1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-06-07 12:40:19 +02:00
guile/src/whippet.c

1358 lines
47 KiB
C

#include <pthread.h>
#include <stdatomic.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <sys/mman.h>
#include <string.h>
#include <unistd.h>
#include "gc-api.h"
#define GC_IMPL 1
#include "gc-internal.h"
#include "debug.h"
#include "gc-align.h"
#include "gc-inline.h"
#include "gc-platform.h"
#include "gc-stack.h"
#include "gc-trace.h"
#include "large-object-space.h"
#include "nofl-space.h"
#if GC_PARALLEL
#include "parallel-tracer.h"
#else
#include "serial-tracer.h"
#endif
#include "spin.h"
#include "whippet-attrs.h"
#define LARGE_OBJECT_THRESHOLD 8192
struct gc_heap {
struct nofl_space nofl_space;
struct large_object_space large_object_space;
struct gc_extern_space *extern_space;
size_t large_object_pages;
pthread_mutex_t lock;
pthread_cond_t collector_cond;
pthread_cond_t mutator_cond;
size_t size;
int collecting;
int mark_while_stopping;
int check_pending_ephemerons;
struct gc_pending_ephemerons *pending_ephemerons;
struct gc_finalizer_state *finalizer_state;
enum gc_collection_kind gc_kind;
int multithreaded;
size_t mutator_count;
size_t paused_mutator_count;
size_t inactive_mutator_count;
struct gc_heap_roots *roots;
struct gc_mutator *mutator_trace_list;
long count;
uint8_t last_collection_was_minor;
struct gc_mutator *inactive_mutators;
struct gc_tracer tracer;
double fragmentation_low_threshold;
double fragmentation_high_threshold;
double minor_gc_yield_threshold;
double major_gc_yield_threshold;
double minimum_major_gc_yield_threshold;
double pending_ephemerons_size_factor;
double pending_ephemerons_size_slop;
struct gc_event_listener event_listener;
void *event_listener_data;
};
#define HEAP_EVENT(heap, event, ...) \
(heap)->event_listener.event((heap)->event_listener_data, ##__VA_ARGS__)
#define MUTATOR_EVENT(mut, event, ...) \
(mut)->heap->event_listener.event((mut)->event_listener_data, ##__VA_ARGS__)
struct gc_mutator_mark_buf {
size_t size;
size_t capacity;
struct gc_ref *objects;
};
struct gc_mutator {
struct nofl_allocator allocator;
struct gc_heap *heap;
struct gc_stack stack;
struct gc_mutator_roots *roots;
struct gc_mutator_mark_buf mark_buf;
void *event_listener_data;
// Three uses for this in-object linked-list pointer:
// - inactive (blocked in syscall) mutators
// - grey objects when stopping active mutators for mark-in-place
// - untraced mutators when stopping active mutators for evacuation
struct gc_mutator *next;
};
struct gc_trace_worker_data {
struct nofl_allocator allocator;
};
static inline struct nofl_space*
heap_nofl_space(struct gc_heap *heap) {
return &heap->nofl_space;
}
static inline struct large_object_space*
heap_large_object_space(struct gc_heap *heap) {
return &heap->large_object_space;
}
static inline struct gc_extern_space*
heap_extern_space(struct gc_heap *heap) {
return heap->extern_space;
}
static inline struct gc_heap*
mutator_heap(struct gc_mutator *mutator) {
return mutator->heap;
}
static void
gc_trace_worker_call_with_data(void (*f)(struct gc_tracer *tracer,
struct gc_heap *heap,
struct gc_trace_worker *worker,
struct gc_trace_worker_data *data),
struct gc_tracer *tracer,
struct gc_heap *heap,
struct gc_trace_worker *worker) {
struct gc_trace_worker_data data;
nofl_allocator_reset(&data.allocator);
f(tracer, heap, worker, &data);
nofl_allocator_finish(&data.allocator, heap_nofl_space(heap));
}
static void collect(struct gc_mutator *mut,
enum gc_collection_kind requested_kind) GC_NEVER_INLINE;
static inline int
do_trace(struct gc_heap *heap, struct gc_edge edge, struct gc_ref ref,
struct gc_trace_worker *worker) {
if (!gc_ref_is_heap_object(ref))
return 0;
if (GC_LIKELY(nofl_space_contains(heap_nofl_space(heap), ref))) {
struct nofl_allocator *alloc =
worker ? &gc_trace_worker_data(worker)->allocator : NULL;
return nofl_space_evacuate_or_mark_object(heap_nofl_space(heap), edge, ref,
alloc);
} else if (large_object_space_contains(heap_large_object_space(heap), ref))
return large_object_space_mark_object(heap_large_object_space(heap),
ref);
else
return gc_extern_space_visit(heap_extern_space(heap), edge, ref);
}
static inline int trace_edge(struct gc_heap *heap,
struct gc_edge edge,
struct gc_trace_worker *worker) GC_ALWAYS_INLINE;
static inline int
trace_edge(struct gc_heap *heap, struct gc_edge edge, struct gc_trace_worker *worker) {
struct gc_ref ref = gc_edge_ref(edge);
int is_new = do_trace(heap, edge, ref, worker);
if (is_new &&
GC_UNLIKELY(atomic_load_explicit(&heap->check_pending_ephemerons,
memory_order_relaxed)))
gc_resolve_pending_ephemerons(ref, heap);
return is_new;
}
int
gc_visit_ephemeron_key(struct gc_edge edge, struct gc_heap *heap) {
struct gc_ref ref = gc_edge_ref(edge);
if (!gc_ref_is_heap_object(ref))
return 0;
struct nofl_space *nofl_space = heap_nofl_space(heap);
if (GC_LIKELY(nofl_space_contains(nofl_space, ref)))
return nofl_space_forward_or_mark_if_traced(nofl_space, edge, ref);
struct large_object_space *lospace = heap_large_object_space(heap);
if (large_object_space_contains(lospace, ref))
return large_object_space_is_copied(lospace, ref);
GC_CRASH();
}
static inline struct gc_ref
do_trace_conservative_ref(struct gc_heap *heap, struct gc_conservative_ref ref,
int possibly_interior) {
if (!gc_conservative_ref_might_be_a_heap_object(ref, possibly_interior))
return gc_ref_null();
struct nofl_space *nofl_space = heap_nofl_space(heap);
if (GC_LIKELY(nofl_space_contains_conservative_ref(nofl_space, ref)))
return nofl_space_mark_conservative_ref(nofl_space, ref, possibly_interior);
struct large_object_space *lospace = heap_large_object_space(heap);
return large_object_space_mark_conservative_ref(lospace, ref,
possibly_interior);
}
static inline struct gc_ref
trace_conservative_ref(struct gc_heap *heap, struct gc_conservative_ref ref,
int possibly_interior) {
struct gc_ref ret = do_trace_conservative_ref(heap, ref, possibly_interior);
if (gc_ref_is_heap_object(ret) &&
GC_UNLIKELY(atomic_load_explicit(&heap->check_pending_ephemerons,
memory_order_relaxed)))
gc_resolve_pending_ephemerons(ret, heap);
return ret;
}
static int
mutators_are_stopping(struct gc_heap *heap) {
return atomic_load_explicit(&heap->collecting, memory_order_relaxed);
}
static inline void
heap_lock(struct gc_heap *heap) {
pthread_mutex_lock(&heap->lock);
}
static inline void
heap_unlock(struct gc_heap *heap) {
pthread_mutex_unlock(&heap->lock);
}
// with heap lock
static inline int
all_mutators_stopped(struct gc_heap *heap) {
return heap->mutator_count ==
heap->paused_mutator_count + heap->inactive_mutator_count;
}
static void
add_mutator(struct gc_heap *heap, struct gc_mutator *mut) {
mut->heap = heap;
mut->event_listener_data =
heap->event_listener.mutator_added(heap->event_listener_data);
heap_lock(heap);
// We have no roots. If there is a GC currently in progress, we have
// nothing to add. Just wait until it's done.
while (mutators_are_stopping(heap))
pthread_cond_wait(&heap->mutator_cond, &heap->lock);
if (heap->mutator_count == 1)
heap->multithreaded = 1;
heap->mutator_count++;
heap_unlock(heap);
}
static void
remove_mutator(struct gc_heap *heap, struct gc_mutator *mut) {
nofl_allocator_finish(&mut->allocator, heap_nofl_space(heap));
MUTATOR_EVENT(mut, mutator_removed);
mut->heap = NULL;
heap_lock(heap);
heap->mutator_count--;
// We have no roots. If there is a GC stop currently in progress,
// maybe tell the controller it can continue.
if (mutators_are_stopping(heap) && all_mutators_stopped(heap))
pthread_cond_signal(&heap->collector_cond);
heap_unlock(heap);
}
static void
request_mutators_to_stop(struct gc_heap *heap) {
GC_ASSERT(!mutators_are_stopping(heap));
atomic_store_explicit(&heap->collecting, 1, memory_order_relaxed);
}
static void
allow_mutators_to_continue(struct gc_heap *heap) {
GC_ASSERT(mutators_are_stopping(heap));
GC_ASSERT(all_mutators_stopped(heap));
heap->paused_mutator_count = 0;
atomic_store_explicit(&heap->collecting, 0, memory_order_relaxed);
GC_ASSERT(!mutators_are_stopping(heap));
pthread_cond_broadcast(&heap->mutator_cond);
}
static void
heap_reset_large_object_pages(struct gc_heap *heap, size_t npages) {
size_t previous = heap->large_object_pages;
heap->large_object_pages = npages;
GC_ASSERT(npages <= previous);
size_t bytes = (previous - npages) <<
heap_large_object_space(heap)->page_size_log2;
nofl_space_reacquire_memory(heap_nofl_space(heap), bytes);
}
static void
mutator_mark_buf_grow(struct gc_mutator_mark_buf *buf) {
size_t old_capacity = buf->capacity;
size_t old_bytes = old_capacity * sizeof(struct gc_ref);
size_t new_bytes = old_bytes ? old_bytes * 2 : getpagesize();
size_t new_capacity = new_bytes / sizeof(struct gc_ref);
void *mem = mmap(NULL, new_bytes, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (mem == MAP_FAILED) {
perror("allocating mutator mark buffer failed");
GC_CRASH();
}
if (old_bytes) {
memcpy(mem, buf->objects, old_bytes);
munmap(buf->objects, old_bytes);
}
buf->objects = mem;
buf->capacity = new_capacity;
}
static void
mutator_mark_buf_push(struct gc_mutator_mark_buf *buf, struct gc_ref ref) {
if (GC_UNLIKELY(buf->size == buf->capacity))
mutator_mark_buf_grow(buf);
buf->objects[buf->size++] = ref;
}
static void
mutator_mark_buf_release(struct gc_mutator_mark_buf *buf) {
size_t bytes = buf->size * sizeof(struct gc_ref);
if (bytes >= getpagesize())
madvise(buf->objects, align_up(bytes, getpagesize()), MADV_DONTNEED);
buf->size = 0;
}
static void
mutator_mark_buf_destroy(struct gc_mutator_mark_buf *buf) {
size_t bytes = buf->capacity * sizeof(struct gc_ref);
if (bytes)
munmap(buf->objects, bytes);
}
static void
enqueue_mutator_for_tracing(struct gc_mutator *mut) {
struct gc_heap *heap = mutator_heap(mut);
GC_ASSERT(mut->next == NULL);
struct gc_mutator *next =
atomic_load_explicit(&heap->mutator_trace_list, memory_order_acquire);
do {
mut->next = next;
} while (!atomic_compare_exchange_weak(&heap->mutator_trace_list,
&next, mut));
}
static int
heap_should_mark_while_stopping(struct gc_heap *heap) {
return atomic_load_explicit(&heap->mark_while_stopping, memory_order_acquire);
}
static int
mutator_should_mark_while_stopping(struct gc_mutator *mut) {
return heap_should_mark_while_stopping(mutator_heap(mut));
}
void
gc_mutator_set_roots(struct gc_mutator *mut, struct gc_mutator_roots *roots) {
mut->roots = roots;
}
void
gc_heap_set_roots(struct gc_heap *heap, struct gc_heap_roots *roots) {
heap->roots = roots;
}
void
gc_heap_set_extern_space(struct gc_heap *heap, struct gc_extern_space *space) {
heap->extern_space = space;
}
static inline void tracer_visit(struct gc_edge edge, struct gc_heap *heap,
void *trace_data) GC_ALWAYS_INLINE;
static inline void
tracer_visit(struct gc_edge edge, struct gc_heap *heap, void *trace_data) {
struct gc_trace_worker *worker = trace_data;
if (trace_edge(heap, edge, worker))
gc_trace_worker_enqueue(worker, gc_edge_ref(edge));
}
static void
trace_and_enqueue_locally(struct gc_edge edge, struct gc_heap *heap,
void *data) {
struct gc_mutator *mut = data;
if (trace_edge(heap, edge, NULL))
mutator_mark_buf_push(&mut->mark_buf, gc_edge_ref(edge));
}
static inline void
do_trace_conservative_ref_and_enqueue_locally(struct gc_conservative_ref ref,
struct gc_heap *heap,
void *data,
int possibly_interior) {
struct gc_mutator *mut = data;
struct gc_ref object = trace_conservative_ref(heap, ref, possibly_interior);
if (gc_ref_is_heap_object(object))
mutator_mark_buf_push(&mut->mark_buf, object);
}
static void
trace_possibly_interior_conservative_ref_and_enqueue_locally(struct gc_conservative_ref ref,
struct gc_heap *heap,
void *data) {
return do_trace_conservative_ref_and_enqueue_locally(ref, heap, data, 1);
}
static void
trace_conservative_ref_and_enqueue_locally(struct gc_conservative_ref ref,
struct gc_heap *heap,
void *data) {
return do_trace_conservative_ref_and_enqueue_locally(ref, heap, data, 0);
}
static void
trace_and_enqueue_globally(struct gc_edge edge, struct gc_heap *heap,
void *unused) {
if (trace_edge(heap, edge, NULL))
gc_tracer_enqueue_root(&heap->tracer, gc_edge_ref(edge));
}
static inline void
do_trace_conservative_ref_and_enqueue_globally(struct gc_conservative_ref ref,
struct gc_heap *heap,
void *data,
int possibly_interior) {
struct gc_ref object = trace_conservative_ref(heap, ref, possibly_interior);
if (gc_ref_is_heap_object(object))
gc_tracer_enqueue_root(&heap->tracer, object);
}
static void
trace_possibly_interior_conservative_ref_and_enqueue_globally(struct gc_conservative_ref ref,
struct gc_heap *heap,
void *data) {
return do_trace_conservative_ref_and_enqueue_globally(ref, heap, data, 1);
}
static void
trace_conservative_ref_and_enqueue_globally(struct gc_conservative_ref ref,
struct gc_heap *heap,
void *data) {
return do_trace_conservative_ref_and_enqueue_globally(ref, heap, data, 0);
}
static inline struct gc_conservative_ref
load_conservative_ref(uintptr_t addr) {
GC_ASSERT((addr & (sizeof(uintptr_t) - 1)) == 0);
uintptr_t val;
memcpy(&val, (char*)addr, sizeof(uintptr_t));
return gc_conservative_ref(val);
}
static inline void
trace_conservative_edges(uintptr_t low,
uintptr_t high,
void (*trace)(struct gc_conservative_ref,
struct gc_heap *, void *),
struct gc_heap *heap,
void *data) {
GC_ASSERT(low == align_down(low, sizeof(uintptr_t)));
GC_ASSERT(high == align_down(high, sizeof(uintptr_t)));
for (uintptr_t addr = low; addr < high; addr += sizeof(uintptr_t))
trace(load_conservative_ref(addr), heap, data);
}
static inline void
tracer_trace_conservative_ref(struct gc_conservative_ref ref,
struct gc_heap *heap, void *data) {
struct gc_trace_worker *worker = data;
int possibly_interior = 0;
struct gc_ref resolved = trace_conservative_ref(heap, ref, possibly_interior);
if (gc_ref_is_heap_object(resolved))
gc_trace_worker_enqueue(worker, resolved);
}
static inline void
trace_one_conservatively(struct gc_ref ref, struct gc_heap *heap,
struct gc_trace_worker *worker) {
size_t bytes;
if (GC_LIKELY(nofl_space_contains(heap_nofl_space(heap), ref))) {
// Generally speaking we trace conservatively and don't allow much
// in the way of incremental precise marking on a
// conservative-by-default heap. But, we make an exception for
// ephemerons.
if (GC_UNLIKELY(nofl_is_ephemeron(ref))) {
gc_trace_ephemeron(gc_ref_heap_object(ref), tracer_visit, heap,
worker);
return;
}
bytes = nofl_space_object_size(heap_nofl_space(heap), ref);
} else {
bytes = large_object_space_object_size(heap_large_object_space(heap), ref);
}
trace_conservative_edges(gc_ref_value(ref),
gc_ref_value(ref) + bytes,
tracer_trace_conservative_ref, heap,
worker);
}
static inline void
trace_one(struct gc_ref ref, struct gc_heap *heap,
struct gc_trace_worker *worker) {
if (gc_has_conservative_intraheap_edges())
trace_one_conservatively(ref, heap, worker);
else
gc_trace_object(ref, tracer_visit, heap, worker, NULL);
}
static inline void
trace_root(struct gc_root root, struct gc_heap *heap,
struct gc_trace_worker *worker) {
switch (root.kind) {
case GC_ROOT_KIND_HEAP:
gc_trace_heap_roots(root.heap->roots, tracer_visit, heap, worker);
break;
case GC_ROOT_KIND_MUTATOR:
gc_trace_mutator_roots(root.mutator->roots, tracer_visit, heap, worker);
break;
case GC_ROOT_KIND_RESOLVED_EPHEMERONS:
gc_trace_resolved_ephemerons(root.resolved_ephemerons, tracer_visit,
heap, worker);
break;
case GC_ROOT_KIND_EDGE:
tracer_visit(root.edge, heap, worker);
break;
default:
GC_CRASH();
}
}
static void
visit_root_edge(struct gc_edge edge, struct gc_heap *heap, void *unused) {
gc_tracer_add_root(&heap->tracer, gc_root_edge(edge));
}
static void
mark_and_globally_enqueue_mutator_conservative_roots(uintptr_t low,
uintptr_t high,
struct gc_heap *heap,
void *data) {
trace_conservative_edges(low, high,
gc_mutator_conservative_roots_may_be_interior()
? trace_possibly_interior_conservative_ref_and_enqueue_globally
: trace_conservative_ref_and_enqueue_globally,
heap, data);
}
static void
mark_and_globally_enqueue_heap_conservative_roots(uintptr_t low,
uintptr_t high,
struct gc_heap *heap,
void *data) {
trace_conservative_edges(low, high,
trace_conservative_ref_and_enqueue_globally,
heap, data);
}
static void
mark_and_locally_enqueue_mutator_conservative_roots(uintptr_t low,
uintptr_t high,
struct gc_heap *heap,
void *data) {
trace_conservative_edges(low, high,
gc_mutator_conservative_roots_may_be_interior()
? trace_possibly_interior_conservative_ref_and_enqueue_locally
: trace_conservative_ref_and_enqueue_locally,
heap, data);
}
static inline void
trace_mutator_conservative_roots(struct gc_mutator *mut,
void (*trace_range)(uintptr_t low,
uintptr_t high,
struct gc_heap *heap,
void *data),
struct gc_heap *heap,
void *data) {
if (gc_has_mutator_conservative_roots())
gc_stack_visit(&mut->stack, trace_range, heap, data);
}
// Mark the roots of a mutator that is stopping for GC. We can't
// enqueue them directly, so we send them to the controller in a buffer.
static void
trace_stopping_mutator_roots(struct gc_mutator *mut) {
GC_ASSERT(mutator_should_mark_while_stopping(mut));
struct gc_heap *heap = mutator_heap(mut);
trace_mutator_conservative_roots(mut,
mark_and_locally_enqueue_mutator_conservative_roots,
heap, mut);
gc_trace_mutator_roots(mut->roots, trace_and_enqueue_locally, heap, mut);
}
static void
trace_mutator_conservative_roots_with_lock(struct gc_mutator *mut) {
trace_mutator_conservative_roots(mut,
mark_and_globally_enqueue_mutator_conservative_roots,
mutator_heap(mut),
NULL);
}
static void
trace_mutator_roots_with_lock(struct gc_mutator *mut) {
trace_mutator_conservative_roots_with_lock(mut);
gc_trace_mutator_roots(mut->roots, trace_and_enqueue_globally,
mutator_heap(mut), NULL);
}
static void
trace_mutator_roots_with_lock_before_stop(struct gc_mutator *mut) {
gc_stack_capture_hot(&mut->stack);
if (mutator_should_mark_while_stopping(mut))
trace_mutator_roots_with_lock(mut);
else
enqueue_mutator_for_tracing(mut);
}
static void
release_stopping_mutator_roots(struct gc_mutator *mut) {
mutator_mark_buf_release(&mut->mark_buf);
}
static void
wait_for_mutators_to_stop(struct gc_heap *heap) {
heap->paused_mutator_count++;
while (!all_mutators_stopped(heap))
pthread_cond_wait(&heap->collector_cond, &heap->lock);
}
static void
trace_mutator_conservative_roots_after_stop(struct gc_heap *heap) {
int active_mutators_already_marked = heap_should_mark_while_stopping(heap);
if (!active_mutators_already_marked)
for (struct gc_mutator *mut = atomic_load(&heap->mutator_trace_list);
mut;
mut = mut->next)
trace_mutator_conservative_roots_with_lock(mut);
for (struct gc_mutator *mut = heap->inactive_mutators;
mut;
mut = mut->next)
trace_mutator_conservative_roots_with_lock(mut);
}
static void
trace_mutator_roots_after_stop(struct gc_heap *heap) {
struct gc_mutator *mut = atomic_load(&heap->mutator_trace_list);
int active_mutators_already_marked = heap_should_mark_while_stopping(heap);
while (mut) {
// Also collect any already-marked grey objects and put them on the
// global trace queue.
if (active_mutators_already_marked)
gc_tracer_enqueue_roots(&heap->tracer, mut->mark_buf.objects,
mut->mark_buf.size);
else
trace_mutator_roots_with_lock(mut);
// Also unlink mutator_trace_list chain.
struct gc_mutator *next = mut->next;
mut->next = NULL;
mut = next;
}
atomic_store(&heap->mutator_trace_list, NULL);
for (struct gc_mutator *mut = heap->inactive_mutators; mut; mut = mut->next)
trace_mutator_roots_with_lock(mut);
}
static void
trace_global_conservative_roots(struct gc_heap *heap) {
if (gc_has_global_conservative_roots())
gc_platform_visit_global_conservative_roots
(mark_and_globally_enqueue_heap_conservative_roots, heap, NULL);
}
static void
enqueue_generational_root(struct gc_ref ref, struct gc_heap *heap) {
gc_tracer_enqueue_root(&heap->tracer, ref);
}
void
gc_write_barrier_extern(struct gc_ref obj, size_t obj_size,
struct gc_edge edge, struct gc_ref new_val) {
GC_ASSERT(obj_size > gc_allocator_large_threshold());
gc_object_set_remembered(obj);
}
static void
trace_generational_roots(struct gc_heap *heap) {
// TODO: Add lospace nursery.
if (atomic_load(&heap->gc_kind) == GC_COLLECTION_MINOR) {
nofl_space_trace_remembered_set(heap_nofl_space(heap),
enqueue_generational_root,
heap);
large_object_space_trace_remembered_set(heap_large_object_space(heap),
enqueue_generational_root,
heap);
} else {
nofl_space_clear_remembered_set(heap_nofl_space(heap));
large_object_space_clear_remembered_set(heap_large_object_space(heap));
}
}
static enum gc_collection_kind
pause_mutator_for_collection(struct gc_heap *heap,
struct gc_mutator *mut) GC_NEVER_INLINE;
static enum gc_collection_kind
pause_mutator_for_collection(struct gc_heap *heap, struct gc_mutator *mut) {
GC_ASSERT(mutators_are_stopping(heap));
GC_ASSERT(!all_mutators_stopped(heap));
MUTATOR_EVENT(mut, mutator_stopped);
heap->paused_mutator_count++;
enum gc_collection_kind collection_kind = heap->gc_kind;
if (all_mutators_stopped(heap))
pthread_cond_signal(&heap->collector_cond);
// Go to sleep and wake up when the collector is done. Note,
// however, that it may be that some other mutator manages to
// trigger collection before we wake up. In that case we need to
// mark roots, not just sleep again. To detect a wakeup on this
// collection vs a future collection, we use the global GC count.
// This is safe because the count is protected by the heap lock,
// which we hold.
long epoch = heap->count;
do
pthread_cond_wait(&heap->mutator_cond, &heap->lock);
while (mutators_are_stopping(heap) && heap->count == epoch);
MUTATOR_EVENT(mut, mutator_restarted);
return collection_kind;
}
static enum gc_collection_kind
pause_mutator_for_collection_with_lock(struct gc_mutator *mut) GC_NEVER_INLINE;
static enum gc_collection_kind
pause_mutator_for_collection_with_lock(struct gc_mutator *mut) {
struct gc_heap *heap = mutator_heap(mut);
GC_ASSERT(mutators_are_stopping(heap));
MUTATOR_EVENT(mut, mutator_stopping);
nofl_allocator_finish(&mut->allocator, heap_nofl_space(heap));
gc_stack_capture_hot(&mut->stack);
if (mutator_should_mark_while_stopping(mut))
// No need to collect results in mark buf; we can enqueue roots directly.
trace_mutator_roots_with_lock(mut);
else
enqueue_mutator_for_tracing(mut);
return pause_mutator_for_collection(heap, mut);
}
static void pause_mutator_for_collection_without_lock(struct gc_mutator *mut) GC_NEVER_INLINE;
static void
pause_mutator_for_collection_without_lock(struct gc_mutator *mut) {
struct gc_heap *heap = mutator_heap(mut);
GC_ASSERT(mutators_are_stopping(heap));
MUTATOR_EVENT(mut, mutator_stopping);
nofl_finish_sweeping(&mut->allocator, heap_nofl_space(heap));
gc_stack_capture_hot(&mut->stack);
if (mutator_should_mark_while_stopping(mut))
trace_stopping_mutator_roots(mut);
enqueue_mutator_for_tracing(mut);
heap_lock(heap);
pause_mutator_for_collection(heap, mut);
heap_unlock(heap);
release_stopping_mutator_roots(mut);
}
static inline void
maybe_pause_mutator_for_collection(struct gc_mutator *mut) {
while (mutators_are_stopping(mutator_heap(mut)))
pause_mutator_for_collection_without_lock(mut);
}
static int maybe_grow_heap(struct gc_heap *heap) {
return 0;
}
static double
heap_last_gc_yield(struct gc_heap *heap) {
struct nofl_space *nofl_space = heap_nofl_space(heap);
size_t nofl_yield = nofl_space_yield(nofl_space);
size_t evacuation_reserve = nofl_space_evacuation_reserve_bytes(nofl_space);
// FIXME: Size nofl evacuation reserve based on size of nofl space,
// not heap size.
size_t minimum_evacuation_reserve =
heap->size * nofl_space->evacuation_minimum_reserve;
if (evacuation_reserve > minimum_evacuation_reserve)
nofl_yield += evacuation_reserve - minimum_evacuation_reserve;
struct large_object_space *lospace = heap_large_object_space(heap);
size_t lospace_yield = lospace->pages_freed_by_last_collection;
lospace_yield <<= lospace->page_size_log2;
double yield = nofl_yield + lospace_yield;
return yield / heap->size;
}
static double
heap_fragmentation(struct gc_heap *heap) {
struct nofl_space *nofl_space = heap_nofl_space(heap);
size_t fragmentation = nofl_space_fragmentation(nofl_space);
return ((double)fragmentation) / heap->size;
}
static void
detect_out_of_memory(struct gc_heap *heap) {
struct nofl_space *nofl_space = heap_nofl_space(heap);
struct large_object_space *lospace = heap_large_object_space(heap);
if (heap->count == 0)
return;
double last_yield = heap_last_gc_yield(heap);
double fragmentation = heap_fragmentation(heap);
double yield_epsilon = NOFL_BLOCK_SIZE * 1.0 / heap->size;
double fragmentation_epsilon = LARGE_OBJECT_THRESHOLD * 1.0 / NOFL_BLOCK_SIZE;
if (last_yield - fragmentation > yield_epsilon)
return;
if (fragmentation > fragmentation_epsilon
&& atomic_load(&nofl_space->evacuation_targets.count))
return;
// No yield in last gc and we do not expect defragmentation to
// be able to yield more space: out of memory.
fprintf(stderr, "ran out of space, heap size %zu (%zu slabs)\n",
heap->size, nofl_space->nslabs);
GC_CRASH();
}
static double
clamp_major_gc_yield_threshold(struct gc_heap *heap, double threshold) {
if (threshold < heap->minimum_major_gc_yield_threshold)
threshold = heap->minimum_major_gc_yield_threshold;
double one_block = NOFL_BLOCK_SIZE * 1.0 / heap->size;
if (threshold < one_block)
threshold = one_block;
return threshold;
}
static enum gc_collection_kind
determine_collection_kind(struct gc_heap *heap,
enum gc_collection_kind requested) {
struct nofl_space *nofl_space = heap_nofl_space(heap);
enum gc_collection_kind previous_gc_kind = atomic_load(&heap->gc_kind);
enum gc_collection_kind gc_kind;
int mark_while_stopping = 1;
double yield = heap_last_gc_yield(heap);
double fragmentation = heap_fragmentation(heap);
ssize_t pending = atomic_load_explicit(&nofl_space->pending_unavailable_bytes,
memory_order_acquire);
if (heap->count == 0) {
DEBUG("first collection is always major\n");
gc_kind = GC_COLLECTION_MAJOR;
} else if (requested != GC_COLLECTION_ANY) {
DEBUG("user specifically requested collection kind %d\n", (int)requested);
gc_kind = requested;
} else if (pending > 0) {
DEBUG("evacuating due to need to reclaim %zd bytes\n", pending);
// During the last cycle, a large allocation could not find enough
// free blocks, and we decided not to expand the heap. Let's do an
// evacuating major collection to maximize the free block yield.
gc_kind = GC_COLLECTION_COMPACTING;
// Generally speaking, we allow mutators to mark their own stacks
// before pausing. This is a limited form of concurrent marking, as
// other mutators might be running, not having received the signal
// to stop yet. In a compacting collection, this results in pinned
// roots, because we haven't started evacuating yet and instead mark
// in place. However as in this case we are trying to reclaim free
// blocks, try to avoid any pinning caused by the ragged-stop
// marking. Of course if the mutator has conservative roots we will
// have pinning anyway and might as well allow ragged stops.
mark_while_stopping = gc_has_conservative_roots();
} else if (previous_gc_kind == GC_COLLECTION_COMPACTING
&& fragmentation >= heap->fragmentation_low_threshold) {
DEBUG("continuing evacuation due to fragmentation %.2f%% > %.2f%%\n",
fragmentation * 100.,
heap->fragmentation_low_threshold * 100.);
// For some reason, we already decided to compact in the past,
// and fragmentation hasn't yet fallen below a low-water-mark.
// Keep going.
gc_kind = GC_COLLECTION_COMPACTING;
} else if (fragmentation > heap->fragmentation_high_threshold) {
// Switch to evacuation mode if the heap is too fragmented.
DEBUG("triggering compaction due to fragmentation %.2f%% > %.2f%%\n",
fragmentation * 100.,
heap->fragmentation_high_threshold * 100.);
gc_kind = GC_COLLECTION_COMPACTING;
} else if (previous_gc_kind == GC_COLLECTION_COMPACTING) {
// We were evacuating, but we're good now. Go back to minor
// collections.
DEBUG("returning to in-place collection, fragmentation %.2f%% < %.2f%%\n",
fragmentation * 100.,
heap->fragmentation_low_threshold * 100.);
gc_kind = GC_GENERATIONAL ? GC_COLLECTION_MINOR : GC_COLLECTION_MAJOR;
} else if (!GC_GENERATIONAL) {
DEBUG("keeping on with major in-place GC\n");
GC_ASSERT(previous_gc_kind == GC_COLLECTION_MAJOR);
gc_kind = GC_COLLECTION_MAJOR;
} else if (previous_gc_kind != GC_COLLECTION_MINOR) {
DEBUG("returning to minor collection\n");
// Go back to minor collections.
gc_kind = GC_COLLECTION_MINOR;
} else if (yield < heap->major_gc_yield_threshold) {
DEBUG("collection yield too low, triggering major collection\n");
// Nursery is getting tight; trigger a major GC.
gc_kind = GC_COLLECTION_MAJOR;
} else {
DEBUG("keeping on with minor GC\n");
// Nursery has adequate space; keep trucking with minor GCs.
GC_ASSERT(previous_gc_kind == GC_COLLECTION_MINOR);
gc_kind = GC_COLLECTION_MINOR;
}
if (gc_has_conservative_intraheap_edges() &&
gc_kind == GC_COLLECTION_COMPACTING) {
DEBUG("welp. conservative heap scanning, no evacuation for you\n");
gc_kind = GC_COLLECTION_MAJOR;
mark_while_stopping = 1;
}
// If this is the first in a series of minor collections, reset the
// threshold at which we should do a major GC.
if (gc_kind == GC_COLLECTION_MINOR &&
previous_gc_kind != GC_COLLECTION_MINOR) {
double yield = heap_last_gc_yield(heap);
double threshold = yield * heap->minor_gc_yield_threshold;
double clamped = clamp_major_gc_yield_threshold(heap, threshold);
heap->major_gc_yield_threshold = clamped;
DEBUG("first minor collection at yield %.2f%%, threshold %.2f%%\n",
yield * 100., clamped * 100.);
}
atomic_store_explicit(&heap->mark_while_stopping, mark_while_stopping,
memory_order_release);
atomic_store(&heap->gc_kind, gc_kind);
return gc_kind;
}
static void
trace_conservative_roots_after_stop(struct gc_heap *heap) {
GC_ASSERT(!heap_nofl_space(heap)->evacuating);
if (gc_has_mutator_conservative_roots())
trace_mutator_conservative_roots_after_stop(heap);
if (gc_has_global_conservative_roots())
trace_global_conservative_roots(heap);
}
static void
trace_pinned_roots_after_stop(struct gc_heap *heap) {
GC_ASSERT(!heap_nofl_space(heap)->evacuating);
trace_conservative_roots_after_stop(heap);
}
static void
trace_roots_after_stop(struct gc_heap *heap) {
trace_mutator_roots_after_stop(heap);
gc_trace_heap_roots(heap->roots, trace_and_enqueue_globally, heap, NULL);
gc_visit_finalizer_roots(heap->finalizer_state, visit_root_edge, heap, NULL);
trace_generational_roots(heap);
}
static void
resolve_ephemerons_lazily(struct gc_heap *heap) {
atomic_store_explicit(&heap->check_pending_ephemerons, 0,
memory_order_release);
}
static void
resolve_ephemerons_eagerly(struct gc_heap *heap) {
atomic_store_explicit(&heap->check_pending_ephemerons, 1,
memory_order_release);
gc_scan_pending_ephemerons(heap->pending_ephemerons, heap, 0, 1);
}
static int
enqueue_resolved_ephemerons(struct gc_heap *heap) {
struct gc_ephemeron *resolved = gc_pop_resolved_ephemerons(heap);
if (!resolved)
return 0;
gc_trace_resolved_ephemerons(resolved, trace_and_enqueue_globally, heap, NULL);
return 1;
}
static void
trace_resolved_ephemerons(struct gc_heap *heap) {
for (struct gc_ephemeron *resolved = gc_pop_resolved_ephemerons(heap);
resolved;
resolved = gc_pop_resolved_ephemerons(heap)) {
gc_tracer_add_root(&heap->tracer, gc_root_resolved_ephemerons(resolved));
gc_tracer_trace(&heap->tracer);
}
}
static void
resolve_finalizers(struct gc_heap *heap) {
for (size_t priority = 0;
priority < gc_finalizer_priority_count();
priority++) {
if (gc_resolve_finalizers(heap->finalizer_state, priority,
visit_root_edge, heap, NULL)) {
gc_tracer_trace(&heap->tracer);
trace_resolved_ephemerons(heap);
}
}
gc_notify_finalizers(heap->finalizer_state, heap);
}
static void
sweep_ephemerons(struct gc_heap *heap) {
return gc_sweep_pending_ephemerons(heap->pending_ephemerons, 0, 1);
}
static void
collect(struct gc_mutator *mut, enum gc_collection_kind requested_kind) {
struct gc_heap *heap = mutator_heap(mut);
struct nofl_space *nofl_space = heap_nofl_space(heap);
struct large_object_space *lospace = heap_large_object_space(heap);
struct gc_extern_space *exspace = heap_extern_space(heap);
if (maybe_grow_heap(heap)) {
DEBUG("grew heap instead of collecting #%ld:\n", heap->count);
return;
}
MUTATOR_EVENT(mut, mutator_cause_gc);
DEBUG("start collect #%ld:\n", heap->count);
enum gc_collection_kind gc_kind =
determine_collection_kind(heap, requested_kind);
int is_minor = gc_kind == GC_COLLECTION_MINOR;
HEAP_EVENT(heap, prepare_gc, gc_kind);
nofl_space_prepare_gc(nofl_space, gc_kind);
large_object_space_start_gc(lospace, is_minor);
gc_extern_space_start_gc(exspace, is_minor);
resolve_ephemerons_lazily(heap);
gc_tracer_prepare(&heap->tracer);
HEAP_EVENT(heap, requesting_stop);
request_mutators_to_stop(heap);
trace_mutator_roots_with_lock_before_stop(mut);
nofl_finish_sweeping(&mut->allocator, nofl_space);
HEAP_EVENT(heap, waiting_for_stop);
wait_for_mutators_to_stop(heap);
HEAP_EVENT(heap, mutators_stopped);
double yield = heap_last_gc_yield(heap);
double fragmentation = heap_fragmentation(heap);
HEAP_EVENT(heap, live_data_size, heap->size * (1 - yield));
DEBUG("last gc yield: %f; fragmentation: %f\n", yield, fragmentation);
detect_out_of_memory(heap);
trace_pinned_roots_after_stop(heap);
nofl_space_start_gc(nofl_space, gc_kind);
trace_roots_after_stop(heap);
HEAP_EVENT(heap, roots_traced);
gc_tracer_trace(&heap->tracer);
HEAP_EVENT(heap, heap_traced);
resolve_ephemerons_eagerly(heap);
trace_resolved_ephemerons(heap);
HEAP_EVENT(heap, ephemerons_traced);
resolve_finalizers(heap);
HEAP_EVENT(heap, finalizers_traced);
sweep_ephemerons(heap);
gc_tracer_release(&heap->tracer);
nofl_space_finish_gc(nofl_space, gc_kind);
large_object_space_finish_gc(lospace, is_minor);
gc_extern_space_finish_gc(exspace, is_minor);
heap->count++;
heap->last_collection_was_minor = is_minor;
heap_reset_large_object_pages(heap, lospace->live_pages_at_last_collection);
HEAP_EVENT(heap, restarting_mutators);
allow_mutators_to_continue(heap);
}
static void
trigger_collection(struct gc_mutator *mut,
enum gc_collection_kind requested_kind) {
struct gc_heap *heap = mutator_heap(mut);
int prev_kind = -1;
heap_lock(heap);
while (mutators_are_stopping(heap))
prev_kind = pause_mutator_for_collection_with_lock(mut);
if (prev_kind < (int)requested_kind)
collect(mut, requested_kind);
heap_unlock(heap);
}
void
gc_collect(struct gc_mutator *mut, enum gc_collection_kind kind) {
trigger_collection(mut, kind);
}
static void*
allocate_large(struct gc_mutator *mut, size_t size) {
struct gc_heap *heap = mutator_heap(mut);
struct nofl_space *nofl_space = heap_nofl_space(heap);
struct large_object_space *lospace = heap_large_object_space(heap);
size_t npages = large_object_space_npages(lospace, size);
nofl_space_request_release_memory(nofl_space,
npages << lospace->page_size_log2);
while (!nofl_space_sweep_until_memory_released(nofl_space,
&mut->allocator))
trigger_collection(mut, GC_COLLECTION_COMPACTING);
atomic_fetch_add(&heap->large_object_pages, npages);
void *ret = large_object_space_alloc(lospace, npages);
if (!ret)
ret = large_object_space_obtain_and_alloc(lospace, npages);
if (!ret) {
perror("weird: we have the space but mmap didn't work");
GC_CRASH();
}
return ret;
}
static void
collect_for_small_allocation(void *mut) {
trigger_collection(mut, GC_COLLECTION_ANY);
}
void*
gc_allocate_slow(struct gc_mutator *mut, size_t size) {
GC_ASSERT(size > 0); // allocating 0 bytes would be silly
if (size > gc_allocator_large_threshold())
return allocate_large(mut, size);
return gc_ref_heap_object(nofl_allocate(&mut->allocator,
heap_nofl_space(mutator_heap(mut)),
size, collect_for_small_allocation,
mut));
}
void*
gc_allocate_pointerless(struct gc_mutator *mut, size_t size) {
return gc_allocate(mut, size);
}
struct gc_ephemeron*
gc_allocate_ephemeron(struct gc_mutator *mut) {
struct gc_ref ret =
gc_ref_from_heap_object(gc_allocate(mut, gc_ephemeron_size()));
nofl_space_set_ephemeron_flag(ret);
return gc_ref_heap_object(ret);
}
void
gc_ephemeron_init(struct gc_mutator *mut, struct gc_ephemeron *ephemeron,
struct gc_ref key, struct gc_ref value) {
gc_ephemeron_init_internal(mutator_heap(mut), ephemeron, key, value);
// No write barrier: we require that the ephemeron be newer than the
// key or the value.
}
struct gc_pending_ephemerons *
gc_heap_pending_ephemerons(struct gc_heap *heap) {
return heap->pending_ephemerons;
}
unsigned
gc_heap_ephemeron_trace_epoch(struct gc_heap *heap) {
return heap->count;
}
struct gc_finalizer*
gc_allocate_finalizer(struct gc_mutator *mut) {
return gc_allocate(mut, gc_finalizer_size());
}
void
gc_finalizer_attach(struct gc_mutator *mut, struct gc_finalizer *finalizer,
unsigned priority, struct gc_ref object,
struct gc_ref closure) {
gc_finalizer_init_internal(finalizer, object, closure);
gc_finalizer_attach_internal(mutator_heap(mut)->finalizer_state,
finalizer, priority);
// No write barrier.
}
struct gc_finalizer*
gc_pop_finalizable(struct gc_mutator *mut) {
return gc_finalizer_state_pop(mutator_heap(mut)->finalizer_state);
}
void
gc_set_finalizer_callback(struct gc_heap *heap,
gc_finalizer_callback callback) {
gc_finalizer_state_set_callback(heap->finalizer_state, callback);
}
static int heap_prepare_pending_ephemerons(struct gc_heap *heap) {
struct gc_pending_ephemerons *cur = heap->pending_ephemerons;
size_t target = heap->size * heap->pending_ephemerons_size_factor;
double slop = heap->pending_ephemerons_size_slop;
heap->pending_ephemerons = gc_prepare_pending_ephemerons(cur, target, slop);
return !!heap->pending_ephemerons;
}
struct gc_options {
struct gc_common_options common;
};
int gc_option_from_string(const char *str) {
return gc_common_option_from_string(str);
}
struct gc_options* gc_allocate_options(void) {
struct gc_options *ret = malloc(sizeof(struct gc_options));
gc_init_common_options(&ret->common);
return ret;
}
int gc_options_set_int(struct gc_options *options, int option, int value) {
return gc_common_options_set_int(&options->common, option, value);
}
int gc_options_set_size(struct gc_options *options, int option,
size_t value) {
return gc_common_options_set_size(&options->common, option, value);
}
int gc_options_set_double(struct gc_options *options, int option,
double value) {
return gc_common_options_set_double(&options->common, option, value);
}
int gc_options_parse_and_set(struct gc_options *options, int option,
const char *value) {
return gc_common_options_parse_and_set(&options->common, option, value);
}
static int heap_init(struct gc_heap *heap, const struct gc_options *options) {
// *heap is already initialized to 0.
pthread_mutex_init(&heap->lock, NULL);
pthread_cond_init(&heap->mutator_cond, NULL);
pthread_cond_init(&heap->collector_cond, NULL);
heap->size = options->common.heap_size;
if (!gc_tracer_init(&heap->tracer, heap, options->common.parallelism))
GC_CRASH();
heap->pending_ephemerons_size_factor = 0.005;
heap->pending_ephemerons_size_slop = 0.5;
heap->fragmentation_low_threshold = 0.05;
heap->fragmentation_high_threshold = 0.10;
heap->minor_gc_yield_threshold = 0.30;
heap->minimum_major_gc_yield_threshold = 0.05;
heap->major_gc_yield_threshold =
clamp_major_gc_yield_threshold(heap, heap->minor_gc_yield_threshold);
if (!heap_prepare_pending_ephemerons(heap))
GC_CRASH();
heap->finalizer_state = gc_make_finalizer_state();
if (!heap->finalizer_state)
GC_CRASH();
return 1;
}
int gc_init(const struct gc_options *options, struct gc_stack_addr *stack_base,
struct gc_heap **heap, struct gc_mutator **mut,
struct gc_event_listener event_listener,
void *event_listener_data) {
GC_ASSERT_EQ(gc_allocator_small_granule_size(), NOFL_GRANULE_SIZE);
GC_ASSERT_EQ(gc_allocator_large_threshold(), LARGE_OBJECT_THRESHOLD);
GC_ASSERT_EQ(gc_allocator_allocation_pointer_offset(),
offsetof(struct nofl_allocator, alloc));
GC_ASSERT_EQ(gc_allocator_allocation_limit_offset(),
offsetof(struct nofl_allocator, sweep));
GC_ASSERT_EQ(gc_allocator_alloc_table_alignment(), NOFL_SLAB_SIZE);
GC_ASSERT_EQ(gc_allocator_alloc_table_begin_pattern(), NOFL_METADATA_BYTE_YOUNG);
GC_ASSERT_EQ(gc_allocator_alloc_table_end_pattern(), NOFL_METADATA_BYTE_END);
if (GC_GENERATIONAL) {
GC_ASSERT_EQ(gc_write_barrier_card_table_alignment(), NOFL_SLAB_SIZE);
GC_ASSERT_EQ(gc_write_barrier_card_size(),
NOFL_BLOCK_SIZE / NOFL_REMSET_BYTES_PER_BLOCK);
}
if (options->common.heap_size_policy != GC_HEAP_SIZE_FIXED) {
fprintf(stderr, "fixed heap size is currently required\n");
return 0;
}
*heap = calloc(1, sizeof(struct gc_heap));
if (!*heap) GC_CRASH();
if (!heap_init(*heap, options))
GC_CRASH();
(*heap)->event_listener = event_listener;
(*heap)->event_listener_data = event_listener_data;
HEAP_EVENT(*heap, init, (*heap)->size);
struct nofl_space *space = heap_nofl_space(*heap);
if (!nofl_space_init(space, (*heap)->size,
options->common.parallelism != 1,
(*heap)->fragmentation_low_threshold)) {
free(*heap);
*heap = NULL;
return 0;
}
if (!large_object_space_init(heap_large_object_space(*heap), *heap))
GC_CRASH();
*mut = calloc(1, sizeof(struct gc_mutator));
if (!*mut) GC_CRASH();
gc_stack_init(&(*mut)->stack, stack_base);
add_mutator(*heap, *mut);
return 1;
}
struct gc_mutator* gc_init_for_thread(struct gc_stack_addr *stack_base,
struct gc_heap *heap) {
struct gc_mutator *ret = calloc(1, sizeof(struct gc_mutator));
if (!ret)
GC_CRASH();
gc_stack_init(&ret->stack, stack_base);
add_mutator(heap, ret);
return ret;
}
void gc_finish_for_thread(struct gc_mutator *mut) {
remove_mutator(mutator_heap(mut), mut);
mutator_mark_buf_destroy(&mut->mark_buf);
free(mut);
}
static void deactivate_mutator(struct gc_heap *heap, struct gc_mutator *mut) {
GC_ASSERT(mut->next == NULL);
nofl_allocator_finish(&mut->allocator, heap_nofl_space(heap));
heap_lock(heap);
mut->next = heap->inactive_mutators;
heap->inactive_mutators = mut;
heap->inactive_mutator_count++;
gc_stack_capture_hot(&mut->stack);
if (all_mutators_stopped(heap))
pthread_cond_signal(&heap->collector_cond);
heap_unlock(heap);
}
static void reactivate_mutator(struct gc_heap *heap, struct gc_mutator *mut) {
heap_lock(heap);
while (mutators_are_stopping(heap))
pthread_cond_wait(&heap->mutator_cond, &heap->lock);
struct gc_mutator **prev = &heap->inactive_mutators;
while (*prev != mut)
prev = &(*prev)->next;
*prev = mut->next;
mut->next = NULL;
heap->inactive_mutator_count--;
heap_unlock(heap);
}
void* gc_call_without_gc(struct gc_mutator *mut,
void* (*f)(void*),
void *data) {
struct gc_heap *heap = mutator_heap(mut);
deactivate_mutator(heap, mut);
void *ret = f(data);
reactivate_mutator(heap, mut);
return ret;
}