f)
exp))
(else
(let ((vals (map for-value exps)))
(if (and (case ctx
((value test effect) #t)
(else (null? (cdr vals))))
(every singly-valued-expression? vals))
(for-tail (list->seq src (append (cdr vals) (list (car vals)))))
(make-primcall src 'values vals))))))
(($ <primcall> src (? constructor-primitive? name) args)
(cond
((and (memq ctx '(effect test))
(match (cons name args)
((or ('cons _ _)
('list . _)
('vector . _)
('make-prompt-tag)
('make-prompt-tag ($ <const> _ (? string?))))
#t)
(_ #f)))
;; Some expressions can be folded without visiting the
;; arguments for value.
(let ((res (if (eq? ctx 'effect)
(make-void #f)
(make-const #f #t))))
(for-tail (list->seq src (append args (list res))))))
(else
(match (cons name (map for-value args))
(('cons x ($ <const> _ (? (cut eq? <> '()))))
(make-primcall src 'list (list x)))
(('cons x ($ <primcall> _ 'list elts))
(make-primcall src 'list (cons x elts)))
((name . args)
(make-primcall src name args))))))
(($ <primcall> src (? accessor-primitive? name) args)
(match (cons name (map for-value args))
;; FIXME: these for-tail recursions could take place outside
;; an effort counter.
(('car ($ <primcall> src 'cons (head tail)))
(for-tail (make-seq src tail head)))
(('cdr ($ <primcall> src 'cons (head tail)))
(for-tail (make-seq src head tail)))
(('car ($ <primcall> src 'list (head . tail)))
(for-tail (list->seq src (append tail (list head)))))
(('cdr ($ <primcall> src 'list (head . tail)))
(for-tail (make-seq src head (make-primcall #f 'list tail))))
(('car ($ <const> src (head . tail)))
(for-tail (make-const src head)))
(('cdr ($ <const> src (head . tail)))
(for-tail (make-const src tail)))
(((or 'memq 'memv) k ($ <const> _ (elts ...)))
;; FIXME: factor
(case ctx
((effect)
(for-tail
(make-seq src k (make-void #f))))
((test)
(cond
((const? k)
;; A shortcut. The `else' case would handle it, but
;; this way is faster.
(let ((member (case name ((memq) memq) ((memv) memv))))
(make-const #f (and (member (const-exp k) elts) #t))))
((null? elts)
(for-tail
(make-seq src k (make-const #f #f))))
(else
(let ((t (gensym "t "))
(eq (if (eq? name 'memq) 'eq? 'eqv?)))
(record-new-temporary! 't t (length elts))
(for-tail
(make-let
src (list 't) (list t) (list k)
(let lp ((elts elts))
(define test
(make-primcall #f eq
(list (make-lexical-ref #f 't t)
(make-const #f (car elts)))))
(if (null? (cdr elts))
test
(make-conditional src test
(make-const #f #t)
(lp (cdr elts)))))))))))
(else
(cond
((const? k)
(let ((member (case name ((memq) memq) ((memv) memv))))
(make-const #f (member (const-exp k) elts))))
((null? elts)
(for-tail (make-seq src k (make-const #f #f))))
(else
(make-primcall src name (list k (make-const #f elts))))))))
((name . args)
(fold-constants src name args ctx))))
(($ <primcall> src (? effect-free-primitive? name) args)
(fold-constants src name (map for-value args) ctx))
(($ <primcall> src name args)
(make-primcall src name (map for-value args)))
(($ <call> src orig-proc orig-args)
;; todo: augment the global env with specialized functions
(let ((proc (visit orig-proc 'operator)))
(match proc
(($ <primitive-ref> _ name)
(for-tail (make-primcall src name orig-args)))
(($ <lambda> _ _
($ <lambda-case> _ req opt #f #f inits gensyms body #f))
;; Simple case: no rest, no keyword arguments.
;; todo: handle the more complex cases
(let* ((nargs (length orig-args))
(nreq (length req))
(nopt (if opt (length opt) 0))
(key (source-expression proc)))
(cond
((or (< nargs nreq) (> nargs (+ nreq nopt)))
;; An error, or effecting arguments.
(make-call src (for-call orig-proc) (map for-value orig-args)))
((or (and=> (find-counter key counter) counter-recursive?)
(lambda? orig-proc))
;; A recursive call, or a lambda in the operator
;; position of the source expression. Process again in
;; tail context.
;;
;; In the recursive case, mark intervening counters as
;; recursive, so we can handle a toplevel counter that
;; recurses mutually with some other procedure.
;; Otherwise, the next time we see the other procedure,
;; the effort limit would be clamped to 100.
;;
(let ((found (find-counter key counter)))
(if (and found (counter-recursive? found))
(let lp ((counter counter))
(if (not (eq? counter found))
(begin
(set-counter-recursive?! counter #t)
(lp (counter-prev counter)))))))
(log 'inline-recurse key)
(loop (make-let src (append req (or opt '()))
gensyms
(append orig-args
(drop inits (- nargs nreq)))
body)
env counter ctx))
(else
;; An integration at the top-level, the first
;; recursion of a recursive procedure, or a nested
;; integration of a procedure that hasn't been seen
;; yet.
(log 'inline-begin exp)
(let/ec k
(define (abort)
(log 'inline-abort exp)
(k (make-call src (for-call orig-proc)
(map for-value orig-args))))
(define new-counter
(cond
;; These first two cases will transfer effort
;; from the current counter into the new
;; counter.
((find-counter key counter)
=> (lambda (prev)
(make-recursive-counter recursive-effort-limit
operand-size-limit
prev counter)))
(counter
(make-nested-counter abort key counter))
;; This case opens a new account, effectively
;; printing money. It should only do so once
;; for each call site in the source program.
(else
(make-top-counter effort-limit operand-size-limit
abort key))))
(define result
(loop (make-let src (append req (or opt '()))
gensyms
(append orig-args
(drop inits (- nargs nreq)))
body)
env new-counter ctx))
(if counter
;; The nested inlining attempt succeeded.
;; Deposit the unspent effort and size back
;; into the current counter.
(transfer! new-counter counter))
(log 'inline-end result exp)
result)))))
(_
(make-call src (for-call orig-proc) (map for-value orig-args))))))
(($ <lambda> src meta body)
(case ctx
((effect) (make-void #f))
((test) (make-const #f #t))
((operator) exp)
(else (record-source-expression!
exp
(make-lambda src meta (for-values body))))))
(($ <lambda-case> src req opt rest kw inits gensyms body alt)
(let* ((vars (map lookup-var gensyms))
(new (fresh-gensyms vars))
(env (fold extend-env env gensyms
(make-unbound-operands vars new)))
(new-sym (lambda (old)
(operand-sym (cdr (vhash-assq old env))))))
(make-lambda-case src req opt rest
(match kw
((aok? (kw name old) ...)
(cons aok? (map list kw name (map new-sym old))))
(_ #f))
(map (cut loop <> env counter 'value) inits)
new
(loop body env counter ctx)
(and alt (for-tail alt)))))
(($ <seq> src head tail)
(let ((head (for-effect head))
(tail (for-tail tail)))
(if (void? head)
tail
(make-seq src
(if (and (seq? head)
(void? (seq-tail head)))
(seq-head head)
head)
tail))))
(($ <prompt> src tag body handler)
(define (singly-used-definition x)
(cond
((and (lexical-ref? x)
;; Only fetch definitions with single uses.
(= (lexical-refcount (lexical-ref-gensym x)) 1)
(lookup (lexical-ref-gensym x)))
=> (lambda (x)
(singly-used-definition (visit-operand x counter 'value 10 10))))
(else x)))
(match (singly-used-definition tag)
(($ <primcall> _ 'make-prompt-tag (or () ((? constant-expression?))))
;; There is no way that an <abort> could know the tag
;; for this <prompt>, so we can elide the <prompt>
;; entirely.
(for-tail body))
(_
(make-prompt src (for-value tag) (for-tail body)
(for-value handler)))))
(($ <abort> src tag args tail)
(make-abort src (for-value tag) (map for-value args)
(for-value tail))))))