mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-04-30 03:40:34 +02:00
* libguile/Makefile.am: * libguile/init.c: * libguile/lang.c: * libguile/lang.h: Remove lang.c and lang.h. * libguile/pairs.h (SCM_NIL_P, SCM_NULL_OR_NIL_P): Moved here. * module/ice-9/deprecated.scm (%nil): %nil definition moved here. * libguile/alist.c: * libguile/async.c: * libguile/backtrace.c: * libguile/boolean.c: * libguile/dynl.c: * libguile/eval.c: * libguile/filesys.c: * libguile/fluids.c: * libguile/list.c: * libguile/load.c: * libguile/options.c: * libguile/posix.c: * libguile/print.c: * libguile/promises.c: * libguile/sort.c: * libguile/throw.c: * libguile/trees.c: * libguile/vectors.c: * libguile/vm.c: * libguile/weaks.c: * srfi/srfi-1.c: <libguile/lang.h> references removed.
2182 lines
66 KiB
C
2182 lines
66 KiB
C
/* srfi-1.c --- SRFI-1 procedures for Guile
|
|
*
|
|
* Copyright (C) 1995, 1996, 1997, 2000, 2001, 2002, 2003, 2005, 2006, 2008, 2009, 2010
|
|
* Free Software Foundation, Inc.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public License
|
|
* as published by the Free Software Foundation; either version 3 of
|
|
* the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
* 02110-1301 USA
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
# include <config.h>
|
|
#endif
|
|
|
|
#include <libguile.h>
|
|
|
|
#include "srfi-1.h"
|
|
|
|
/* The intent of this file is to gradually replace those Scheme
|
|
* procedures in srfi-1.scm which extends core primitive procedures,
|
|
* so that using srfi-1 won't have performance penalties.
|
|
*
|
|
* Please feel free to contribute any new replacements!
|
|
*/
|
|
|
|
static long
|
|
srfi1_ilength (SCM sx)
|
|
{
|
|
long i = 0;
|
|
SCM tortoise = sx;
|
|
SCM hare = sx;
|
|
|
|
do {
|
|
if (SCM_NULL_OR_NIL_P(hare)) return i;
|
|
if (!scm_is_pair (hare)) return -2;
|
|
hare = SCM_CDR(hare);
|
|
i++;
|
|
if (SCM_NULL_OR_NIL_P(hare)) return i;
|
|
if (!scm_is_pair (hare)) return -2;
|
|
hare = SCM_CDR(hare);
|
|
i++;
|
|
/* For every two steps the hare takes, the tortoise takes one. */
|
|
tortoise = SCM_CDR(tortoise);
|
|
}
|
|
while (! scm_is_eq (hare, tortoise));
|
|
|
|
/* If the tortoise ever catches the hare, then the list must contain
|
|
a cycle. */
|
|
return -1;
|
|
}
|
|
|
|
static SCM
|
|
equal_trampoline (SCM proc, SCM arg1, SCM arg2)
|
|
{
|
|
return scm_equal_p (arg1, arg2);
|
|
}
|
|
|
|
/* list_copy_part() copies the first COUNT cells of LST, puts the result at
|
|
*dst, and returns the SCM_CDRLOC of the last cell in that new list.
|
|
|
|
This function is designed to be careful about LST possibly having changed
|
|
in between the caller deciding what to copy, and the copy actually being
|
|
done here. The COUNT ensures we terminate if LST has become circular,
|
|
SCM_VALIDATE_CONS guards against a cdr in the list changed to some
|
|
non-pair object. */
|
|
|
|
#include <stdio.h>
|
|
static SCM *
|
|
list_copy_part (SCM lst, int count, SCM *dst)
|
|
#define FUNC_NAME "list_copy_part"
|
|
{
|
|
SCM c;
|
|
for ( ; count > 0; count--)
|
|
{
|
|
SCM_VALIDATE_CONS (SCM_ARGn, lst);
|
|
c = scm_cons (SCM_CAR (lst), SCM_EOL);
|
|
*dst = c;
|
|
dst = SCM_CDRLOC (c);
|
|
lst = SCM_CDR (lst);
|
|
}
|
|
return dst;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_alist_copy, "alist-copy", 1, 0, 0,
|
|
(SCM alist),
|
|
"Return a copy of @var{alist}, copying both the pairs comprising\n"
|
|
"the list and those making the associations.")
|
|
#define FUNC_NAME s_scm_srfi1_alist_copy
|
|
{
|
|
SCM ret, *p, elem, c;
|
|
|
|
/* ret is the list to return. p is where to append to it, initially &ret
|
|
then SCM_CDRLOC of the last pair. */
|
|
ret = SCM_EOL;
|
|
p = &ret;
|
|
|
|
for ( ; scm_is_pair (alist); alist = SCM_CDR (alist))
|
|
{
|
|
elem = SCM_CAR (alist);
|
|
|
|
/* each element of alist must be a pair */
|
|
SCM_ASSERT_TYPE (scm_is_pair (elem), alist, SCM_ARG1, FUNC_NAME,
|
|
"association list");
|
|
|
|
c = scm_cons (scm_cons (SCM_CAR (elem), SCM_CDR (elem)), SCM_EOL);
|
|
*p = c;
|
|
p = SCM_CDRLOC (c);
|
|
}
|
|
|
|
/* alist must be a proper list */
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (alist), alist, SCM_ARG1, FUNC_NAME,
|
|
"association list");
|
|
return ret;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_append_reverse, "append-reverse", 2, 0, 0,
|
|
(SCM revhead, SCM tail),
|
|
"Reverse @var{rev-head}, append @var{tail} to it, and return the\n"
|
|
"result. This is equivalent to @code{(append (reverse\n"
|
|
"@var{rev-head}) @var{tail})}, but its implementation is more\n"
|
|
"efficient.\n"
|
|
"\n"
|
|
"@example\n"
|
|
"(append-reverse '(1 2 3) '(4 5 6)) @result{} (3 2 1 4 5 6)\n"
|
|
"@end example")
|
|
#define FUNC_NAME s_scm_srfi1_append_reverse
|
|
{
|
|
while (scm_is_pair (revhead))
|
|
{
|
|
/* copy first element of revhead onto front of tail */
|
|
tail = scm_cons (SCM_CAR (revhead), tail);
|
|
revhead = SCM_CDR (revhead);
|
|
}
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (revhead), revhead, SCM_ARG1, FUNC_NAME,
|
|
"list");
|
|
return tail;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_append_reverse_x, "append-reverse!", 2, 0, 0,
|
|
(SCM revhead, SCM tail),
|
|
"Reverse @var{rev-head}, append @var{tail} to it, and return the\n"
|
|
"result. This is equivalent to @code{(append! (reverse!\n"
|
|
"@var{rev-head}) @var{tail})}, but its implementation is more\n"
|
|
"efficient.\n"
|
|
"\n"
|
|
"@example\n"
|
|
"(append-reverse! (list 1 2 3) '(4 5 6)) @result{} (3 2 1 4 5 6)\n"
|
|
"@end example\n"
|
|
"\n"
|
|
"@var{rev-head} may be modified in order to produce the result.")
|
|
#define FUNC_NAME s_scm_srfi1_append_reverse_x
|
|
{
|
|
SCM newtail;
|
|
|
|
while (scm_is_pair (revhead))
|
|
{
|
|
/* take the first cons cell from revhead */
|
|
newtail = revhead;
|
|
revhead = SCM_CDR (revhead);
|
|
|
|
/* make it the new start of tail, appending the previous */
|
|
SCM_SETCDR (newtail, tail);
|
|
tail = newtail;
|
|
}
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (revhead), revhead, SCM_ARG1, FUNC_NAME,
|
|
"list");
|
|
return tail;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_break, "break", 2, 0, 0,
|
|
(SCM pred, SCM lst),
|
|
"Return two values, the longest initial prefix of @var{lst}\n"
|
|
"whose elements all fail the predicate @var{pred}, and the\n"
|
|
"remainder of @var{lst}.\n"
|
|
"\n"
|
|
"Note that the name @code{break} conflicts with the @code{break}\n"
|
|
"binding established by @code{while}. Applications wanting to\n"
|
|
"use @code{break} from within a @code{while} loop will need to\n"
|
|
"make a new define under a different name.")
|
|
#define FUNC_NAME s_scm_srfi1_break
|
|
{
|
|
SCM ret, *p;
|
|
|
|
SCM_ASSERT (scm_is_true (scm_procedure_p (pred)), pred, SCM_ARG1, FUNC_NAME);
|
|
|
|
ret = SCM_EOL;
|
|
p = &ret;
|
|
for ( ; scm_is_pair (lst); lst = SCM_CDR (lst))
|
|
{
|
|
SCM elem = SCM_CAR (lst);
|
|
if (scm_is_true (scm_call_1 (pred, elem)))
|
|
goto done;
|
|
|
|
/* want this elem, tack it onto the end of ret */
|
|
*p = scm_cons (elem, SCM_EOL);
|
|
p = SCM_CDRLOC (*p);
|
|
}
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (lst), lst, SCM_ARG2, FUNC_NAME, "list");
|
|
|
|
done:
|
|
return scm_values (scm_list_2 (ret, lst));
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_break_x, "break!", 2, 0, 0,
|
|
(SCM pred, SCM lst),
|
|
"Return two values, the longest initial prefix of @var{lst}\n"
|
|
"whose elements all fail the predicate @var{pred}, and the\n"
|
|
"remainder of @var{lst}. @var{lst} may be modified to form the\n"
|
|
"return.")
|
|
#define FUNC_NAME s_scm_srfi1_break_x
|
|
{
|
|
SCM upto, *p;
|
|
|
|
SCM_ASSERT (scm_is_true (scm_procedure_p (pred)), pred, SCM_ARG1, FUNC_NAME);
|
|
|
|
p = &lst;
|
|
for (upto = lst; scm_is_pair (upto); upto = SCM_CDR (upto))
|
|
{
|
|
if (scm_is_true (scm_call_1 (pred, SCM_CAR (upto))))
|
|
goto done;
|
|
|
|
/* want this element */
|
|
p = SCM_CDRLOC (upto);
|
|
}
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (upto), lst, SCM_ARG2, FUNC_NAME, "list");
|
|
|
|
done:
|
|
*p = SCM_EOL;
|
|
return scm_values (scm_list_2 (lst, upto));
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_car_plus_cdr, "car+cdr", 1, 0, 0,
|
|
(SCM pair),
|
|
"Return two values, the @sc{car} and the @sc{cdr} of @var{pair}.")
|
|
#define FUNC_NAME s_scm_srfi1_car_plus_cdr
|
|
{
|
|
SCM_VALIDATE_CONS (SCM_ARG1, pair);
|
|
return scm_values (scm_list_2 (SCM_CAR (pair), SCM_CDR (pair)));
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_concatenate, "concatenate", 1, 0, 0,
|
|
(SCM lstlst),
|
|
"Construct a list by appending all lists in @var{lstlst}.\n"
|
|
"\n"
|
|
"@code{concatenate} is the same as @code{(apply append\n"
|
|
"@var{lstlst})}. It exists because some Scheme implementations\n"
|
|
"have a limit on the number of arguments a function takes, which\n"
|
|
"the @code{apply} might exceed. In Guile there is no such\n"
|
|
"limit.")
|
|
#define FUNC_NAME s_scm_srfi1_concatenate
|
|
{
|
|
SCM_VALIDATE_LIST (SCM_ARG1, lstlst);
|
|
return scm_append (lstlst);
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_concatenate_x, "concatenate!", 1, 0, 0,
|
|
(SCM lstlst),
|
|
"Construct a list by appending all lists in @var{lstlst}. Those\n"
|
|
"lists may be modified to produce the result.\n"
|
|
"\n"
|
|
"@code{concatenate!} is the same as @code{(apply append!\n"
|
|
"@var{lstlst})}. It exists because some Scheme implementations\n"
|
|
"have a limit on the number of arguments a function takes, which\n"
|
|
"the @code{apply} might exceed. In Guile there is no such\n"
|
|
"limit.")
|
|
#define FUNC_NAME s_scm_srfi1_concatenate
|
|
{
|
|
SCM_VALIDATE_LIST (SCM_ARG1, lstlst);
|
|
return scm_append_x (lstlst);
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_count, "count", 2, 0, 1,
|
|
(SCM pred, SCM list1, SCM rest),
|
|
"Return a count of the number of times @var{pred} returns true\n"
|
|
"when called on elements from the given lists.\n"
|
|
"\n"
|
|
"@var{pred} is called with @var{N} parameters @code{(@var{pred}\n"
|
|
"@var{elem1} @dots{} @var{elemN})}, each element being from the\n"
|
|
"corresponding @var{list1} @dots{} @var{lstN}. The first call is\n"
|
|
"with the first element of each list, the second with the second\n"
|
|
"element from each, and so on.\n"
|
|
"\n"
|
|
"Counting stops when the end of the shortest list is reached.\n"
|
|
"At least one list must be non-circular.")
|
|
#define FUNC_NAME s_scm_srfi1_count
|
|
{
|
|
long count;
|
|
SCM lst;
|
|
int argnum;
|
|
SCM_VALIDATE_REST_ARGUMENT (rest);
|
|
|
|
count = 0;
|
|
|
|
if (scm_is_null (rest))
|
|
{
|
|
/* one list */
|
|
SCM_ASSERT (scm_is_true (scm_procedure_p (pred)), pred, SCM_ARG1, FUNC_NAME);
|
|
|
|
for ( ; scm_is_pair (list1); list1 = SCM_CDR (list1))
|
|
count += scm_is_true (scm_call_1 (pred, SCM_CAR (list1)));
|
|
|
|
/* check below that list1 is a proper list, and done */
|
|
end_list1:
|
|
lst = list1;
|
|
argnum = 2;
|
|
}
|
|
else if (scm_is_pair (rest) && scm_is_null (SCM_CDR (rest)))
|
|
{
|
|
/* two lists */
|
|
SCM list2;
|
|
|
|
SCM_ASSERT (scm_is_true (scm_procedure_p (pred)), pred, SCM_ARG1, FUNC_NAME);
|
|
|
|
list2 = SCM_CAR (rest);
|
|
for (;;)
|
|
{
|
|
if (! scm_is_pair (list1))
|
|
goto end_list1;
|
|
if (! scm_is_pair (list2))
|
|
{
|
|
lst = list2;
|
|
argnum = 3;
|
|
break;
|
|
}
|
|
count += scm_is_true (scm_call_2
|
|
(pred, SCM_CAR (list1), SCM_CAR (list2)));
|
|
list1 = SCM_CDR (list1);
|
|
list2 = SCM_CDR (list2);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* three or more lists */
|
|
SCM vec, args, a;
|
|
size_t len, i;
|
|
|
|
/* vec is the list arguments */
|
|
vec = scm_vector (scm_cons (list1, rest));
|
|
len = SCM_SIMPLE_VECTOR_LENGTH (vec);
|
|
|
|
/* args is the argument list to pass to pred, same length as vec,
|
|
re-used for each call */
|
|
args = scm_make_list (SCM_I_MAKINUM (len), SCM_UNDEFINED);
|
|
|
|
for (;;)
|
|
{
|
|
/* first elem of each list in vec into args, and step those
|
|
vec entries onto their next element */
|
|
for (i = 0, a = args, argnum = 2;
|
|
i < len;
|
|
i++, a = SCM_CDR (a), argnum++)
|
|
{
|
|
lst = SCM_SIMPLE_VECTOR_REF (vec, i); /* list argument */
|
|
if (! scm_is_pair (lst))
|
|
goto check_lst_and_done;
|
|
SCM_SETCAR (a, SCM_CAR (lst)); /* arg for pred */
|
|
SCM_SIMPLE_VECTOR_SET (vec, i, SCM_CDR (lst)); /* rest of lst */
|
|
}
|
|
|
|
count += scm_is_true (scm_apply (pred, args, SCM_EOL));
|
|
}
|
|
}
|
|
|
|
check_lst_and_done:
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (lst), lst, argnum, FUNC_NAME, "list");
|
|
return scm_from_long (count);
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_delete, "delete", 2, 1, 0,
|
|
(SCM x, SCM lst, SCM pred),
|
|
"Return a list containing the elements of @var{lst} but with\n"
|
|
"those equal to @var{x} deleted. The returned elements will be\n"
|
|
"in the same order as they were in @var{lst}.\n"
|
|
"\n"
|
|
"Equality is determined by @var{pred}, or @code{equal?} if not\n"
|
|
"given. An equality call is made just once for each element,\n"
|
|
"but the order in which the calls are made on the elements is\n"
|
|
"unspecified.\n"
|
|
"\n"
|
|
"The equality calls are always @code{(pred x elem)}, ie.@: the\n"
|
|
"given @var{x} is first. This means for instance elements\n"
|
|
"greater than 5 can be deleted with @code{(delete 5 lst <)}.\n"
|
|
"\n"
|
|
"@var{lst} is not modified, but the returned list might share a\n"
|
|
"common tail with @var{lst}.")
|
|
#define FUNC_NAME s_scm_srfi1_delete
|
|
{
|
|
SCM ret, *p, keeplst;
|
|
int count;
|
|
|
|
if (SCM_UNBNDP (pred))
|
|
return scm_delete (x, lst);
|
|
|
|
SCM_ASSERT (scm_is_true (scm_procedure_p (pred)), pred, SCM_ARG3, FUNC_NAME);
|
|
|
|
/* ret is the return list being constructed. p is where to append to it,
|
|
initially &ret then SCM_CDRLOC of the last pair. lst progresses as
|
|
elements are considered.
|
|
|
|
Elements to be retained are not immediately copied, instead keeplst is
|
|
the last pair in lst which is to be retained but not yet copied, count
|
|
is how many from there are wanted. When there's no more deletions, *p
|
|
can be set to keeplst to share the remainder of the original lst. (The
|
|
entire original lst if there's no deletions at all.) */
|
|
|
|
keeplst = lst;
|
|
count = 0;
|
|
p = &ret;
|
|
|
|
for ( ; scm_is_pair (lst); lst = SCM_CDR (lst))
|
|
{
|
|
if (scm_is_true (scm_call_2 (pred, x, SCM_CAR (lst))))
|
|
{
|
|
/* delete this element, so copy those at keeplst */
|
|
p = list_copy_part (keeplst, count, p);
|
|
keeplst = SCM_CDR (lst);
|
|
count = 0;
|
|
}
|
|
else
|
|
{
|
|
/* keep this element */
|
|
count++;
|
|
}
|
|
}
|
|
|
|
/* final retained elements */
|
|
*p = keeplst;
|
|
|
|
/* demand that lst was a proper list */
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (lst), lst, SCM_ARG2, FUNC_NAME, "list");
|
|
|
|
return ret;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_delete_x, "delete!", 2, 1, 0,
|
|
(SCM x, SCM lst, SCM pred),
|
|
"Return a list containing the elements of @var{lst} but with\n"
|
|
"those equal to @var{x} deleted. The returned elements will be\n"
|
|
"in the same order as they were in @var{lst}.\n"
|
|
"\n"
|
|
"Equality is determined by @var{pred}, or @code{equal?} if not\n"
|
|
"given. An equality call is made just once for each element,\n"
|
|
"but the order in which the calls are made on the elements is\n"
|
|
"unspecified.\n"
|
|
"\n"
|
|
"The equality calls are always @code{(pred x elem)}, ie.@: the\n"
|
|
"given @var{x} is first. This means for instance elements\n"
|
|
"greater than 5 can be deleted with @code{(delete 5 lst <)}.\n"
|
|
"\n"
|
|
"@var{lst} may be modified to construct the returned list.")
|
|
#define FUNC_NAME s_scm_srfi1_delete_x
|
|
{
|
|
SCM walk;
|
|
SCM *prev;
|
|
|
|
if (SCM_UNBNDP (pred))
|
|
return scm_delete_x (x, lst);
|
|
|
|
SCM_ASSERT (scm_is_true (scm_procedure_p (pred)), pred, SCM_ARG3, FUNC_NAME);
|
|
|
|
for (prev = &lst, walk = lst;
|
|
scm_is_pair (walk);
|
|
walk = SCM_CDR (walk))
|
|
{
|
|
if (scm_is_true (scm_call_2 (pred, x, SCM_CAR (walk))))
|
|
*prev = SCM_CDR (walk);
|
|
else
|
|
prev = SCM_CDRLOC (walk);
|
|
}
|
|
|
|
/* demand the input was a proper list */
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (walk), walk, SCM_ARG2, FUNC_NAME,"list");
|
|
return lst;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_delete_duplicates, "delete-duplicates", 1, 1, 0,
|
|
(SCM lst, SCM pred),
|
|
"Return a list containing the elements of @var{lst} but without\n"
|
|
"duplicates.\n"
|
|
"\n"
|
|
"When elements are equal, only the first in @var{lst} is\n"
|
|
"retained. Equal elements can be anywhere in @var{lst}, they\n"
|
|
"don't have to be adjacent. The returned list will have the\n"
|
|
"retained elements in the same order as they were in @var{lst}.\n"
|
|
"\n"
|
|
"Equality is determined by @var{pred}, or @code{equal?} if not\n"
|
|
"given. Calls @code{(pred x y)} are made with element @var{x}\n"
|
|
"being before @var{y} in @var{lst}. A call is made at most once\n"
|
|
"for each combination, but the sequence of the calls across the\n"
|
|
"elements is unspecified.\n"
|
|
"\n"
|
|
"@var{lst} is not modified, but the return might share a common\n"
|
|
"tail with @var{lst}.\n"
|
|
"\n"
|
|
"In the worst case, this is an @math{O(N^2)} algorithm because\n"
|
|
"it must check each element against all those preceding it. For\n"
|
|
"long lists it is more efficient to sort and then compare only\n"
|
|
"adjacent elements.")
|
|
#define FUNC_NAME s_scm_srfi1_delete_duplicates
|
|
{
|
|
scm_t_trampoline_2 equal_p;
|
|
SCM ret, *p, keeplst, item, l;
|
|
int count, i;
|
|
|
|
/* ret is the new list constructed. p is where to append, initially &ret
|
|
then SCM_CDRLOC of the last pair. lst is advanced as each element is
|
|
considered.
|
|
|
|
Elements retained are not immediately appended to ret, instead keeplst
|
|
is the last pair in lst which is to be kept but is not yet copied.
|
|
Initially this is the first pair of lst, since the first element is
|
|
always retained.
|
|
|
|
*p is kept set to keeplst, so ret (inclusive) to lst (exclusive) is all
|
|
the elements retained, making the equality search loop easy.
|
|
|
|
If an item must be deleted, elements from keeplst (inclusive) to lst
|
|
(exclusive) must be copied and appended to ret. When there's no more
|
|
deletions, *p is left set to keeplst, so ret shares structure with the
|
|
original lst. (ret will be the entire original lst if there are no
|
|
deletions.) */
|
|
|
|
/* skip to end if an empty list (or something invalid) */
|
|
ret = SCM_EOL;
|
|
|
|
if (SCM_UNBNDP (pred))
|
|
equal_p = equal_trampoline;
|
|
else
|
|
{
|
|
SCM_VALIDATE_PROC (SCM_ARG2, pred);
|
|
equal_p = scm_call_2;
|
|
}
|
|
|
|
keeplst = lst;
|
|
count = 0;
|
|
p = &ret;
|
|
|
|
for ( ; scm_is_pair (lst); lst = SCM_CDR (lst))
|
|
{
|
|
item = SCM_CAR (lst);
|
|
|
|
/* look for item in "ret" list */
|
|
for (l = ret; scm_is_pair (l); l = SCM_CDR (l))
|
|
{
|
|
if (scm_is_true (equal_p (pred, SCM_CAR (l), item)))
|
|
{
|
|
/* "item" is a duplicate, so copy keeplst onto ret */
|
|
duplicate:
|
|
p = list_copy_part (keeplst, count, p);
|
|
|
|
keeplst = SCM_CDR (lst); /* elem after the one deleted */
|
|
count = 0;
|
|
goto next_elem;
|
|
}
|
|
}
|
|
|
|
/* look for item in "keeplst" list
|
|
be careful traversing, in case nasty code changed the cdrs */
|
|
for (i = 0, l = keeplst;
|
|
i < count && scm_is_pair (l);
|
|
i++, l = SCM_CDR (l))
|
|
if (scm_is_true (equal_p (pred, SCM_CAR (l), item)))
|
|
goto duplicate;
|
|
|
|
/* keep this element */
|
|
count++;
|
|
|
|
next_elem:
|
|
;
|
|
}
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (lst), lst, SCM_ARG1, FUNC_NAME, "list");
|
|
|
|
/* share tail of keeplst items */
|
|
*p = keeplst;
|
|
|
|
return ret;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_delete_duplicates_x, "delete-duplicates!", 1, 1, 0,
|
|
(SCM lst, SCM pred),
|
|
"Return a list containing the elements of @var{lst} but without\n"
|
|
"duplicates.\n"
|
|
"\n"
|
|
"When elements are equal, only the first in @var{lst} is\n"
|
|
"retained. Equal elements can be anywhere in @var{lst}, they\n"
|
|
"don't have to be adjacent. The returned list will have the\n"
|
|
"retained elements in the same order as they were in @var{lst}.\n"
|
|
"\n"
|
|
"Equality is determined by @var{pred}, or @code{equal?} if not\n"
|
|
"given. Calls @code{(pred x y)} are made with element @var{x}\n"
|
|
"being before @var{y} in @var{lst}. A call is made at most once\n"
|
|
"for each combination, but the sequence of the calls across the\n"
|
|
"elements is unspecified.\n"
|
|
"\n"
|
|
"@var{lst} may be modified to construct the returned list.\n"
|
|
"\n"
|
|
"In the worst case, this is an @math{O(N^2)} algorithm because\n"
|
|
"it must check each element against all those preceding it. For\n"
|
|
"long lists it is more efficient to sort and then compare only\n"
|
|
"adjacent elements.")
|
|
#define FUNC_NAME s_scm_srfi1_delete_duplicates_x
|
|
{
|
|
scm_t_trampoline_2 equal_p;
|
|
SCM ret, endret, item, l;
|
|
|
|
/* ret is the return list, constructed from the pairs in lst. endret is
|
|
the last pair of ret, initially the first pair. lst is advanced as
|
|
elements are considered. */
|
|
|
|
/* skip to end if an empty list (or something invalid) */
|
|
ret = lst;
|
|
if (scm_is_pair (lst))
|
|
{
|
|
if (SCM_UNBNDP (pred))
|
|
equal_p = equal_trampoline;
|
|
else
|
|
{
|
|
SCM_VALIDATE_PROC (SCM_ARG2, pred);
|
|
equal_p = scm_call_2;
|
|
}
|
|
|
|
endret = ret;
|
|
|
|
/* loop over lst elements starting from second */
|
|
for (;;)
|
|
{
|
|
lst = SCM_CDR (lst);
|
|
if (! scm_is_pair (lst))
|
|
break;
|
|
item = SCM_CAR (lst);
|
|
|
|
/* is item equal to any element from ret to endret (inclusive)? */
|
|
l = ret;
|
|
for (;;)
|
|
{
|
|
if (scm_is_true (equal_p (pred, SCM_CAR (l), item)))
|
|
break; /* equal, forget this element */
|
|
|
|
if (scm_is_eq (l, endret))
|
|
{
|
|
/* not equal to any, so append this pair */
|
|
SCM_SETCDR (endret, lst);
|
|
endret = lst;
|
|
break;
|
|
}
|
|
l = SCM_CDR (l);
|
|
}
|
|
}
|
|
|
|
/* terminate, in case last element was deleted */
|
|
SCM_SETCDR (endret, SCM_EOL);
|
|
}
|
|
|
|
/* demand that lst was a proper list */
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (lst), lst, SCM_ARG1, FUNC_NAME, "list");
|
|
|
|
return ret;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_drop_right, "drop-right", 2, 0, 0,
|
|
(SCM lst, SCM n),
|
|
"Return a new list containing all except the last @var{n}\n"
|
|
"elements of @var{lst}.")
|
|
#define FUNC_NAME s_scm_srfi1_drop_right
|
|
{
|
|
SCM tail = scm_list_tail (lst, n);
|
|
SCM ret = SCM_EOL;
|
|
SCM *rend = &ret;
|
|
while (scm_is_pair (tail))
|
|
{
|
|
*rend = scm_cons (SCM_CAR (lst), SCM_EOL);
|
|
rend = SCM_CDRLOC (*rend);
|
|
|
|
lst = SCM_CDR (lst);
|
|
tail = SCM_CDR (tail);
|
|
}
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P(tail), tail, SCM_ARG1, FUNC_NAME, "list");
|
|
return ret;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_drop_right_x, "drop-right!", 2, 0, 0,
|
|
(SCM lst, SCM n),
|
|
"Return the a list containing the @var{n} last elements of\n"
|
|
"@var{lst}. @var{lst} may be modified to build the return.")
|
|
#define FUNC_NAME s_scm_srfi1_drop_right_x
|
|
{
|
|
SCM tail, *p;
|
|
|
|
if (scm_is_eq (n, SCM_INUM0))
|
|
return lst;
|
|
|
|
tail = scm_list_tail (lst, n);
|
|
p = &lst;
|
|
|
|
/* p and tail work along the list, p being the cdrloc of the cell n steps
|
|
behind tail */
|
|
for ( ; scm_is_pair (tail); tail = SCM_CDR (tail))
|
|
p = SCM_CDRLOC (*p);
|
|
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P(tail), tail, SCM_ARG1, FUNC_NAME, "list");
|
|
|
|
*p = SCM_EOL;
|
|
return lst;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_drop_while, "drop-while", 2, 0, 0,
|
|
(SCM pred, SCM lst),
|
|
"Drop the longest initial prefix of @var{lst} whose elements all\n"
|
|
"satisfy the predicate @var{pred}.")
|
|
#define FUNC_NAME s_scm_srfi1_drop_while
|
|
{
|
|
SCM_VALIDATE_PROC (SCM_ARG1, pred);
|
|
|
|
for ( ; scm_is_pair (lst); lst = SCM_CDR (lst))
|
|
if (scm_is_false (scm_call_1 (pred, SCM_CAR (lst))))
|
|
goto done;
|
|
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (lst), lst, SCM_ARG2, FUNC_NAME, "list");
|
|
done:
|
|
return lst;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_eighth, "eighth", 1, 0, 0,
|
|
(SCM lst),
|
|
"Return the eighth element of @var{lst}.")
|
|
#define FUNC_NAME s_scm_srfi1_eighth
|
|
{
|
|
return scm_list_ref (lst, SCM_I_MAKINUM (7));
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_fifth, "fifth", 1, 0, 0,
|
|
(SCM lst),
|
|
"Return the fifth element of @var{lst}.")
|
|
#define FUNC_NAME s_scm_srfi1_fifth
|
|
{
|
|
return scm_list_ref (lst, SCM_I_MAKINUM (4));
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_filter_map, "filter-map", 2, 0, 1,
|
|
(SCM proc, SCM list1, SCM rest),
|
|
"Apply @var{proc} to to the elements of @var{list1} @dots{} and\n"
|
|
"return a list of the results as per SRFI-1 @code{map}, except\n"
|
|
"that any @code{#f} results are omitted from the list returned.")
|
|
#define FUNC_NAME s_scm_srfi1_filter_map
|
|
{
|
|
SCM ret, *loc, elem, newcell, lst;
|
|
int argnum;
|
|
|
|
SCM_VALIDATE_REST_ARGUMENT (rest);
|
|
|
|
ret = SCM_EOL;
|
|
loc = &ret;
|
|
|
|
if (scm_is_null (rest))
|
|
{
|
|
/* one list */
|
|
SCM_VALIDATE_PROC (SCM_ARG1, proc);
|
|
|
|
for ( ; scm_is_pair (list1); list1 = SCM_CDR (list1))
|
|
{
|
|
elem = scm_call_1 (proc, SCM_CAR (list1));
|
|
if (scm_is_true (elem))
|
|
{
|
|
newcell = scm_cons (elem, SCM_EOL);
|
|
*loc = newcell;
|
|
loc = SCM_CDRLOC (newcell);
|
|
}
|
|
}
|
|
|
|
/* check below that list1 is a proper list, and done */
|
|
end_list1:
|
|
lst = list1;
|
|
argnum = 2;
|
|
}
|
|
else if (scm_is_null (SCM_CDR (rest)))
|
|
{
|
|
/* two lists */
|
|
SCM list2 = SCM_CAR (rest);
|
|
SCM_VALIDATE_PROC (SCM_ARG1, proc);
|
|
|
|
for (;;)
|
|
{
|
|
if (! scm_is_pair (list1))
|
|
goto end_list1;
|
|
if (! scm_is_pair (list2))
|
|
{
|
|
lst = list2;
|
|
argnum = 3;
|
|
goto check_lst_and_done;
|
|
}
|
|
elem = scm_call_2 (proc, SCM_CAR (list1), SCM_CAR (list2));
|
|
if (scm_is_true (elem))
|
|
{
|
|
newcell = scm_cons (elem, SCM_EOL);
|
|
*loc = newcell;
|
|
loc = SCM_CDRLOC (newcell);
|
|
}
|
|
list1 = SCM_CDR (list1);
|
|
list2 = SCM_CDR (list2);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* three or more lists */
|
|
SCM vec, args, a;
|
|
size_t len, i;
|
|
|
|
/* vec is the list arguments */
|
|
vec = scm_vector (scm_cons (list1, rest));
|
|
len = SCM_SIMPLE_VECTOR_LENGTH (vec);
|
|
|
|
/* args is the argument list to pass to proc, same length as vec,
|
|
re-used for each call */
|
|
args = scm_make_list (SCM_I_MAKINUM (len), SCM_UNDEFINED);
|
|
|
|
for (;;)
|
|
{
|
|
/* first elem of each list in vec into args, and step those
|
|
vec entries onto their next element */
|
|
for (i = 0, a = args, argnum = 2;
|
|
i < len;
|
|
i++, a = SCM_CDR (a), argnum++)
|
|
{
|
|
lst = SCM_SIMPLE_VECTOR_REF (vec, i); /* list argument */
|
|
if (! scm_is_pair (lst))
|
|
goto check_lst_and_done;
|
|
SCM_SETCAR (a, SCM_CAR (lst)); /* arg for proc */
|
|
SCM_SIMPLE_VECTOR_SET (vec, i, SCM_CDR (lst)); /* rest of lst */
|
|
}
|
|
|
|
elem = scm_apply (proc, args, SCM_EOL);
|
|
if (scm_is_true (elem))
|
|
{
|
|
newcell = scm_cons (elem, SCM_EOL);
|
|
*loc = newcell;
|
|
loc = SCM_CDRLOC (newcell);
|
|
}
|
|
}
|
|
}
|
|
|
|
check_lst_and_done:
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (lst), lst, argnum, FUNC_NAME, "list");
|
|
return ret;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_find, "find", 2, 0, 0,
|
|
(SCM pred, SCM lst),
|
|
"Return the first element of @var{lst} which satisfies the\n"
|
|
"predicate @var{pred}, or return @code{#f} if no such element is\n"
|
|
"found.")
|
|
#define FUNC_NAME s_scm_srfi1_find
|
|
{
|
|
SCM_VALIDATE_PROC (SCM_ARG1, pred);
|
|
|
|
for ( ; scm_is_pair (lst); lst = SCM_CDR (lst))
|
|
{
|
|
SCM elem = SCM_CAR (lst);
|
|
if (scm_is_true (scm_call_1 (pred, elem)))
|
|
return elem;
|
|
}
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (lst), lst, SCM_ARG2, FUNC_NAME, "list");
|
|
|
|
return SCM_BOOL_F;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_find_tail, "find-tail", 2, 0, 0,
|
|
(SCM pred, SCM lst),
|
|
"Return the first pair of @var{lst} whose @sc{car} satisfies the\n"
|
|
"predicate @var{pred}, or return @code{#f} if no such element is\n"
|
|
"found.")
|
|
#define FUNC_NAME s_scm_srfi1_find_tail
|
|
{
|
|
SCM_VALIDATE_PROC (SCM_ARG1, pred);
|
|
|
|
for ( ; scm_is_pair (lst); lst = SCM_CDR (lst))
|
|
if (scm_is_true (scm_call_1 (pred, SCM_CAR (lst))))
|
|
return lst;
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (lst), lst, SCM_ARG2, FUNC_NAME, "list");
|
|
|
|
return SCM_BOOL_F;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_fold, "fold", 3, 0, 1,
|
|
(SCM proc, SCM init, SCM list1, SCM rest),
|
|
"Apply @var{proc} to the elements of @var{lst1} @dots{}\n"
|
|
"@var{lstN} to build a result, and return that result.\n"
|
|
"\n"
|
|
"Each @var{proc} call is @code{(@var{proc} @var{elem1} @dots{}\n"
|
|
"@var{elemN} @var{previous})}, where @var{elem1} is from\n"
|
|
"@var{lst1}, through @var{elemN} from @var{lstN}.\n"
|
|
"@var{previous} is the return from the previous call to\n"
|
|
"@var{proc}, or the given @var{init} for the first call. If any\n"
|
|
"list is empty, just @var{init} is returned.\n"
|
|
"\n"
|
|
"@code{fold} works through the list elements from first to last.\n"
|
|
"The following shows a list reversal and the calls it makes,\n"
|
|
"\n"
|
|
"@example\n"
|
|
"(fold cons '() '(1 2 3))\n"
|
|
"\n"
|
|
"(cons 1 '())\n"
|
|
"(cons 2 '(1))\n"
|
|
"(cons 3 '(2 1)\n"
|
|
"@result{} (3 2 1)\n"
|
|
"@end example\n"
|
|
"\n"
|
|
"If @var{lst1} through @var{lstN} have different lengths,\n"
|
|
"@code{fold} stops when the end of the shortest is reached.\n"
|
|
"Ie.@: elements past the length of the shortest are ignored in\n"
|
|
"the other @var{lst}s. At least one @var{lst} must be\n"
|
|
"non-circular.\n"
|
|
"\n"
|
|
"The way @code{fold} builds a result from iterating is quite\n"
|
|
"general, it can do more than other iterations like say\n"
|
|
"@code{map} or @code{filter}. The following for example removes\n"
|
|
"adjacent duplicate elements from a list,\n"
|
|
"\n"
|
|
"@example\n"
|
|
"(define (delete-adjacent-duplicates lst)\n"
|
|
" (fold-right (lambda (elem ret)\n"
|
|
" (if (equal? elem (first ret))\n"
|
|
" ret\n"
|
|
" (cons elem ret)))\n"
|
|
" (list (last lst))\n"
|
|
" lst))\n"
|
|
"(delete-adjacent-duplicates '(1 2 3 3 4 4 4 5))\n"
|
|
"@result{} (1 2 3 4 5)\n"
|
|
"@end example\n"
|
|
"\n"
|
|
"Clearly the same sort of thing can be done with a\n"
|
|
"@code{for-each} and a variable in which to build the result,\n"
|
|
"but a self-contained @var{proc} can be re-used in multiple\n"
|
|
"contexts, where a @code{for-each} would have to be written out\n"
|
|
"each time.")
|
|
#define FUNC_NAME s_scm_srfi1_fold
|
|
{
|
|
SCM lst;
|
|
int argnum;
|
|
SCM_VALIDATE_REST_ARGUMENT (rest);
|
|
|
|
if (scm_is_null (rest))
|
|
{
|
|
/* one list */
|
|
SCM_VALIDATE_PROC (SCM_ARG1, proc);
|
|
|
|
for ( ; scm_is_pair (list1); list1 = SCM_CDR (list1))
|
|
init = scm_call_2 (proc, SCM_CAR (list1), init);
|
|
|
|
/* check below that list1 is a proper list, and done */
|
|
lst = list1;
|
|
argnum = 2;
|
|
}
|
|
else
|
|
{
|
|
/* two or more lists */
|
|
SCM vec, args, a;
|
|
size_t len, i;
|
|
|
|
/* vec is the list arguments */
|
|
vec = scm_vector (scm_cons (list1, rest));
|
|
len = SCM_SIMPLE_VECTOR_LENGTH (vec);
|
|
|
|
/* args is the argument list to pass to proc, same length as vec,
|
|
re-used for each call */
|
|
args = scm_make_list (SCM_I_MAKINUM (len+1), SCM_UNDEFINED);
|
|
|
|
for (;;)
|
|
{
|
|
/* first elem of each list in vec into args, and step those
|
|
vec entries onto their next element */
|
|
for (i = 0, a = args, argnum = 2;
|
|
i < len;
|
|
i++, a = SCM_CDR (a), argnum++)
|
|
{
|
|
lst = SCM_SIMPLE_VECTOR_REF (vec, i); /* list argument */
|
|
if (! scm_is_pair (lst))
|
|
goto check_lst_and_done;
|
|
SCM_SETCAR (a, SCM_CAR (lst)); /* arg for proc */
|
|
SCM_SIMPLE_VECTOR_SET (vec, i, SCM_CDR (lst)); /* rest of lst */
|
|
}
|
|
SCM_SETCAR (a, init);
|
|
|
|
init = scm_apply (proc, args, SCM_EOL);
|
|
}
|
|
}
|
|
|
|
check_lst_and_done:
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (lst), lst, argnum, FUNC_NAME, "list");
|
|
return init;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_last, "last", 1, 0, 0,
|
|
(SCM lst),
|
|
"Like @code{cons}, but with interchanged arguments. Useful\n"
|
|
"mostly when passed to higher-order procedures.")
|
|
#define FUNC_NAME s_scm_srfi1_last
|
|
{
|
|
SCM pair = scm_last_pair (lst);
|
|
/* scm_last_pair returns SCM_EOL for an empty list */
|
|
SCM_VALIDATE_CONS (SCM_ARG1, pair);
|
|
return SCM_CAR (pair);
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_length_plus, "length+", 1, 0, 0,
|
|
(SCM lst),
|
|
"Return the length of @var{lst}, or @code{#f} if @var{lst} is\n"
|
|
"circular.")
|
|
#define FUNC_NAME s_scm_srfi1_length_plus
|
|
{
|
|
long len = scm_ilength (lst);
|
|
return (len >= 0 ? SCM_I_MAKINUM (len) : SCM_BOOL_F);
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_list_index, "list-index", 2, 0, 1,
|
|
(SCM pred, SCM list1, SCM rest),
|
|
"Return the index of the first set of elements, one from each of\n"
|
|
"@var{lst1}@dots{}@var{lstN}, which satisfies @var{pred}.\n"
|
|
"\n"
|
|
"@var{pred} is called as @code{(@var{pred} elem1 @dots{}\n"
|
|
"elemN)}. Searching stops when the end of the shortest\n"
|
|
"@var{lst} is reached. The return index starts from 0 for the\n"
|
|
"first set of elements. If no set of elements pass then the\n"
|
|
"return is @code{#f}.\n"
|
|
"\n"
|
|
"@example\n"
|
|
"(list-index odd? '(2 4 6 9)) @result{} 3\n"
|
|
"(list-index = '(1 2 3) '(3 1 2)) @result{} #f\n"
|
|
"@end example")
|
|
#define FUNC_NAME s_scm_srfi1_list_index
|
|
{
|
|
long n = 0;
|
|
SCM lst;
|
|
int argnum;
|
|
SCM_VALIDATE_REST_ARGUMENT (rest);
|
|
|
|
if (scm_is_null (rest))
|
|
{
|
|
/* one list */
|
|
SCM_VALIDATE_PROC (SCM_ARG1, pred);
|
|
|
|
for ( ; scm_is_pair (list1); n++, list1 = SCM_CDR (list1))
|
|
if (scm_is_true (scm_call_1 (pred, SCM_CAR (list1))))
|
|
return SCM_I_MAKINUM (n);
|
|
|
|
/* not found, check below that list1 is a proper list */
|
|
end_list1:
|
|
lst = list1;
|
|
argnum = 2;
|
|
}
|
|
else if (scm_is_pair (rest) && scm_is_null (SCM_CDR (rest)))
|
|
{
|
|
/* two lists */
|
|
SCM list2 = SCM_CAR (rest);
|
|
SCM_VALIDATE_PROC (SCM_ARG1, pred);
|
|
|
|
for ( ; ; n++)
|
|
{
|
|
if (! scm_is_pair (list1))
|
|
goto end_list1;
|
|
if (! scm_is_pair (list2))
|
|
{
|
|
lst = list2;
|
|
argnum = 3;
|
|
break;
|
|
}
|
|
if (scm_is_true (scm_call_2 (pred,
|
|
SCM_CAR (list1), SCM_CAR (list2))))
|
|
return SCM_I_MAKINUM (n);
|
|
|
|
list1 = SCM_CDR (list1);
|
|
list2 = SCM_CDR (list2);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* three or more lists */
|
|
SCM vec, args, a;
|
|
size_t len, i;
|
|
|
|
/* vec is the list arguments */
|
|
vec = scm_vector (scm_cons (list1, rest));
|
|
len = SCM_SIMPLE_VECTOR_LENGTH (vec);
|
|
|
|
/* args is the argument list to pass to pred, same length as vec,
|
|
re-used for each call */
|
|
args = scm_make_list (SCM_I_MAKINUM (len), SCM_UNDEFINED);
|
|
|
|
for ( ; ; n++)
|
|
{
|
|
/* first elem of each list in vec into args, and step those
|
|
vec entries onto their next element */
|
|
for (i = 0, a = args, argnum = 2;
|
|
i < len;
|
|
i++, a = SCM_CDR (a), argnum++)
|
|
{
|
|
lst = SCM_SIMPLE_VECTOR_REF (vec, i); /* list argument */
|
|
if (! scm_is_pair (lst))
|
|
goto not_found_check_lst;
|
|
SCM_SETCAR (a, SCM_CAR (lst)); /* arg for pred */
|
|
SCM_SIMPLE_VECTOR_SET (vec, i, SCM_CDR (lst)); /* rest of lst */
|
|
}
|
|
|
|
if (scm_is_true (scm_apply (pred, args, SCM_EOL)))
|
|
return SCM_I_MAKINUM (n);
|
|
}
|
|
}
|
|
|
|
not_found_check_lst:
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (lst), lst, argnum, FUNC_NAME, "list");
|
|
return SCM_BOOL_F;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
/* This routine differs from the core list-copy in allowing improper lists.
|
|
Maybe the core could allow them similarly. */
|
|
|
|
SCM_DEFINE (scm_srfi1_list_copy, "list-copy", 1, 0, 0,
|
|
(SCM lst),
|
|
"Return a copy of the given list @var{lst}.\n"
|
|
"\n"
|
|
"@var{lst} can be a proper or improper list. And if @var{lst}\n"
|
|
"is not a pair then it's treated as the final tail of an\n"
|
|
"improper list and simply returned.")
|
|
#define FUNC_NAME s_scm_srfi1_list_copy
|
|
{
|
|
SCM newlst;
|
|
SCM * fill_here;
|
|
SCM from_here;
|
|
|
|
newlst = lst;
|
|
fill_here = &newlst;
|
|
from_here = lst;
|
|
|
|
while (scm_is_pair (from_here))
|
|
{
|
|
SCM c;
|
|
c = scm_cons (SCM_CAR (from_here), SCM_CDR (from_here));
|
|
*fill_here = c;
|
|
fill_here = SCM_CDRLOC (c);
|
|
from_here = SCM_CDR (from_here);
|
|
}
|
|
return newlst;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_list_tabulate, "list-tabulate", 2, 0, 0,
|
|
(SCM n, SCM proc),
|
|
"Return an @var{n}-element list, where each list element is\n"
|
|
"produced by applying the procedure @var{init-proc} to the\n"
|
|
"corresponding list index. The order in which @var{init-proc}\n"
|
|
"is applied to the indices is not specified.")
|
|
#define FUNC_NAME s_scm_srfi1_list_tabulate
|
|
{
|
|
long i, nn;
|
|
SCM ret = SCM_EOL;
|
|
nn = scm_to_signed_integer (n, 0, LONG_MAX);
|
|
SCM_VALIDATE_PROC (SCM_ARG2, proc);
|
|
for (i = nn-1; i >= 0; i--)
|
|
ret = scm_cons (scm_call_1 (proc, scm_from_long (i)), ret);
|
|
return ret;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_lset_adjoin, "lset-adjoin", 2, 0, 1,
|
|
(SCM equal, SCM lst, SCM rest),
|
|
"Add to @var{list} any of the given @var{elem}s not already in\n"
|
|
"the list. @var{elem}s are @code{cons}ed onto the start of\n"
|
|
"@var{list} (so the return shares a common tail with\n"
|
|
"@var{list}), but the order they're added is unspecified.\n"
|
|
"\n"
|
|
"The given @var{=} procedure is used for comparing elements,\n"
|
|
"called as @code{(@var{=} listelem elem)}, ie.@: the second\n"
|
|
"argument is one of the given @var{elem} parameters.\n"
|
|
"\n"
|
|
"@example\n"
|
|
"(lset-adjoin eqv? '(1 2 3) 4 1 5) @result{} (5 4 1 2 3)\n"
|
|
"@end example")
|
|
#define FUNC_NAME s_scm_srfi1_lset_adjoin
|
|
{
|
|
SCM l, elem;
|
|
|
|
SCM_VALIDATE_PROC (SCM_ARG1, equal);
|
|
SCM_VALIDATE_REST_ARGUMENT (rest);
|
|
|
|
/* It's not clear if duplicates among the `rest' elements are meant to be
|
|
cast out. The spec says `=' is called as (= list-elem rest-elem),
|
|
suggesting perhaps not, but the reference implementation shows the
|
|
"list" at each stage as including those "rest" elements already added.
|
|
The latter corresponds to what's described for lset-union, so that's
|
|
what's done here. */
|
|
|
|
for ( ; scm_is_pair (rest); rest = SCM_CDR (rest))
|
|
{
|
|
elem = SCM_CAR (rest);
|
|
|
|
for (l = lst; scm_is_pair (l); l = SCM_CDR (l))
|
|
if (scm_is_true (scm_call_2 (equal, SCM_CAR (l), elem)))
|
|
goto next_elem; /* elem already in lst, don't add */
|
|
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P(l), lst, SCM_ARG2, FUNC_NAME, "list");
|
|
|
|
/* elem is not equal to anything already in lst, add it */
|
|
lst = scm_cons (elem, lst);
|
|
|
|
next_elem:
|
|
;
|
|
}
|
|
|
|
return lst;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_lset_difference_x, "lset-difference!", 2, 0, 1,
|
|
(SCM equal, SCM lst, SCM rest),
|
|
"Return @var{lst} with any elements in the lists in @var{rest}\n"
|
|
"removed (ie.@: subtracted). For only one @var{lst} argument,\n"
|
|
"just that list is returned.\n"
|
|
"\n"
|
|
"The given @var{equal} procedure is used for comparing elements,\n"
|
|
"called as @code{(@var{equal} elem1 elemN)}. The first argument\n"
|
|
"is from @var{lst} and the second from one of the subsequent\n"
|
|
"lists. But exactly which calls are made and in what order is\n"
|
|
"unspecified.\n"
|
|
"\n"
|
|
"@example\n"
|
|
"(lset-difference! eqv? (list 'x 'y)) @result{} (x y)\n"
|
|
"(lset-difference! eqv? (list 1 2 3) '(3 1)) @result{} (2)\n"
|
|
"(lset-difference! eqv? (list 1 2 3) '(3) '(2)) @result{} (1)\n"
|
|
"@end example\n"
|
|
"\n"
|
|
"@code{lset-difference!} may modify @var{lst} to form its\n"
|
|
"result.")
|
|
#define FUNC_NAME s_scm_srfi1_lset_difference_x
|
|
{
|
|
SCM ret, *pos, elem, r, b;
|
|
int argnum;
|
|
|
|
SCM_VALIDATE_PROC (SCM_ARG1, equal);
|
|
SCM_VALIDATE_REST_ARGUMENT (rest);
|
|
|
|
ret = SCM_EOL;
|
|
pos = &ret;
|
|
for ( ; scm_is_pair (lst); lst = SCM_CDR (lst))
|
|
{
|
|
elem = SCM_CAR (lst);
|
|
|
|
for (r = rest, argnum = SCM_ARG3;
|
|
scm_is_pair (r);
|
|
r = SCM_CDR (r), argnum++)
|
|
{
|
|
for (b = SCM_CAR (r); scm_is_pair (b); b = SCM_CDR (b))
|
|
if (scm_is_true (scm_call_2 (equal, elem, SCM_CAR (b))))
|
|
goto next_elem; /* equal to elem, so drop that elem */
|
|
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (b), b, argnum, FUNC_NAME,"list");
|
|
}
|
|
|
|
/* elem not equal to anything in later lists, so keep it */
|
|
*pos = lst;
|
|
pos = SCM_CDRLOC (lst);
|
|
|
|
next_elem:
|
|
;
|
|
}
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (lst), lst, SCM_ARG2, FUNC_NAME, "list");
|
|
|
|
*pos = SCM_EOL;
|
|
return ret;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
/* Typechecking for multi-argument MAP and FOR-EACH.
|
|
|
|
Verify that each element of the vector ARGV, except for the first,
|
|
is a list and return minimum length. Attribute errors to WHO,
|
|
and claim that the i'th element of ARGV is WHO's i+2'th argument. */
|
|
static inline int
|
|
check_map_args (SCM argv,
|
|
long len,
|
|
SCM gf,
|
|
SCM proc,
|
|
SCM args,
|
|
const char *who)
|
|
{
|
|
long i;
|
|
SCM elt;
|
|
|
|
for (i = SCM_SIMPLE_VECTOR_LENGTH (argv) - 1; i >= 1; i--)
|
|
{
|
|
long elt_len;
|
|
elt = SCM_SIMPLE_VECTOR_REF (argv, i);
|
|
|
|
if (!(scm_is_null (elt) || scm_is_pair (elt)))
|
|
goto check_map_error;
|
|
|
|
elt_len = srfi1_ilength (elt);
|
|
if (elt_len < -1)
|
|
goto check_map_error;
|
|
|
|
if (len < 0 || (elt_len >= 0 && elt_len < len))
|
|
len = elt_len;
|
|
}
|
|
|
|
if (len < 0)
|
|
{
|
|
/* i == 0 */
|
|
elt = SCM_EOL;
|
|
check_map_error:
|
|
if (gf)
|
|
scm_apply_generic (gf, scm_cons (proc, args));
|
|
else
|
|
scm_wrong_type_arg (who, i + 2, elt);
|
|
}
|
|
|
|
scm_remember_upto_here_1 (argv);
|
|
return len;
|
|
}
|
|
|
|
|
|
SCM_GPROC (s_srfi1_map, "map", 2, 0, 1, scm_srfi1_map, g_srfi1_map);
|
|
|
|
/* Note: Currently, scm_srfi1_map applies PROC to the argument list(s)
|
|
sequentially, starting with the first element(s). This is used in
|
|
the Scheme procedure `map-in-order', which guarantees sequential
|
|
behaviour, is implemented using scm_map. If the behaviour changes,
|
|
we need to update `map-in-order'.
|
|
*/
|
|
|
|
SCM
|
|
scm_srfi1_map (SCM proc, SCM arg1, SCM args)
|
|
#define FUNC_NAME s_srfi1_map
|
|
{
|
|
long i, len;
|
|
SCM res = SCM_EOL;
|
|
SCM *pres = &res;
|
|
|
|
len = srfi1_ilength (arg1);
|
|
SCM_GASSERTn ((scm_is_null (arg1) || scm_is_pair (arg1)) && len >= -1,
|
|
g_srfi1_map,
|
|
scm_cons2 (proc, arg1, args), SCM_ARG2, s_srfi1_map);
|
|
SCM_VALIDATE_REST_ARGUMENT (args);
|
|
if (scm_is_null (args))
|
|
{
|
|
SCM_GASSERT2 (scm_is_true (scm_procedure_p (proc)), g_srfi1_map,
|
|
proc, arg1, SCM_ARG1, s_srfi1_map);
|
|
SCM_GASSERT2 (len >= 0, g_srfi1_map, proc, arg1, SCM_ARG2, s_srfi1_map);
|
|
while (SCM_NIMP (arg1))
|
|
{
|
|
*pres = scm_list_1 (scm_call_1 (proc, SCM_CAR (arg1)));
|
|
pres = SCM_CDRLOC (*pres);
|
|
arg1 = SCM_CDR (arg1);
|
|
}
|
|
return res;
|
|
}
|
|
if (scm_is_null (SCM_CDR (args)))
|
|
{
|
|
SCM arg2 = SCM_CAR (args);
|
|
int len2 = srfi1_ilength (arg2);
|
|
SCM_GASSERTn (scm_is_true (scm_procedure_p (proc)), g_srfi1_map,
|
|
scm_cons2 (proc, arg1, args), SCM_ARG1, s_srfi1_map);
|
|
if (len < 0 || (len2 >= 0 && len2 < len))
|
|
len = len2;
|
|
SCM_GASSERTn ((scm_is_null (arg2) || scm_is_pair (arg2))
|
|
&& len >= 0 && len2 >= -1,
|
|
g_srfi1_map,
|
|
scm_cons2 (proc, arg1, args),
|
|
len2 >= 0 ? SCM_ARG2 : SCM_ARG3,
|
|
s_srfi1_map);
|
|
while (len > 0)
|
|
{
|
|
*pres = scm_list_1 (scm_call_2 (proc, SCM_CAR (arg1), SCM_CAR (arg2)));
|
|
pres = SCM_CDRLOC (*pres);
|
|
arg1 = SCM_CDR (arg1);
|
|
arg2 = SCM_CDR (arg2);
|
|
--len;
|
|
}
|
|
return res;
|
|
}
|
|
args = scm_vector (arg1 = scm_cons (arg1, args));
|
|
len = check_map_args (args, len, g_srfi1_map, proc, arg1, s_srfi1_map);
|
|
while (len > 0)
|
|
{
|
|
arg1 = SCM_EOL;
|
|
for (i = SCM_SIMPLE_VECTOR_LENGTH (args) - 1; i >= 0; i--)
|
|
{
|
|
SCM elt = SCM_SIMPLE_VECTOR_REF (args, i);
|
|
arg1 = scm_cons (SCM_CAR (elt), arg1);
|
|
SCM_SIMPLE_VECTOR_SET (args, i, SCM_CDR (elt));
|
|
}
|
|
*pres = scm_list_1 (scm_apply (proc, arg1, SCM_EOL));
|
|
pres = SCM_CDRLOC (*pres);
|
|
--len;
|
|
}
|
|
return res;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
SCM_REGISTER_PROC (s_srfi1_map_in_order, "map-in-order", 2, 0, 1, scm_srfi1_map);
|
|
|
|
SCM_GPROC (s_srfi1_for_each, "for-each", 2, 0, 1, scm_srfi1_for_each, g_srfi1_for_each);
|
|
|
|
SCM
|
|
scm_srfi1_for_each (SCM proc, SCM arg1, SCM args)
|
|
#define FUNC_NAME s_srfi1_for_each
|
|
{
|
|
long i, len;
|
|
len = srfi1_ilength (arg1);
|
|
SCM_GASSERTn ((scm_is_null (arg1) || scm_is_pair (arg1)) && len >= -1,
|
|
g_srfi1_for_each, scm_cons2 (proc, arg1, args),
|
|
SCM_ARG2, s_srfi1_for_each);
|
|
SCM_VALIDATE_REST_ARGUMENT (args);
|
|
if (scm_is_null (args))
|
|
{
|
|
SCM_GASSERT2 (scm_is_true (scm_procedure_p (proc)), g_srfi1_for_each,
|
|
proc, arg1, SCM_ARG1, s_srfi1_for_each);
|
|
SCM_GASSERT2 (len >= 0, g_srfi1_for_each, proc, arg1,
|
|
SCM_ARG2, s_srfi1_map);
|
|
while (SCM_NIMP (arg1))
|
|
{
|
|
scm_call_1 (proc, SCM_CAR (arg1));
|
|
arg1 = SCM_CDR (arg1);
|
|
}
|
|
return SCM_UNSPECIFIED;
|
|
}
|
|
if (scm_is_null (SCM_CDR (args)))
|
|
{
|
|
SCM arg2 = SCM_CAR (args);
|
|
int len2 = srfi1_ilength (arg2);
|
|
SCM_GASSERTn (scm_is_true (scm_procedure_p (proc)), g_srfi1_for_each,
|
|
scm_cons2 (proc, arg1, args), SCM_ARG1, s_srfi1_for_each);
|
|
if (len < 0 || (len2 >= 0 && len2 < len))
|
|
len = len2;
|
|
SCM_GASSERTn ((scm_is_null (arg2) || scm_is_pair (arg2))
|
|
&& len >= 0 && len2 >= -1,
|
|
g_srfi1_for_each,
|
|
scm_cons2 (proc, arg1, args),
|
|
len2 >= 0 ? SCM_ARG2 : SCM_ARG3,
|
|
s_srfi1_for_each);
|
|
while (len > 0)
|
|
{
|
|
scm_call_2 (proc, SCM_CAR (arg1), SCM_CAR (arg2));
|
|
arg1 = SCM_CDR (arg1);
|
|
arg2 = SCM_CDR (arg2);
|
|
--len;
|
|
}
|
|
return SCM_UNSPECIFIED;
|
|
}
|
|
args = scm_vector (arg1 = scm_cons (arg1, args));
|
|
len = check_map_args (args, len, g_srfi1_for_each, proc, arg1,
|
|
s_srfi1_for_each);
|
|
while (len > 0)
|
|
{
|
|
arg1 = SCM_EOL;
|
|
for (i = SCM_SIMPLE_VECTOR_LENGTH (args) - 1; i >= 0; i--)
|
|
{
|
|
SCM elt = SCM_SIMPLE_VECTOR_REF (args, i);
|
|
arg1 = scm_cons (SCM_CAR (elt), arg1);
|
|
SCM_SIMPLE_VECTOR_SET (args, i, SCM_CDR (elt));
|
|
}
|
|
scm_apply (proc, arg1, SCM_EOL);
|
|
--len;
|
|
}
|
|
return SCM_UNSPECIFIED;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_member, "member", 2, 1, 0,
|
|
(SCM x, SCM lst, SCM pred),
|
|
"Return the first sublist of @var{lst} whose @sc{car} is equal\n"
|
|
"to @var{x}. If @var{x} does not appear in @var{lst}, return\n"
|
|
"@code{#f}.\n"
|
|
"\n"
|
|
"Equality is determined by @code{equal?}, or by the equality\n"
|
|
"predicate @var{=} if given. @var{=} is called @code{(= @var{x}\n"
|
|
"elem)}, ie.@: with the given @var{x} first, so for example to\n"
|
|
"find the first element greater than 5,\n"
|
|
"\n"
|
|
"@example\n"
|
|
"(member 5 '(3 5 1 7 2 9) <) @result{} (7 2 9)\n"
|
|
"@end example\n"
|
|
"\n"
|
|
"This version of @code{member} extends the core @code{member} by\n"
|
|
"accepting an equality predicate.")
|
|
#define FUNC_NAME s_scm_srfi1_member
|
|
{
|
|
scm_t_trampoline_2 equal_p;
|
|
SCM_VALIDATE_LIST (2, lst);
|
|
if (SCM_UNBNDP (pred))
|
|
equal_p = equal_trampoline;
|
|
else
|
|
{
|
|
SCM_VALIDATE_PROC (SCM_ARG3, pred);
|
|
equal_p = scm_call_2;
|
|
}
|
|
for (; !SCM_NULL_OR_NIL_P (lst); lst = SCM_CDR (lst))
|
|
{
|
|
if (scm_is_true (equal_p (pred, x, SCM_CAR (lst))))
|
|
return lst;
|
|
}
|
|
return SCM_BOOL_F;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
SCM_DEFINE (scm_srfi1_assoc, "assoc", 2, 1, 0,
|
|
(SCM key, SCM alist, SCM pred),
|
|
"Behaves like @code{assq} but uses third argument @var{pred?}\n"
|
|
"for key comparison. If @var{pred?} is not supplied,\n"
|
|
"@code{equal?} is used. (Extended from R5RS.)\n")
|
|
#define FUNC_NAME s_scm_srfi1_assoc
|
|
{
|
|
SCM ls = alist;
|
|
scm_t_trampoline_2 equal_p;
|
|
if (SCM_UNBNDP (pred))
|
|
equal_p = equal_trampoline;
|
|
else
|
|
{
|
|
SCM_VALIDATE_PROC (SCM_ARG3, pred);
|
|
equal_p = scm_call_2;
|
|
}
|
|
for(; scm_is_pair (ls); ls = SCM_CDR (ls))
|
|
{
|
|
SCM tmp = SCM_CAR (ls);
|
|
SCM_ASSERT_TYPE (scm_is_pair (tmp), alist, SCM_ARG2, FUNC_NAME,
|
|
"association list");
|
|
if (scm_is_true (equal_p (pred, key, SCM_CAR (tmp))))
|
|
return tmp;
|
|
}
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (ls), alist, SCM_ARG2, FUNC_NAME,
|
|
"association list");
|
|
return SCM_BOOL_F;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_ninth, "ninth", 1, 0, 0,
|
|
(SCM lst),
|
|
"Return the ninth element of @var{lst}.")
|
|
#define FUNC_NAME s_scm_srfi1_ninth
|
|
{
|
|
return scm_list_ref (lst, scm_from_int (8));
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_not_pair_p, "not-pair?", 1, 0, 0,
|
|
(SCM obj),
|
|
"Return @code{#t} is @var{obj} is not a pair, @code{#f}\n"
|
|
"otherwise.\n"
|
|
"\n"
|
|
"This is shorthand notation @code{(not (pair? @var{obj}))} and\n"
|
|
"is supposed to be used for end-of-list checking in contexts\n"
|
|
"where dotted lists are allowed.")
|
|
#define FUNC_NAME s_scm_srfi1_not_pair_p
|
|
{
|
|
return scm_from_bool (! scm_is_pair (obj));
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_partition, "partition", 2, 0, 0,
|
|
(SCM pred, SCM list),
|
|
"Partition the elements of @var{list} with predicate @var{pred}.\n"
|
|
"Return two values: the list of elements satifying @var{pred} and\n"
|
|
"the list of elements @emph{not} satisfying @var{pred}. The order\n"
|
|
"of the output lists follows the order of @var{list}. @var{list}\n"
|
|
"is not mutated. One of the output lists may share memory with @var{list}.\n")
|
|
#define FUNC_NAME s_scm_srfi1_partition
|
|
{
|
|
/* In this implementation, the output lists don't share memory with
|
|
list, because it's probably not worth the effort. */
|
|
SCM orig_list = list;
|
|
SCM kept = scm_cons(SCM_EOL, SCM_EOL);
|
|
SCM kept_tail = kept;
|
|
SCM dropped = scm_cons(SCM_EOL, SCM_EOL);
|
|
SCM dropped_tail = dropped;
|
|
|
|
SCM_VALIDATE_PROC (SCM_ARG1, pred);
|
|
|
|
for (; !SCM_NULL_OR_NIL_P (list); list = SCM_CDR(list)) {
|
|
SCM elt, new_tail;
|
|
|
|
/* Make sure LIST is not a dotted list. */
|
|
SCM_ASSERT (scm_is_pair (list), orig_list, SCM_ARG2, FUNC_NAME);
|
|
|
|
elt = SCM_CAR (list);
|
|
new_tail = scm_cons (SCM_CAR (list), SCM_EOL);
|
|
|
|
if (scm_is_true (scm_call_1 (pred, elt))) {
|
|
SCM_SETCDR(kept_tail, new_tail);
|
|
kept_tail = new_tail;
|
|
}
|
|
else {
|
|
SCM_SETCDR(dropped_tail, new_tail);
|
|
dropped_tail = new_tail;
|
|
}
|
|
}
|
|
/* re-use the initial conses for the values list */
|
|
SCM_SETCAR(kept, SCM_CDR(kept));
|
|
SCM_SETCDR(kept, dropped);
|
|
SCM_SETCAR(dropped, SCM_CDR(dropped));
|
|
SCM_SETCDR(dropped, SCM_EOL);
|
|
return scm_values(kept);
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_partition_x, "partition!", 2, 0, 0,
|
|
(SCM pred, SCM lst),
|
|
"Split @var{lst} into those elements which do and don't satisfy\n"
|
|
"the predicate @var{pred}.\n"
|
|
"\n"
|
|
"The return is two values (@pxref{Multiple Values}), the first\n"
|
|
"being a list of all elements from @var{lst} which satisfy\n"
|
|
"@var{pred}, the second a list of those which do not.\n"
|
|
"\n"
|
|
"The elements in the result lists are in the same order as in\n"
|
|
"@var{lst} but the order in which the calls @code{(@var{pred}\n"
|
|
"elem)} are made on the list elements is unspecified.\n"
|
|
"\n"
|
|
"@var{lst} may be modified to construct the return lists.")
|
|
#define FUNC_NAME s_scm_srfi1_partition_x
|
|
{
|
|
SCM tlst, flst, *tp, *fp;
|
|
|
|
SCM_ASSERT (scm_is_true (scm_procedure_p (pred)), pred, SCM_ARG1, FUNC_NAME);
|
|
|
|
/* tlst and flst are the lists of true and false elements. tp and fp are
|
|
where to store to append to them, initially &tlst and &flst, then
|
|
SCM_CDRLOC of the last pair in the respective lists. */
|
|
|
|
tlst = SCM_EOL;
|
|
flst = SCM_EOL;
|
|
tp = &tlst;
|
|
fp = &flst;
|
|
|
|
for ( ; scm_is_pair (lst); lst = SCM_CDR (lst))
|
|
{
|
|
if (scm_is_true (scm_call_1 (pred, SCM_CAR (lst))))
|
|
{
|
|
*tp = lst;
|
|
tp = SCM_CDRLOC (lst);
|
|
}
|
|
else
|
|
{
|
|
*fp = lst;
|
|
fp = SCM_CDRLOC (lst);
|
|
}
|
|
}
|
|
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (lst), lst, SCM_ARG2, FUNC_NAME, "list");
|
|
|
|
/* terminate whichever didn't get the last element(s) */
|
|
*tp = SCM_EOL;
|
|
*fp = SCM_EOL;
|
|
|
|
return scm_values (scm_list_2 (tlst, flst));
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_reduce, "reduce", 3, 0, 0,
|
|
(SCM proc, SCM def, SCM lst),
|
|
"@code{reduce} is a variant of @code{fold}, where the first call\n"
|
|
"to @var{proc} is on two elements from @var{lst}, rather than\n"
|
|
"one element and a given initial value.\n"
|
|
"\n"
|
|
"If @var{lst} is empty, @code{reduce} returns @var{def} (this is\n"
|
|
"the only use for @var{def}). If @var{lst} has just one element\n"
|
|
"then that's the return value. Otherwise @var{proc} is called\n"
|
|
"on the elements of @var{lst}.\n"
|
|
"\n"
|
|
"Each @var{proc} call is @code{(@var{proc} @var{elem}\n"
|
|
"@var{previous})}, where @var{elem} is from @var{lst} (the\n"
|
|
"second and subsequent elements of @var{lst}), and\n"
|
|
"@var{previous} is the return from the previous call to\n"
|
|
"@var{proc}. The first element of @var{lst} is the\n"
|
|
"@var{previous} for the first call to @var{proc}.\n"
|
|
"\n"
|
|
"For example, the following adds a list of numbers, the calls\n"
|
|
"made to @code{+} are shown. (Of course @code{+} accepts\n"
|
|
"multiple arguments and can add a list directly, with\n"
|
|
"@code{apply}.)\n"
|
|
"\n"
|
|
"@example\n"
|
|
"(reduce + 0 '(5 6 7)) @result{} 18\n"
|
|
"\n"
|
|
"(+ 6 5) @result{} 11\n"
|
|
"(+ 7 11) @result{} 18\n"
|
|
"@end example\n"
|
|
"\n"
|
|
"@code{reduce} can be used instead of @code{fold} where the\n"
|
|
"@var{init} value is an ``identity'', meaning a value which\n"
|
|
"under @var{proc} doesn't change the result, in this case 0 is\n"
|
|
"an identity since @code{(+ 5 0)} is just 5. @code{reduce}\n"
|
|
"avoids that unnecessary call.")
|
|
#define FUNC_NAME s_scm_srfi1_reduce
|
|
{
|
|
SCM ret;
|
|
SCM_VALIDATE_PROC (SCM_ARG1, proc);
|
|
ret = def; /* if lst is empty */
|
|
if (scm_is_pair (lst))
|
|
{
|
|
ret = SCM_CAR (lst); /* if lst has one element */
|
|
|
|
for (lst = SCM_CDR (lst); scm_is_pair (lst); lst = SCM_CDR (lst))
|
|
ret = scm_call_2 (proc, SCM_CAR (lst), ret);
|
|
}
|
|
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (lst), lst, SCM_ARG3, FUNC_NAME, "list");
|
|
return ret;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_reduce_right, "reduce-right", 3, 0, 0,
|
|
(SCM proc, SCM def, SCM lst),
|
|
"@code{reduce-right} is a variant of @code{fold-right}, where\n"
|
|
"the first call to @var{proc} is on two elements from @var{lst},\n"
|
|
"rather than one element and a given initial value.\n"
|
|
"\n"
|
|
"If @var{lst} is empty, @code{reduce-right} returns @var{def}\n"
|
|
"(this is the only use for @var{def}). If @var{lst} has just\n"
|
|
"one element then that's the return value. Otherwise @var{proc}\n"
|
|
"is called on the elements of @var{lst}.\n"
|
|
"\n"
|
|
"Each @var{proc} call is @code{(@var{proc} @var{elem}\n"
|
|
"@var{previous})}, where @var{elem} is from @var{lst} (the\n"
|
|
"second last and then working back to the first element of\n"
|
|
"@var{lst}), and @var{previous} is the return from the previous\n"
|
|
"call to @var{proc}. The last element of @var{lst} is the\n"
|
|
"@var{previous} for the first call to @var{proc}.\n"
|
|
"\n"
|
|
"For example, the following adds a list of numbers, the calls\n"
|
|
"made to @code{+} are shown. (Of course @code{+} accepts\n"
|
|
"multiple arguments and can add a list directly, with\n"
|
|
"@code{apply}.)\n"
|
|
"\n"
|
|
"@example\n"
|
|
"(reduce-right + 0 '(5 6 7)) @result{} 18\n"
|
|
"\n"
|
|
"(+ 6 7) @result{} 13\n"
|
|
"(+ 5 13) @result{} 18\n"
|
|
"@end example\n"
|
|
"\n"
|
|
"@code{reduce-right} can be used instead of @code{fold-right}\n"
|
|
"where the @var{init} value is an ``identity'', meaning a value\n"
|
|
"which under @var{proc} doesn't change the result, in this case\n"
|
|
"0 is an identity since @code{(+ 7 0)} is just 5.\n"
|
|
"@code{reduce-right} avoids that unnecessary call.\n"
|
|
"\n"
|
|
"@code{reduce} should be preferred over @code{reduce-right} if\n"
|
|
"the order of processing doesn't matter, or can be arranged\n"
|
|
"either way, since @code{reduce} is a little more efficient.")
|
|
#define FUNC_NAME s_scm_srfi1_reduce_right
|
|
{
|
|
/* To work backwards across a list requires either repeatedly traversing
|
|
to get each previous element, or using some memory for a reversed or
|
|
random-access form. Repeated traversal might not be too terrible, but
|
|
is of course quadratic complexity and hence to be avoided in case LST
|
|
is long. A vector is preferred over a reversed list since it's more
|
|
compact and is less work for the gc to collect. */
|
|
|
|
SCM vec, ret;
|
|
ssize_t len, i;
|
|
SCM_VALIDATE_PROC (SCM_ARG1, proc);
|
|
if (SCM_NULL_OR_NIL_P (lst))
|
|
return def;
|
|
|
|
vec = scm_vector (lst);
|
|
len = SCM_SIMPLE_VECTOR_LENGTH (vec);
|
|
|
|
ret = SCM_SIMPLE_VECTOR_REF (vec, len-1);
|
|
for (i = len-2; i >= 0; i--)
|
|
ret = scm_call_2 (proc, SCM_SIMPLE_VECTOR_REF (vec, i), ret);
|
|
|
|
return ret;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_remove, "remove", 2, 0, 0,
|
|
(SCM pred, SCM list),
|
|
"Return a list containing all elements from @var{lst} which do\n"
|
|
"not satisfy the predicate @var{pred}. The elements in the\n"
|
|
"result list have the same order as in @var{lst}. The order in\n"
|
|
"which @var{pred} is applied to the list elements is not\n"
|
|
"specified.")
|
|
#define FUNC_NAME s_scm_srfi1_remove
|
|
{
|
|
SCM walk;
|
|
SCM *prev;
|
|
SCM res = SCM_EOL;
|
|
SCM_VALIDATE_PROC (SCM_ARG1, pred);
|
|
SCM_VALIDATE_LIST (2, list);
|
|
|
|
for (prev = &res, walk = list;
|
|
scm_is_pair (walk);
|
|
walk = SCM_CDR (walk))
|
|
{
|
|
if (scm_is_false (scm_call_1 (pred, SCM_CAR (walk))))
|
|
{
|
|
*prev = scm_cons (SCM_CAR (walk), SCM_EOL);
|
|
prev = SCM_CDRLOC (*prev);
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_remove_x, "remove!", 2, 0, 0,
|
|
(SCM pred, SCM list),
|
|
"Return a list containing all elements from @var{list} which do\n"
|
|
"not satisfy the predicate @var{pred}. The elements in the\n"
|
|
"result list have the same order as in @var{list}. The order in\n"
|
|
"which @var{pred} is applied to the list elements is not\n"
|
|
"specified. @var{list} may be modified to build the return\n"
|
|
"list.")
|
|
#define FUNC_NAME s_scm_srfi1_remove_x
|
|
{
|
|
SCM walk;
|
|
SCM *prev;
|
|
SCM_VALIDATE_PROC (SCM_ARG1, pred);
|
|
SCM_VALIDATE_LIST (2, list);
|
|
|
|
for (prev = &list, walk = list;
|
|
scm_is_pair (walk);
|
|
walk = SCM_CDR (walk))
|
|
{
|
|
if (scm_is_false (scm_call_1 (pred, SCM_CAR (walk))))
|
|
prev = SCM_CDRLOC (walk);
|
|
else
|
|
*prev = SCM_CDR (walk);
|
|
}
|
|
|
|
return list;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_seventh, "seventh", 1, 0, 0,
|
|
(SCM lst),
|
|
"Return the seventh element of @var{lst}.")
|
|
#define FUNC_NAME s_scm_srfi1_seventh
|
|
{
|
|
return scm_list_ref (lst, scm_from_int (6));
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_sixth, "sixth", 1, 0, 0,
|
|
(SCM lst),
|
|
"Return the sixth element of @var{lst}.")
|
|
#define FUNC_NAME s_scm_srfi1_sixth
|
|
{
|
|
return scm_list_ref (lst, scm_from_int (5));
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_span, "span", 2, 0, 0,
|
|
(SCM pred, SCM lst),
|
|
"Return two values, the longest initial prefix of @var{lst}\n"
|
|
"whose elements all satisfy the predicate @var{pred}, and the\n"
|
|
"remainder of @var{lst}.")
|
|
#define FUNC_NAME s_scm_srfi1_span
|
|
{
|
|
SCM ret, *p;
|
|
|
|
SCM_ASSERT (scm_is_true (scm_procedure_p (pred)), pred, SCM_ARG1, FUNC_NAME);
|
|
|
|
ret = SCM_EOL;
|
|
p = &ret;
|
|
for ( ; scm_is_pair (lst); lst = SCM_CDR (lst))
|
|
{
|
|
SCM elem = SCM_CAR (lst);
|
|
if (scm_is_false (scm_call_1 (pred, elem)))
|
|
goto done;
|
|
|
|
/* want this elem, tack it onto the end of ret */
|
|
*p = scm_cons (elem, SCM_EOL);
|
|
p = SCM_CDRLOC (*p);
|
|
}
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (lst), lst, SCM_ARG2, FUNC_NAME, "list");
|
|
|
|
done:
|
|
return scm_values (scm_list_2 (ret, lst));
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_span_x, "span!", 2, 0, 0,
|
|
(SCM pred, SCM lst),
|
|
"Return two values, the longest initial prefix of @var{lst}\n"
|
|
"whose elements all satisfy the predicate @var{pred}, and the\n"
|
|
"remainder of @var{lst}. @var{lst} may be modified to form the\n"
|
|
"return.")
|
|
#define FUNC_NAME s_scm_srfi1_span_x
|
|
{
|
|
SCM upto, *p;
|
|
|
|
SCM_ASSERT (scm_is_true (scm_procedure_p (pred)), pred, SCM_ARG1, FUNC_NAME);
|
|
|
|
p = &lst;
|
|
for (upto = lst; scm_is_pair (upto); upto = SCM_CDR (upto))
|
|
{
|
|
if (scm_is_false (scm_call_1 (pred, SCM_CAR (upto))))
|
|
goto done;
|
|
|
|
/* want this element */
|
|
p = SCM_CDRLOC (upto);
|
|
}
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (upto), lst, SCM_ARG2, FUNC_NAME, "list");
|
|
|
|
done:
|
|
*p = SCM_EOL;
|
|
return scm_values (scm_list_2 (lst, upto));
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_split_at, "split-at", 2, 0, 0,
|
|
(SCM lst, SCM n),
|
|
"Return two values (multiple values), being a list of the\n"
|
|
"elements before index @var{n} in @var{lst}, and a list of those\n"
|
|
"after.")
|
|
#define FUNC_NAME s_scm_srfi1_split_at
|
|
{
|
|
size_t nn;
|
|
/* pre is a list of elements before the i split point, loc is the CDRLOC
|
|
of the last cell, ie. where to store to append to it */
|
|
SCM pre = SCM_EOL;
|
|
SCM *loc = ⪯
|
|
|
|
for (nn = scm_to_size_t (n); nn != 0; nn--)
|
|
{
|
|
SCM_VALIDATE_CONS (SCM_ARG1, lst);
|
|
|
|
*loc = scm_cons (SCM_CAR (lst), SCM_EOL);
|
|
loc = SCM_CDRLOC (*loc);
|
|
lst = SCM_CDR(lst);
|
|
}
|
|
return scm_values (scm_list_2 (pre, lst));
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_split_at_x, "split-at!", 2, 0, 0,
|
|
(SCM lst, SCM n),
|
|
"Return two values (multiple values), being a list of the\n"
|
|
"elements before index @var{n} in @var{lst}, and a list of those\n"
|
|
"after. @var{lst} is modified to form those values.")
|
|
#define FUNC_NAME s_scm_srfi1_split_at
|
|
{
|
|
size_t nn;
|
|
SCM upto = lst;
|
|
SCM *loc = &lst;
|
|
|
|
for (nn = scm_to_size_t (n); nn != 0; nn--)
|
|
{
|
|
SCM_VALIDATE_CONS (SCM_ARG1, upto);
|
|
|
|
loc = SCM_CDRLOC (upto);
|
|
upto = SCM_CDR (upto);
|
|
}
|
|
|
|
*loc = SCM_EOL;
|
|
return scm_values (scm_list_2 (lst, upto));
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_take_x, "take!", 2, 0, 0,
|
|
(SCM lst, SCM n),
|
|
"Return a list containing the first @var{n} elements of\n"
|
|
"@var{lst}.")
|
|
#define FUNC_NAME s_scm_srfi1_take_x
|
|
{
|
|
long nn;
|
|
SCM pos;
|
|
|
|
nn = scm_to_signed_integer (n, 0, LONG_MAX);
|
|
if (nn == 0)
|
|
return SCM_EOL;
|
|
|
|
pos = scm_list_tail (lst, scm_from_long (nn - 1));
|
|
|
|
/* Must have at least one cell left, mustn't have reached the end of an
|
|
n-1 element list. SCM_VALIDATE_CONS here gives the same error as
|
|
scm_list_tail does on say an n-2 element list, though perhaps a range
|
|
error would make more sense (for both). */
|
|
SCM_VALIDATE_CONS (SCM_ARG1, pos);
|
|
|
|
SCM_SETCDR (pos, SCM_EOL);
|
|
return lst;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_take_right, "take-right", 2, 0, 0,
|
|
(SCM lst, SCM n),
|
|
"Return the a list containing the @var{n} last elements of\n"
|
|
"@var{lst}.")
|
|
#define FUNC_NAME s_scm_srfi1_take_right
|
|
{
|
|
SCM tail = scm_list_tail (lst, n);
|
|
while (scm_is_pair (tail))
|
|
{
|
|
lst = SCM_CDR (lst);
|
|
tail = SCM_CDR (tail);
|
|
}
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P(tail), tail, SCM_ARG1, FUNC_NAME, "list");
|
|
return lst;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_take_while, "take-while", 2, 0, 0,
|
|
(SCM pred, SCM lst),
|
|
"Return a new list which is the longest initial prefix of\n"
|
|
"@var{lst} whose elements all satisfy the predicate @var{pred}.")
|
|
#define FUNC_NAME s_scm_srfi1_take_while
|
|
{
|
|
SCM ret, *p;
|
|
|
|
SCM_ASSERT (scm_is_true (scm_procedure_p (pred)), pred, SCM_ARG1, FUNC_NAME);
|
|
|
|
ret = SCM_EOL;
|
|
p = &ret;
|
|
for ( ; scm_is_pair (lst); lst = SCM_CDR (lst))
|
|
{
|
|
SCM elem = SCM_CAR (lst);
|
|
if (scm_is_false (scm_call_1 (pred, elem)))
|
|
goto done;
|
|
|
|
/* want this elem, tack it onto the end of ret */
|
|
*p = scm_cons (elem, SCM_EOL);
|
|
p = SCM_CDRLOC (*p);
|
|
}
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (lst), lst, SCM_ARG2, FUNC_NAME, "list");
|
|
|
|
done:
|
|
return ret;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_take_while_x, "take-while!", 2, 0, 0,
|
|
(SCM pred, SCM lst),
|
|
"Return the longest initial prefix of @var{lst} whose elements\n"
|
|
"all satisfy the predicate @var{pred}. @var{lst} may be\n"
|
|
"modified to form the return.")
|
|
#define FUNC_NAME s_scm_srfi1_take_while_x
|
|
{
|
|
SCM upto, *p;
|
|
|
|
SCM_ASSERT (scm_is_true (scm_procedure_p (pred)), pred, SCM_ARG1, FUNC_NAME);
|
|
|
|
p = &lst;
|
|
for (upto = lst; scm_is_pair (upto); upto = SCM_CDR (upto))
|
|
{
|
|
if (scm_is_false (scm_call_1 (pred, SCM_CAR (upto))))
|
|
goto done;
|
|
|
|
/* want this element */
|
|
p = SCM_CDRLOC (upto);
|
|
}
|
|
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (upto), lst, SCM_ARG2, FUNC_NAME, "list");
|
|
|
|
done:
|
|
*p = SCM_EOL;
|
|
return lst;
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_tenth, "tenth", 1, 0, 0,
|
|
(SCM lst),
|
|
"Return the tenth element of @var{lst}.")
|
|
#define FUNC_NAME s_scm_srfi1_tenth
|
|
{
|
|
return scm_list_ref (lst, scm_from_int (9));
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
SCM_DEFINE (scm_srfi1_xcons, "xcons", 2, 0, 0,
|
|
(SCM d, SCM a),
|
|
"Like @code{cons}, but with interchanged arguments. Useful\n"
|
|
"mostly when passed to higher-order procedures.")
|
|
#define FUNC_NAME s_scm_srfi1_xcons
|
|
{
|
|
return scm_cons (a, d);
|
|
}
|
|
#undef FUNC_NAME
|
|
|
|
|
|
void
|
|
scm_init_srfi_1 (void)
|
|
{
|
|
SCM the_root_module = scm_lookup_closure_module (SCM_BOOL_F);
|
|
#ifndef SCM_MAGIC_SNARFER
|
|
#include "srfi/srfi-1.x"
|
|
#endif
|
|
scm_c_extend_primitive_generic
|
|
(SCM_VARIABLE_REF (scm_c_module_lookup (the_root_module, "map")),
|
|
SCM_VARIABLE_REF (scm_c_lookup ("map")));
|
|
scm_c_extend_primitive_generic
|
|
(SCM_VARIABLE_REF (scm_c_module_lookup (the_root_module, "for-each")),
|
|
SCM_VARIABLE_REF (scm_c_lookup ("for-each")));
|
|
}
|
|
|
|
/* End of srfi-1.c. */
|