1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-30 20:00:19 +02:00
guile/module/language/tree-il/compile-glil.scm
Andy Wingo aaae0d5ab3 "fix" <let>-bound lambda expressions too
* module/language/tree-il/compile-glil.scm (compile-glil): Compute
  warnings before optimizing, as unreferenced variables will be
  optimized out.

* libguile/_scm.h: Fix C99 comment.

* module/language/tree-il/fix-letrec.scm (partition-vars): Also analyze
  let-bound vars.
  (fix-letrec!): Fix a bug whereby a set! to an unreffed var would be
  called for value, not effect. Also "fix" <let>-bound lambda
  expressions -- really speeds up pmatch.

* test-suite/tests/tree-il.test ("lexical sets", "the or hack"): Update
  to take into account the new optimizations.
2009-08-12 21:29:08 +02:00

723 lines
28 KiB
Scheme
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

;;; TREE-IL -> GLIL compiler
;; Copyright (C) 2001,2008,2009 Free Software Foundation, Inc.
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;;; Code:
(define-module (language tree-il compile-glil)
#:use-module (system base syntax)
#:use-module (system base pmatch)
#:use-module (system base message)
#:use-module (ice-9 receive)
#:use-module (language glil)
#:use-module (system vm instruction)
#:use-module (language tree-il)
#:use-module (language tree-il optimize)
#:use-module (language tree-il analyze)
#:export (compile-glil))
;;; TODO:
;;
;; call-with-values -> mv-bind
;; basic degenerate-case reduction
;; allocation:
;; sym -> {lambda -> address}
;; lambda -> (nlocs labels . free-locs)
;;
;; address := (local? boxed? . index)
;; free-locs ::= ((sym0 . address0) (sym1 . address1) ...)
;; free variable addresses are relative to parent proc.
(define *comp-module* (make-fluid))
(define %warning-passes
`((unused-variable . ,report-unused-variables)))
(define (compile-glil x e opts)
(define warnings
(or (and=> (memq #:warnings opts) cadr)
'()))
;; Go throught the warning passes.
(for-each (lambda (kind)
(let ((warn (assoc-ref %warning-passes kind)))
(and (procedure? warn)
(warn x))))
warnings)
(let* ((x (make-lambda (tree-il-src x) '() '() '() x))
(x (optimize! x e opts))
(allocation (analyze-lexicals x)))
(with-fluid* *comp-module* (or (and e (car e)) (current-module))
(lambda ()
(values (flatten-lambda x #f allocation)
(and e (cons (car e) (cddr e)))
e)))))
(define *primcall-ops* (make-hash-table))
(for-each
(lambda (x) (hash-set! *primcall-ops* (car x) (cdr x)))
'(((eq? . 2) . eq?)
((eqv? . 2) . eqv?)
((equal? . 2) . equal?)
((= . 2) . ee?)
((< . 2) . lt?)
((> . 2) . gt?)
((<= . 2) . le?)
((>= . 2) . ge?)
((+ . 2) . add)
((- . 2) . sub)
((1+ . 1) . add1)
((1- . 1) . sub1)
((* . 2) . mul)
((/ . 2) . div)
((quotient . 2) . quo)
((remainder . 2) . rem)
((modulo . 2) . mod)
((not . 1) . not)
((pair? . 1) . pair?)
((cons . 2) . cons)
((car . 1) . car)
((cdr . 1) . cdr)
((set-car! . 2) . set-car!)
((set-cdr! . 2) . set-cdr!)
((null? . 1) . null?)
((list? . 1) . list?)
(list . list)
(vector . vector)
((@slot-ref . 2) . slot-ref)
((@slot-set! . 3) . slot-set)
((vector-ref . 2) . vector-ref)
((vector-set! . 3) . vector-set)
((bytevector-u8-ref . 2) . bv-u8-ref)
((bytevector-u8-set! . 3) . bv-u8-set)
((bytevector-s8-ref . 2) . bv-s8-ref)
((bytevector-s8-set! . 3) . bv-s8-set)
((bytevector-u16-ref . 3) . bv-u16-ref)
((bytevector-u16-set! . 4) . bv-u16-set)
((bytevector-u16-native-ref . 2) . bv-u16-native-ref)
((bytevector-u16-native-set! . 3) . bv-u16-native-set)
((bytevector-s16-ref . 3) . bv-s16-ref)
((bytevector-s16-set! . 4) . bv-s16-set)
((bytevector-s16-native-ref . 2) . bv-s16-native-ref)
((bytevector-s16-native-set! . 3) . bv-s16-native-set)
((bytevector-u32-ref . 3) . bv-u32-ref)
((bytevector-u32-set! . 4) . bv-u32-set)
((bytevector-u32-native-ref . 2) . bv-u32-native-ref)
((bytevector-u32-native-set! . 3) . bv-u32-native-set)
((bytevector-s32-ref . 3) . bv-s32-ref)
((bytevector-s32-set! . 4) . bv-s32-set)
((bytevector-s32-native-ref . 2) . bv-s32-native-ref)
((bytevector-s32-native-set! . 3) . bv-s32-native-set)
((bytevector-u64-ref . 3) . bv-u64-ref)
((bytevector-u64-set! . 4) . bv-u64-set)
((bytevector-u64-native-ref . 2) . bv-u64-native-ref)
((bytevector-u64-native-set! . 3) . bv-u64-native-set)
((bytevector-s64-ref . 3) . bv-s64-ref)
((bytevector-s64-set! . 4) . bv-s64-set)
((bytevector-s64-native-ref . 2) . bv-s64-native-ref)
((bytevector-s64-native-set! . 3) . bv-s64-native-set)
((bytevector-ieee-single-ref . 3) . bv-f32-ref)
((bytevector-ieee-single-set! . 4) . bv-f32-set)
((bytevector-ieee-single-native-ref . 2) . bv-f32-native-ref)
((bytevector-ieee-single-native-set! . 3) . bv-f32-native-set)
((bytevector-ieee-double-ref . 3) . bv-f64-ref)
((bytevector-ieee-double-set! . 4) . bv-f64-set)
((bytevector-ieee-double-native-ref . 2) . bv-f64-native-ref)
((bytevector-ieee-double-native-set! . 3) . bv-f64-native-set)))
(define (make-label) (gensym ":L"))
(define (vars->bind-list ids vars allocation proc)
(map (lambda (id v)
(pmatch (hashq-ref (hashq-ref allocation v) proc)
((#t ,boxed? . ,n)
(list id boxed? n))
(,x (error "badness" x))))
ids
vars))
;; FIXME: always emit? otherwise it's hard to pair bind with unbind
(define (emit-bindings src ids vars allocation proc emit-code)
(emit-code src (make-glil-bind
(vars->bind-list ids vars allocation proc))))
(define (with-output-to-code proc)
(let ((out '()))
(define (emit-code src x)
(set! out (cons x out))
(if src
(set! out (cons (make-glil-source src) out))))
(proc emit-code)
(reverse out)))
(define (flatten-lambda x self-label allocation)
(receive (ids vars nargs nrest)
(let lp ((ids (lambda-names x)) (vars (lambda-vars x))
(oids '()) (ovars '()) (n 0))
(cond ((null? vars) (values (reverse oids) (reverse ovars) n 0))
((pair? vars) (lp (cdr ids) (cdr vars)
(cons (car ids) oids) (cons (car vars) ovars)
(1+ n)))
(else (values (reverse (cons ids oids))
(reverse (cons vars ovars))
(1+ n) 1))))
(let ((nlocs (car (hashq-ref allocation x)))
(labels (cadr (hashq-ref allocation x))))
(make-glil-program
nargs nrest nlocs (lambda-meta x)
(with-output-to-code
(lambda (emit-code)
;; emit label for self tail calls
(if self-label
(emit-code #f (make-glil-label self-label)))
;; write bindings and source debugging info
(if (not (null? ids))
(emit-bindings #f ids vars allocation x emit-code))
(if (lambda-src x)
(emit-code #f (make-glil-source (lambda-src x))))
;; box args if necessary
(for-each
(lambda (v)
(pmatch (hashq-ref (hashq-ref allocation v) x)
((#t #t . ,n)
(emit-code #f (make-glil-lexical #t #f 'ref n))
(emit-code #f (make-glil-lexical #t #t 'box n)))))
vars)
;; and here, here, dear reader: we compile.
(flatten (lambda-body x) allocation x self-label
labels emit-code)))))))
(define (flatten x allocation self self-label fix-labels emit-code)
(define (emit-label label)
(emit-code #f (make-glil-label label)))
(define (emit-branch src inst label)
(emit-code src (make-glil-branch inst label)))
;; RA: "return address"; #f unless we're in a non-tail fix with labels
;; MVRA: "multiple-values return address"; #f unless we're in a let-values
(let comp ((x x) (context 'tail) (RA #f) (MVRA #f))
(define (comp-tail tree) (comp tree context RA MVRA))
(define (comp-push tree) (comp tree 'push #f #f))
(define (comp-drop tree) (comp tree 'drop #f #f))
(define (comp-vals tree MVRA) (comp tree 'vals #f MVRA))
(define (comp-fix tree RA) (comp tree context RA MVRA))
;; A couple of helpers. Note that if we are in tail context, we
;; won't have an RA.
(define (maybe-emit-return)
(if RA
(emit-branch #f 'br RA)
(if (eq? context 'tail)
(emit-code #f (make-glil-call 'return 1)))))
(record-case x
((<void>)
(case context
((push vals tail)
(emit-code #f (make-glil-void))))
(maybe-emit-return))
((<const> src exp)
(case context
((push vals tail)
(emit-code src (make-glil-const exp))))
(maybe-emit-return))
;; FIXME: should represent sequence as exps tail
((<sequence> src exps)
(let lp ((exps exps))
(if (null? (cdr exps))
(comp-tail (car exps))
(begin
(comp-drop (car exps))
(lp (cdr exps))))))
((<application> src proc args)
;; FIXME: need a better pattern-matcher here
(cond
((and (primitive-ref? proc)
(eq? (primitive-ref-name proc) '@apply)
(>= (length args) 1))
(let ((proc (car args))
(args (cdr args)))
(cond
((and (primitive-ref? proc) (eq? (primitive-ref-name proc) 'values)
(not (eq? context 'push)) (not (eq? context 'vals)))
;; tail: (lambda () (apply values '(1 2)))
;; drop: (lambda () (apply values '(1 2)) 3)
;; push: (lambda () (list (apply values '(10 12)) 1))
(case context
((drop) (for-each comp-drop args) (maybe-emit-return))
((tail)
(for-each comp-push args)
(emit-code src (make-glil-call 'return/values* (length args))))))
(else
(case context
((tail)
(comp-push proc)
(for-each comp-push args)
(emit-code src (make-glil-call 'goto/apply (1+ (length args)))))
((push)
(comp-push proc)
(for-each comp-push args)
(emit-code src (make-glil-call 'apply (1+ (length args))))
(maybe-emit-return))
((vals)
(comp-vals
(make-application src (make-primitive-ref #f 'apply)
(cons proc args))
MVRA)
(maybe-emit-return))
((drop)
;; Well, shit. The proc might return any number of
;; values (including 0), since it's in a drop context,
;; yet apply does not create a MV continuation. So we
;; mv-call out to our trampoline instead.
(comp-drop
(make-application src (make-primitive-ref #f 'apply)
(cons proc args)))
(maybe-emit-return)))))))
((and (primitive-ref? proc) (eq? (primitive-ref-name proc) 'values)
(not (eq? context 'push)))
;; tail: (lambda () (values '(1 2)))
;; drop: (lambda () (values '(1 2)) 3)
;; push: (lambda () (list (values '(10 12)) 1))
;; vals: (let-values (((a b ...) (values 1 2 ...))) ...)
(case context
((drop) (for-each comp-drop args) (maybe-emit-return))
((vals)
(for-each comp-push args)
(emit-code #f (make-glil-const (length args)))
(emit-branch src 'br MVRA))
((tail)
(for-each comp-push args)
(emit-code src (make-glil-call 'return/values (length args))))))
((and (primitive-ref? proc)
(eq? (primitive-ref-name proc) '@call-with-values)
(= (length args) 2))
;; CONSUMER
;; PRODUCER
;; (mv-call MV)
;; ([tail]-call 1)
;; goto POST
;; MV: [tail-]call/nargs
;; POST: (maybe-drop)
(case context
((vals)
;; Fall back.
(comp-vals
(make-application src (make-primitive-ref #f 'call-with-values)
args)
MVRA)
(maybe-emit-return))
(else
(let ((MV (make-label)) (POST (make-label))
(producer (car args)) (consumer (cadr args)))
(comp-push consumer)
(comp-push producer)
(emit-code src (make-glil-mv-call 0 MV))
(case context
((tail) (emit-code src (make-glil-call 'goto/args 1)))
(else (emit-code src (make-glil-call 'call 1))
(emit-branch #f 'br POST)))
(emit-label MV)
(case context
((tail) (emit-code src (make-glil-call 'goto/nargs 0)))
(else (emit-code src (make-glil-call 'call/nargs 0))
(emit-label POST)
(if (eq? context 'drop)
(emit-code #f (make-glil-call 'drop 1)))
(maybe-emit-return)))))))
((and (primitive-ref? proc)
(eq? (primitive-ref-name proc) '@call-with-current-continuation)
(= (length args) 1))
(case context
((tail)
(comp-push (car args))
(emit-code src (make-glil-call 'goto/cc 1)))
((vals)
(comp-vals
(make-application
src (make-primitive-ref #f 'call-with-current-continuation)
args)
MVRA)
(maybe-emit-return))
((push)
(comp-push (car args))
(emit-code src (make-glil-call 'call/cc 1))
(maybe-emit-return))
((drop)
;; Crap. Just like `apply' in drop context.
(comp-drop
(make-application
src (make-primitive-ref #f 'call-with-current-continuation)
args))
(maybe-emit-return))))
((and (primitive-ref? proc)
(or (hash-ref *primcall-ops*
(cons (primitive-ref-name proc) (length args)))
(hash-ref *primcall-ops* (primitive-ref-name proc))))
=> (lambda (op)
(for-each comp-push args)
(emit-code src (make-glil-call op (length args)))
(case (instruction-pushes op)
((0)
(case context
((tail push vals) (emit-code #f (make-glil-void))))
(maybe-emit-return))
((1)
(case context
((drop) (emit-code #f (make-glil-call 'drop 1))))
(maybe-emit-return))
(else
(error "bad primitive op: too many pushes"
op (instruction-pushes op))))))
;; da capo al fine
((and (lexical-ref? proc)
self-label (eq? (lexical-ref-gensym proc) self-label)
;; self-call in tail position is a goto
(eq? context 'tail)
;; make sure the arity is right
(list? (lambda-vars self))
(= (length args) (length (lambda-vars self))))
;; evaluate new values
(for-each comp-push args)
;; rename & goto
(for-each (lambda (sym)
(pmatch (hashq-ref (hashq-ref allocation sym) self)
((#t ,boxed? . ,index)
;; set unboxed, as the proc prelude will box if needed
(emit-code #f (make-glil-lexical #t #f 'set index)))
(,x (error "what" x))))
(reverse (lambda-vars self)))
(emit-branch src 'br self-label))
;; lambda, the ultimate goto
((and (lexical-ref? proc)
(assq (lexical-ref-gensym proc) fix-labels))
;; evaluate new values, assuming that analyze-lexicals did its
;; job, and that the arity was right
(for-each comp-push args)
;; rename
(for-each (lambda (sym)
(pmatch (hashq-ref (hashq-ref allocation sym) self)
((#t #f . ,index)
(emit-code #f (make-glil-lexical #t #f 'set index)))
((#t #t . ,index)
(emit-code #f (make-glil-lexical #t #t 'box index)))
(,x (error "what" x))))
(reverse (assq-ref fix-labels (lexical-ref-gensym proc))))
;; goto!
(emit-branch src 'br (lexical-ref-gensym proc)))
(else
(comp-push proc)
(for-each comp-push args)
(let ((len (length args)))
(case context
((tail) (emit-code src (make-glil-call 'goto/args len)))
((push) (emit-code src (make-glil-call 'call len))
(maybe-emit-return))
((vals) (emit-code src (make-glil-mv-call len MVRA))
(maybe-emit-return))
((drop) (let ((MV (make-label)) (POST (make-label)))
(emit-code src (make-glil-mv-call len MV))
(emit-code #f (make-glil-call 'drop 1))
(emit-branch #f 'br (or RA POST))
(emit-label MV)
(emit-code #f (make-glil-mv-bind '() #f))
(emit-code #f (make-glil-unbind))
(if RA
(emit-branch #f 'br RA)
(emit-label POST)))))))))
((<conditional> src test then else)
;; TEST
;; (br-if-not L1)
;; THEN
;; (br L2)
;; L1: ELSE
;; L2:
(let ((L1 (make-label)) (L2 (make-label)))
(comp-push test)
(emit-branch src 'br-if-not L1)
(comp-tail then)
;; if there is an RA, comp-tail will cause a jump to it -- just
;; have to clean up here if there is no RA.
(if (and (not RA) (not (eq? context 'tail)))
(emit-branch #f 'br L2))
(emit-label L1)
(comp-tail else)
(if (and (not RA) (not (eq? context 'tail)))
(emit-label L2))))
((<primitive-ref> src name)
(cond
((eq? (module-variable (fluid-ref *comp-module*) name)
(module-variable the-root-module name))
(case context
((tail push vals)
(emit-code src (make-glil-toplevel 'ref name))))
(maybe-emit-return))
((module-variable the-root-module name)
(case context
((tail push vals)
(emit-code src (make-glil-module 'ref '(guile) name #f))))
(maybe-emit-return))
(else
(case context
((tail push vals)
(emit-code src (make-glil-module
'ref (module-name (fluid-ref *comp-module*)) name #f))))
(maybe-emit-return))))
((<lexical-ref> src name gensym)
(case context
((push vals tail)
(pmatch (hashq-ref (hashq-ref allocation gensym) self)
((,local? ,boxed? . ,index)
(emit-code src (make-glil-lexical local? boxed? 'ref index)))
(,loc
(error "badness" x loc)))))
(maybe-emit-return))
((<lexical-set> src name gensym exp)
(comp-push exp)
(pmatch (hashq-ref (hashq-ref allocation gensym) self)
((,local? ,boxed? . ,index)
(emit-code src (make-glil-lexical local? boxed? 'set index)))
(,loc
(error "badness" x loc)))
(case context
((tail push vals)
(emit-code #f (make-glil-void))))
(maybe-emit-return))
((<module-ref> src mod name public?)
(emit-code src (make-glil-module 'ref mod name public?))
(case context
((drop) (emit-code #f (make-glil-call 'drop 1))))
(maybe-emit-return))
((<module-set> src mod name public? exp)
(comp-push exp)
(emit-code src (make-glil-module 'set mod name public?))
(case context
((tail push vals)
(emit-code #f (make-glil-void))))
(maybe-emit-return))
((<toplevel-ref> src name)
(emit-code src (make-glil-toplevel 'ref name))
(case context
((drop) (emit-code #f (make-glil-call 'drop 1))))
(maybe-emit-return))
((<toplevel-set> src name exp)
(comp-push exp)
(emit-code src (make-glil-toplevel 'set name))
(case context
((tail push vals)
(emit-code #f (make-glil-void))))
(maybe-emit-return))
((<toplevel-define> src name exp)
(comp-push exp)
(emit-code src (make-glil-toplevel 'define name))
(case context
((tail push vals)
(emit-code #f (make-glil-void))))
(maybe-emit-return))
((<lambda>)
(let ((free-locs (cddr (hashq-ref allocation x))))
(case context
((push vals tail)
(emit-code #f (flatten-lambda x #f allocation))
(if (not (null? free-locs))
(begin
(for-each
(lambda (loc)
(pmatch loc
((,local? ,boxed? . ,n)
(emit-code #f (make-glil-lexical local? #f 'ref n)))
(else (error "what" x loc))))
free-locs)
(emit-code #f (make-glil-call 'vector (length free-locs)))
(emit-code #f (make-glil-call 'make-closure 2)))))))
(maybe-emit-return))
((<let> src names vars vals body)
(for-each comp-push vals)
(emit-bindings src names vars allocation self emit-code)
(for-each (lambda (v)
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #f . ,n)
(emit-code src (make-glil-lexical #t #f 'set n)))
((#t #t . ,n)
(emit-code src (make-glil-lexical #t #t 'box n)))
(,loc (error "badness" x loc))))
(reverse vars))
(comp-tail body)
(emit-code #f (make-glil-unbind)))
((<letrec> src names vars vals body)
(for-each (lambda (v)
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #t . ,n)
(emit-code src (make-glil-lexical #t #t 'empty-box n)))
(,loc (error "badness" x loc))))
vars)
(for-each comp-push vals)
(emit-bindings src names vars allocation self emit-code)
(for-each (lambda (v)
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #t . ,n)
(emit-code src (make-glil-lexical #t #t 'set n)))
(,loc (error "badness" x loc))))
(reverse vars))
(comp-tail body)
(emit-code #f (make-glil-unbind)))
((<fix> src names vars vals body)
;; The ideal here is to just render the lambda bodies inline, and
;; wire the code together with gotos. We can do that if
;; analyze-lexicals has determined that a given var has "label"
;; allocation -- which is the case if it is in `fix-labels'.
;;
;; But even for closures that we can't inline, we can do some
;; tricks to avoid heap-allocation for the binding itself. Since
;; we know the vals are lambdas, we can set them to their local
;; var slots first, then capture their bindings, mutating them in
;; place.
(let ((RA (if (eq? context 'tail) #f (make-label))))
(for-each
(lambda (x v)
(cond
((hashq-ref allocation x)
;; allocating a closure
(emit-code #f (flatten-lambda x v allocation))
(if (not (null? (cddr (hashq-ref allocation x))))
;; Need to make-closure first, but with a temporary #f
;; free-variables vector, so we are mutating fresh
;; closures on the heap.
(begin
(emit-code #f (make-glil-const #f))
(emit-code #f (make-glil-call 'make-closure 2))))
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #f . ,n)
(emit-code src (make-glil-lexical #t #f 'set n)))
(,loc (error "badness" x loc))))
(else
;; labels allocation: emit label & body, but jump over it
(let ((POST (make-label)))
(emit-branch #f 'br POST)
(emit-label v)
;; we know the lambda vars are a list
(emit-bindings #f (lambda-names x) (lambda-vars x)
allocation self emit-code)
(if (lambda-src x)
(emit-code #f (make-glil-source (lambda-src x))))
(comp-fix (lambda-body x) RA)
(emit-code #f (make-glil-unbind))
(emit-label POST)))))
vals
vars)
;; Emit bindings metadata for closures
(let ((binds (let lp ((out '()) (vars vars) (names names))
(cond ((null? vars) (reverse! out))
((assq (car vars) fix-labels)
(lp out (cdr vars) (cdr names)))
(else
(lp (acons (car vars) (car names) out)
(cdr vars) (cdr names)))))))
(emit-bindings src (map cdr binds) (map car binds)
allocation self emit-code))
;; Now go back and fix up the bindings for closures.
(for-each
(lambda (x v)
(let ((free-locs (if (hashq-ref allocation x)
(cddr (hashq-ref allocation x))
;; can hit this latter case for labels allocation
'())))
(if (not (null? free-locs))
(begin
(for-each
(lambda (loc)
(pmatch loc
((,local? ,boxed? . ,n)
(emit-code #f (make-glil-lexical local? #f 'ref n)))
(else (error "what" x loc))))
free-locs)
(emit-code #f (make-glil-call 'vector (length free-locs)))
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #f . ,n)
(emit-code #f (make-glil-lexical #t #f 'fix n)))
(,loc (error "badness" x loc)))))))
vals
vars)
(comp-tail body)
(emit-label RA)
(emit-code #f (make-glil-unbind))))
((<let-values> src names vars exp body)
(let lp ((names '()) (vars '()) (inames names) (ivars vars) (rest? #f))
(cond
((pair? inames)
(lp (cons (car inames) names) (cons (car ivars) vars)
(cdr inames) (cdr ivars) #f))
((not (null? inames))
(lp (cons inames names) (cons ivars vars) '() '() #t))
(else
(let ((names (reverse! names))
(vars (reverse! vars))
(MV (make-label)))
(comp-vals exp MV)
(emit-code #f (make-glil-const 1))
(emit-label MV)
(emit-code src (make-glil-mv-bind
(vars->bind-list names vars allocation self)
rest?))
(for-each (lambda (v)
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #f . ,n)
(emit-code src (make-glil-lexical #t #f 'set n)))
((#t #t . ,n)
(emit-code src (make-glil-lexical #t #t 'box n)))
(,loc (error "badness" x loc))))
(reverse vars))
(comp-tail body)
(emit-code #f (make-glil-unbind))))))))))