mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-04-30 20:00:19 +02:00
* module/language/cps/utils.scm (intmap-map): Use transient intmap-add! on an empty intmap to build the result instead of intmap-replace! on the argument. Avoids spooky action-at-a-distance mutation of the argument if it happens to be a transient -- although the intmap-fold will correctly traverse a snapshot of the argument and the result will be correct, the argument value would be modified in place, causing strange results to calling code that passes in a transient.
550 lines
21 KiB
Scheme
550 lines
21 KiB
Scheme
;;; Continuation-passing style (CPS) intermediate language (IL)
|
|
|
|
;; Copyright (C) 2013, 2014, 2015 Free Software Foundation, Inc.
|
|
|
|
;;;; This library is free software; you can redistribute it and/or
|
|
;;;; modify it under the terms of the GNU Lesser General Public
|
|
;;;; License as published by the Free Software Foundation; either
|
|
;;;; version 3 of the License, or (at your option) any later version.
|
|
;;;;
|
|
;;;; This library is distributed in the hope that it will be useful,
|
|
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
;;;; Lesser General Public License for more details.
|
|
;;;;
|
|
;;;; You should have received a copy of the GNU Lesser General Public
|
|
;;;; License along with this library; if not, write to the Free Software
|
|
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
;;; Commentary:
|
|
;;;
|
|
;;; Helper facilities for working with CPS.
|
|
;;;
|
|
;;; Code:
|
|
|
|
(define-module (language cps utils)
|
|
#:use-module (ice-9 match)
|
|
#:use-module (srfi srfi-1)
|
|
#:use-module (srfi srfi-11)
|
|
#:use-module (language cps)
|
|
#:use-module (language cps intset)
|
|
#:use-module (language cps intmap)
|
|
#:export (;; Fresh names.
|
|
label-counter var-counter
|
|
fresh-label fresh-var
|
|
with-fresh-name-state compute-max-label-and-var
|
|
let-fresh
|
|
|
|
;; Various utilities.
|
|
fold1 fold2
|
|
trivial-intset
|
|
intmap-map
|
|
intmap-keys
|
|
invert-bijection invert-partition
|
|
intset->intmap
|
|
worklist-fold
|
|
fixpoint
|
|
|
|
;; Flow analysis.
|
|
compute-constant-values
|
|
compute-function-body
|
|
compute-reachable-functions
|
|
compute-successors
|
|
invert-graph
|
|
compute-predecessors
|
|
compute-reverse-post-order
|
|
compute-strongly-connected-components
|
|
compute-sorted-strongly-connected-components
|
|
compute-idoms
|
|
compute-dom-edges
|
|
solve-flow-equations
|
|
))
|
|
|
|
(define label-counter (make-parameter #f))
|
|
(define var-counter (make-parameter #f))
|
|
|
|
(define (fresh-label)
|
|
(let ((count (or (label-counter)
|
|
(error "fresh-label outside with-fresh-name-state"))))
|
|
(label-counter (1+ count))
|
|
count))
|
|
|
|
(define (fresh-var)
|
|
(let ((count (or (var-counter)
|
|
(error "fresh-var outside with-fresh-name-state"))))
|
|
(var-counter (1+ count))
|
|
count))
|
|
|
|
(define-syntax-rule (let-fresh (label ...) (var ...) body ...)
|
|
(let* ((label (fresh-label)) ...
|
|
(var (fresh-var)) ...)
|
|
body ...))
|
|
|
|
(define-syntax-rule (with-fresh-name-state fun body ...)
|
|
(call-with-values (lambda () (compute-max-label-and-var fun))
|
|
(lambda (max-label max-var)
|
|
(parameterize ((label-counter (1+ max-label))
|
|
(var-counter (1+ max-var)))
|
|
body ...))))
|
|
|
|
(define (compute-max-label-and-var conts)
|
|
(values (or (intmap-prev conts) -1)
|
|
(intmap-fold (lambda (k cont max-var)
|
|
(match cont
|
|
(($ $kargs names syms body)
|
|
(apply max max-var syms))
|
|
(($ $kfun src meta self)
|
|
(max max-var self))
|
|
(_ max-var)))
|
|
conts
|
|
-1)))
|
|
|
|
(define-inlinable (fold1 f l s0)
|
|
(let lp ((l l) (s0 s0))
|
|
(match l
|
|
(() s0)
|
|
((elt . l) (lp l (f elt s0))))))
|
|
|
|
(define-inlinable (fold2 f l s0 s1)
|
|
(let lp ((l l) (s0 s0) (s1 s1))
|
|
(match l
|
|
(() (values s0 s1))
|
|
((elt . l)
|
|
(call-with-values (lambda () (f elt s0 s1))
|
|
(lambda (s0 s1)
|
|
(lp l s0 s1)))))))
|
|
|
|
(define (trivial-intset set)
|
|
"Returns the sole member of @var{set}, if @var{set} has exactly one
|
|
member, or @code{#f} otherwise."
|
|
(let ((first (intset-next set)))
|
|
(and first
|
|
(not (intset-next set (1+ first)))
|
|
first)))
|
|
|
|
(define (intmap-map proc map)
|
|
(persistent-intmap
|
|
(intmap-fold (lambda (k v out) (intmap-add! out k (proc k v)))
|
|
map
|
|
empty-intmap)))
|
|
|
|
(define (intmap-keys map)
|
|
"Return an intset of the keys in @var{map}."
|
|
(persistent-intset
|
|
(intmap-fold (lambda (k v keys) (intset-add! keys k)) map empty-intset)))
|
|
|
|
(define (invert-bijection map)
|
|
"Assuming the values of @var{map} are integers and are unique, compute
|
|
a map in which each value maps to its key. If the values are not
|
|
unique, an error will be signalled."
|
|
(intmap-fold (lambda (k v out) (intmap-add out v k)) map empty-intmap))
|
|
|
|
(define (invert-partition map)
|
|
"Assuming the values of @var{map} are disjoint intsets, compute a map
|
|
in which each member of each set maps to its key. If the values are not
|
|
disjoint, an error will be signalled."
|
|
(intmap-fold (lambda (k v* out)
|
|
(intset-fold (lambda (v out) (intmap-add out v k)) v* out))
|
|
map empty-intmap))
|
|
|
|
(define (intset->intmap f set)
|
|
(persistent-intmap
|
|
(intset-fold (lambda (label preds)
|
|
(intmap-add! preds label (f label)))
|
|
set empty-intmap)))
|
|
|
|
(define worklist-fold
|
|
(case-lambda
|
|
((f in out)
|
|
(let lp ((in in) (out out))
|
|
(if (eq? in empty-intset)
|
|
out
|
|
(call-with-values (lambda () (f in out)) lp))))
|
|
((f in out0 out1)
|
|
(let lp ((in in) (out0 out0) (out1 out1))
|
|
(if (eq? in empty-intset)
|
|
(values out0 out1)
|
|
(call-with-values (lambda () (f in out0 out1)) lp))))))
|
|
|
|
(define fixpoint
|
|
(case-lambda
|
|
((f x)
|
|
(let lp ((x x))
|
|
(let ((x* (f x)))
|
|
(if (eq? x x*) x* (lp x*)))))
|
|
((f x0 x1)
|
|
(let lp ((x0 x0) (x1 x1))
|
|
(call-with-values (lambda () (f x0 x1))
|
|
(lambda (x0* x1*)
|
|
(if (and (eq? x0 x0*) (eq? x1 x1*))
|
|
(values x0* x1*)
|
|
(lp x0* x1*))))))))
|
|
|
|
(define (compute-defining-expressions conts)
|
|
(define (meet-defining-expressions old new)
|
|
;; If there are multiple definitions and they are different, punt
|
|
;; and record #f.
|
|
(if (equal? old new)
|
|
old
|
|
#f))
|
|
(persistent-intmap
|
|
(intmap-fold (lambda (label cont defs)
|
|
(match cont
|
|
(($ $kargs _ _ ($ $continue k src exp))
|
|
(match (intmap-ref conts k)
|
|
(($ $kargs (_) (var))
|
|
(intmap-add! defs var exp meet-defining-expressions))
|
|
(_ defs)))
|
|
(_ defs)))
|
|
conts
|
|
empty-intmap)))
|
|
|
|
(define (compute-constant-values conts)
|
|
(let ((defs (compute-defining-expressions conts)))
|
|
(persistent-intmap
|
|
(intmap-fold
|
|
(lambda (var exp out)
|
|
(match exp
|
|
(($ $primcall (or 'load-f64 'load-u64 'load-s64) (val))
|
|
(intmap-add! out var (intmap-ref out val)))
|
|
;; Punch through type conversions to allow uadd to specialize
|
|
;; to uadd/immediate.
|
|
(($ $primcall 'scm->f64 (val))
|
|
(let ((f64 (intmap-ref out val (lambda (_) #f))))
|
|
(if (and f64 (number? f64) (inexact? f64) (real? f64))
|
|
(intmap-add! out var f64)
|
|
out)))
|
|
(($ $primcall (or 'scm->u64 'scm->u64/truncate) (val))
|
|
(let ((u64 (intmap-ref out val (lambda (_) #f))))
|
|
(if (and u64 (number? u64) (exact-integer? u64)
|
|
(<= 0 u64 #xffffFFFFffffFFFF))
|
|
(intmap-add! out var u64)
|
|
out)))
|
|
(($ $primcall 'scm->s64 (val))
|
|
(let ((s64 (intmap-ref out val (lambda (_) #f))))
|
|
(if (and s64 (number? s64) (exact-integer? s64)
|
|
(<= (- #x8000000000000000) s64 #x7fffFFFFffffFFFF))
|
|
(intmap-add! out var s64)
|
|
out)))
|
|
(_ out)))
|
|
defs
|
|
(intmap-fold (lambda (var exp out)
|
|
(match exp
|
|
(($ $const val)
|
|
(intmap-add! out var val))
|
|
(_ out)))
|
|
defs
|
|
empty-intmap)))))
|
|
|
|
(define (compute-function-body conts kfun)
|
|
(persistent-intset
|
|
(let visit-cont ((label kfun) (labels empty-intset))
|
|
(cond
|
|
((intset-ref labels label) labels)
|
|
(else
|
|
(let ((labels (intset-add! labels label)))
|
|
(match (intmap-ref conts label)
|
|
(($ $kreceive arity k) (visit-cont k labels))
|
|
(($ $kfun src meta self ktail kclause)
|
|
(let ((labels (visit-cont ktail labels)))
|
|
(if kclause
|
|
(visit-cont kclause labels)
|
|
labels)))
|
|
(($ $ktail) labels)
|
|
(($ $kclause arity kbody kalt)
|
|
(if kalt
|
|
(visit-cont kalt (visit-cont kbody labels))
|
|
(visit-cont kbody labels)))
|
|
(($ $kargs names syms ($ $continue k src exp))
|
|
(visit-cont k (match exp
|
|
(($ $branch k)
|
|
(visit-cont k labels))
|
|
(($ $prompt escape? tag k)
|
|
(visit-cont k labels))
|
|
(_ labels)))))))))))
|
|
|
|
(define* (compute-reachable-functions conts #:optional (kfun 0))
|
|
"Compute a mapping LABEL->LABEL..., where each key is a reachable
|
|
$kfun and each associated value is the body of the function, as an
|
|
intset."
|
|
(define (intset-cons i set) (intset-add set i))
|
|
(define (visit-fun kfun body to-visit)
|
|
(intset-fold
|
|
(lambda (label to-visit)
|
|
(define (return kfun*) (fold intset-cons to-visit kfun*))
|
|
(define (return1 kfun) (intset-add to-visit kfun))
|
|
(define (return0) to-visit)
|
|
(match (intmap-ref conts label)
|
|
(($ $kargs _ _ ($ $continue _ _ exp))
|
|
(match exp
|
|
(($ $fun label) (return1 label))
|
|
(($ $rec _ _ (($ $fun labels) ...)) (return labels))
|
|
(($ $closure label nfree) (return1 label))
|
|
(($ $callk label) (return1 label))
|
|
(_ (return0))))
|
|
(_ (return0))))
|
|
body
|
|
to-visit))
|
|
(let lp ((to-visit (intset kfun)) (visited empty-intmap))
|
|
(let ((to-visit (intset-subtract to-visit (intmap-keys visited))))
|
|
(if (eq? to-visit empty-intset)
|
|
visited
|
|
(call-with-values
|
|
(lambda ()
|
|
(intset-fold
|
|
(lambda (kfun to-visit visited)
|
|
(let ((body (compute-function-body conts kfun)))
|
|
(values (visit-fun kfun body to-visit)
|
|
(intmap-add visited kfun body))))
|
|
to-visit
|
|
empty-intset
|
|
visited))
|
|
lp)))))
|
|
|
|
(define* (compute-successors conts #:optional (kfun (intmap-next conts)))
|
|
(define (visit label succs)
|
|
(let visit ((label kfun) (succs empty-intmap))
|
|
(define (propagate0)
|
|
(intmap-add! succs label empty-intset))
|
|
(define (propagate1 succ)
|
|
(visit succ (intmap-add! succs label (intset succ))))
|
|
(define (propagate2 succ0 succ1)
|
|
(let ((succs (intmap-add! succs label (intset succ0 succ1))))
|
|
(visit succ1 (visit succ0 succs))))
|
|
(if (intmap-ref succs label (lambda (_) #f))
|
|
succs
|
|
(match (intmap-ref conts label)
|
|
(($ $kargs names vars ($ $continue k src exp))
|
|
(match exp
|
|
(($ $branch kt) (propagate2 k kt))
|
|
(($ $prompt escape? tag handler) (propagate2 k handler))
|
|
(_ (propagate1 k))))
|
|
(($ $kreceive arity k)
|
|
(propagate1 k))
|
|
(($ $kfun src meta self tail clause)
|
|
(if clause
|
|
(propagate2 clause tail)
|
|
(propagate1 tail)))
|
|
(($ $kclause arity kbody kalt)
|
|
(if kalt
|
|
(propagate2 kbody kalt)
|
|
(propagate1 kbody)))
|
|
(($ $ktail) (propagate0))))))
|
|
(persistent-intmap (visit kfun empty-intmap)))
|
|
|
|
(define* (compute-predecessors conts kfun #:key
|
|
(labels (compute-function-body conts kfun)))
|
|
(define (meet cdr car)
|
|
(cons car cdr))
|
|
(define (add-preds label preds)
|
|
(define (add-pred k preds)
|
|
(intmap-add! preds k label meet))
|
|
(match (intmap-ref conts label)
|
|
(($ $kreceive arity k)
|
|
(add-pred k preds))
|
|
(($ $kfun src meta self ktail kclause)
|
|
(add-pred ktail (if kclause (add-pred kclause preds) preds)))
|
|
(($ $ktail)
|
|
preds)
|
|
(($ $kclause arity kbody kalt)
|
|
(add-pred kbody (if kalt (add-pred kalt preds) preds)))
|
|
(($ $kargs names syms ($ $continue k src exp))
|
|
(add-pred k
|
|
(match exp
|
|
(($ $branch k) (add-pred k preds))
|
|
(($ $prompt _ _ k) (add-pred k preds))
|
|
(_ preds))))))
|
|
(persistent-intmap
|
|
(intset-fold add-preds labels
|
|
(intset->intmap (lambda (label) '()) labels))))
|
|
|
|
(define (compute-reverse-post-order succs start)
|
|
"Compute a reverse post-order numbering for a depth-first walk over
|
|
nodes reachable from the start node."
|
|
(let visit ((label start) (order '()) (visited empty-intset))
|
|
(call-with-values
|
|
(lambda ()
|
|
(intset-fold (lambda (succ order visited)
|
|
(if (intset-ref visited succ)
|
|
(values order visited)
|
|
(visit succ order visited)))
|
|
(intmap-ref succs label)
|
|
order
|
|
(intset-add! visited label)))
|
|
(lambda (order visited)
|
|
;; After visiting successors, add label to the reverse post-order.
|
|
(values (cons label order) visited)))))
|
|
|
|
(define (invert-graph succs)
|
|
"Given a graph PRED->SUCC..., where PRED is a label and SUCC... is an
|
|
intset of successors, return a graph SUCC->PRED...."
|
|
(intmap-fold (lambda (pred succs preds)
|
|
(intset-fold
|
|
(lambda (succ preds)
|
|
(intmap-add preds succ pred intset-add))
|
|
succs
|
|
preds))
|
|
succs
|
|
(intmap-map (lambda (label _) empty-intset) succs)))
|
|
|
|
(define (compute-strongly-connected-components succs start)
|
|
"Given a LABEL->SUCCESSOR... graph, compute a SCC->LABEL... map
|
|
partitioning the labels into strongly connected components (SCCs)."
|
|
(let ((preds (invert-graph succs)))
|
|
(define (visit-scc scc sccs-by-label)
|
|
(let visit ((label scc) (sccs-by-label sccs-by-label))
|
|
(if (intmap-ref sccs-by-label label (lambda (_) #f))
|
|
sccs-by-label
|
|
(intset-fold visit
|
|
(intmap-ref preds label)
|
|
(intmap-add sccs-by-label label scc)))))
|
|
(intmap-fold
|
|
(lambda (label scc sccs)
|
|
(let ((labels (intset-add empty-intset label)))
|
|
(intmap-add sccs scc labels intset-union)))
|
|
(fold visit-scc empty-intmap (compute-reverse-post-order succs start))
|
|
empty-intmap)))
|
|
|
|
(define (compute-sorted-strongly-connected-components edges)
|
|
"Given a LABEL->SUCCESSOR... graph, return a list of strongly
|
|
connected components in sorted order."
|
|
(define nodes
|
|
(intmap-keys edges))
|
|
;; Add a "start" node that links to all nodes in the graph, and then
|
|
;; remove it from the result.
|
|
(define start
|
|
(if (eq? nodes empty-intset)
|
|
0
|
|
(1+ (intset-prev nodes))))
|
|
(define components
|
|
(intmap-remove
|
|
(compute-strongly-connected-components (intmap-add edges start nodes)
|
|
start)
|
|
start))
|
|
(define node-components
|
|
(intmap-fold (lambda (id nodes out)
|
|
(intset-fold (lambda (node out) (intmap-add out node id))
|
|
nodes out))
|
|
components
|
|
empty-intmap))
|
|
(define (node-component node)
|
|
(intmap-ref node-components node))
|
|
(define (component-successors id nodes)
|
|
(intset-remove
|
|
(intset-fold (lambda (node out)
|
|
(intset-fold
|
|
(lambda (successor out)
|
|
(intset-add out (node-component successor)))
|
|
(intmap-ref edges node)
|
|
out))
|
|
nodes
|
|
empty-intset)
|
|
id))
|
|
(define component-edges
|
|
(intmap-map component-successors components))
|
|
(define preds
|
|
(invert-graph component-edges))
|
|
(define roots
|
|
(intmap-fold (lambda (id succs out)
|
|
(if (eq? empty-intset succs)
|
|
(intset-add out id)
|
|
out))
|
|
component-edges
|
|
empty-intset))
|
|
;; As above, add a "start" node that links to the roots, and remove it
|
|
;; from the result.
|
|
(match (compute-reverse-post-order (intmap-add preds start roots) start)
|
|
(((? (lambda (id) (eqv? id start))) . ids)
|
|
(map (lambda (id) (intmap-ref components id)) ids))))
|
|
|
|
;; Precondition: For each function in CONTS, the continuation names are
|
|
;; topologically sorted.
|
|
(define (compute-idoms conts kfun)
|
|
;; This is the iterative O(n^2) fixpoint algorithm, originally from
|
|
;; Allen and Cocke ("Graph-theoretic constructs for program flow
|
|
;; analysis", 1972). See the discussion in Cooper, Harvey, and
|
|
;; Kennedy's "A Simple, Fast Dominance Algorithm", 2001.
|
|
(let ((preds-map (compute-predecessors conts kfun)))
|
|
(define (compute-idom idoms preds)
|
|
(define (idom-ref label)
|
|
(intmap-ref idoms label (lambda (_) #f)))
|
|
(match preds
|
|
(() -1)
|
|
((pred) pred) ; Shortcut.
|
|
((pred . preds)
|
|
(define (common-idom d0 d1)
|
|
;; We exploit the fact that a reverse post-order is a
|
|
;; topological sort, and so the idom of a node is always
|
|
;; numerically less than the node itself.
|
|
(let lp ((d0 d0) (d1 d1))
|
|
(cond
|
|
;; d0 or d1 can be false on the first iteration.
|
|
((not d0) d1)
|
|
((not d1) d0)
|
|
((= d0 d1) d0)
|
|
((< d0 d1) (lp d0 (idom-ref d1)))
|
|
(else (lp (idom-ref d0) d1)))))
|
|
(fold1 common-idom preds pred))))
|
|
(define (adjoin-idom label preds idoms)
|
|
(let ((idom (compute-idom idoms preds)))
|
|
;; Don't use intmap-add! here.
|
|
(intmap-add idoms label idom (lambda (old new) new))))
|
|
(fixpoint (lambda (idoms)
|
|
(intmap-fold adjoin-idom preds-map idoms))
|
|
empty-intmap)))
|
|
|
|
;; Compute a vector containing, for each node, a list of the nodes that
|
|
;; it immediately dominates. These are the "D" edges in the DJ tree.
|
|
(define (compute-dom-edges idoms)
|
|
(define (snoc cdr car) (cons car cdr))
|
|
(persistent-intmap
|
|
(intmap-fold (lambda (label idom doms)
|
|
(let ((doms (intmap-add! doms label '())))
|
|
(cond
|
|
((< idom 0) doms) ;; No edge to entry.
|
|
(else (intmap-add! doms idom label snoc)))))
|
|
idoms
|
|
empty-intmap)))
|
|
|
|
(define (intset-pop set)
|
|
(match (intset-next set)
|
|
(#f (values set #f))
|
|
(i (values (intset-remove set i) i))))
|
|
|
|
(define* (solve-flow-equations succs in out kill gen subtract add meet
|
|
#:optional (worklist (intmap-keys succs)))
|
|
"Find a fixed point for flow equations for SUCCS, where INIT is the
|
|
initial state at each node in SUCCS. KILL and GEN are intmaps
|
|
indicating the state that is killed or defined at every node, and
|
|
SUBTRACT, ADD, and MEET operates on that state."
|
|
(define (visit label in out)
|
|
(let* ((in-1 (intmap-ref in label))
|
|
(kill-1 (intmap-ref kill label))
|
|
(gen-1 (intmap-ref gen label))
|
|
(out-1 (intmap-ref out label))
|
|
(out-1* (add (subtract in-1 kill-1) gen-1)))
|
|
(if (eq? out-1 out-1*)
|
|
(values empty-intset in out)
|
|
(let ((out (intmap-replace! out label out-1*)))
|
|
(call-with-values
|
|
(lambda ()
|
|
(intset-fold (lambda (succ in changed)
|
|
(let* ((in-1 (intmap-ref in succ))
|
|
(in-1* (meet in-1 out-1*)))
|
|
(if (eq? in-1 in-1*)
|
|
(values in changed)
|
|
(values (intmap-replace! in succ in-1*)
|
|
(intset-add changed succ)))))
|
|
(intmap-ref succs label) in empty-intset))
|
|
(lambda (in changed)
|
|
(values changed in out)))))))
|
|
|
|
(let run ((worklist worklist) (in in) (out out))
|
|
(call-with-values (lambda () (intset-pop worklist))
|
|
(lambda (worklist popped)
|
|
(if popped
|
|
(call-with-values (lambda () (visit popped in out))
|
|
(lambda (changed in out)
|
|
(run (intset-union worklist changed) in out)))
|
|
(values (persistent-intmap in)
|
|
(persistent-intmap out)))))))
|