1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-30 03:40:34 +02:00
guile/module/language/cps/utils.scm
Andy Wingo 03998db647 Add new pass to optimize branch chains to table dispatch
* module/language/cps/switch.scm: New pass.

* module/Makefile.am (SOURCES):
* am/bootstrap.am (SOURCES): Add switch.scm.

* module/system/base/optimize.scm (available-optimizations):
* module/language/cps/optimize.scm (optimize-first-order-cps): Run
  switch optimization at level 2.

* libguile/hash.c (JENKINS_LOOKUP3_HASHWORD2): Add note regarding
  cross-compilation.

* module/language/cps/graphs.scm (intmap-select): New definition.
* module/language/cps/utils.scm (compute-singly-referenced-labels): Move
  here, from various places.  Doesn't take a body intset argument.

* module/language/cps/contification.scm:
* module/language/cps/closure-conversion.scm:
* module/language/cps/simplify.scm: Use compute-singly-referenced-labels
  from utils.

* module/language/cps/effects-analysis.scm (annotation->memory-kind*):
  (annotation->memory-kind): Add symbol annotation cases.
2020-08-12 23:30:08 +02:00

353 lines
14 KiB
Scheme

;;; Continuation-passing style (CPS) intermediate language (IL)
;; Copyright (C) 2013, 2014, 2015, 2017, 2018, 2019, 2020 Free Software Foundation, Inc.
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;;; Commentary:
;;;
;;; Helper facilities for working with CPS.
;;;
;;; Code:
(define-module (language cps utils)
#:use-module (ice-9 match)
#:use-module (srfi srfi-1)
#:use-module (srfi srfi-11)
#:use-module (language cps)
#:use-module (language cps intset)
#:use-module (language cps intmap)
#:use-module (language cps graphs)
#:export (;; Fresh names.
label-counter var-counter
fresh-label fresh-var
with-fresh-name-state compute-max-label-and-var
let-fresh
;; Graphs.
compute-function-body
compute-singly-referenced-labels
compute-reachable-functions
compute-successors
compute-predecessors
compute-idoms
compute-dom-edges)
#:re-export (fold1 fold2
trivial-intset
intmap-map
intmap-keys
invert-bijection invert-partition
intset->intmap
intmap-select
worklist-fold
fixpoint
;; Flow analysis.
invert-graph
compute-reverse-post-order
compute-strongly-connected-components
compute-sorted-strongly-connected-components
solve-flow-equations))
(define label-counter (make-parameter #f))
(define var-counter (make-parameter #f))
(define (fresh-label)
(let ((count (or (label-counter)
(error "fresh-label outside with-fresh-name-state"))))
(label-counter (1+ count))
count))
(define (fresh-var)
(let ((count (or (var-counter)
(error "fresh-var outside with-fresh-name-state"))))
(var-counter (1+ count))
count))
(define-syntax-rule (let-fresh (label ...) (var ...) body ...)
(let* ((label (fresh-label)) ...
(var (fresh-var)) ...)
body ...))
(define-syntax-rule (with-fresh-name-state fun body ...)
(call-with-values (lambda () (compute-max-label-and-var fun))
(lambda (max-label max-var)
(parameterize ((label-counter (1+ max-label))
(var-counter (1+ max-var)))
body ...))))
(define (compute-max-label-and-var conts)
(values (or (intmap-prev conts) -1)
(intmap-fold (lambda (k cont max-var)
(match cont
(($ $kargs names syms body)
(apply max max-var syms))
(($ $kfun src meta (and self (not #f)))
(max max-var self))
(_ max-var)))
conts
-1)))
(define (compute-function-body conts kfun)
(persistent-intset
(let visit-cont ((label kfun) (labels empty-intset))
(cond
((intset-ref labels label) labels)
(else
(let ((labels (intset-add! labels label)))
(match (intmap-ref conts label)
(($ $kreceive arity k) (visit-cont k labels))
(($ $kfun src meta self ktail kclause)
(let ((labels (visit-cont ktail labels)))
(if kclause
(visit-cont kclause labels)
labels)))
(($ $ktail) labels)
(($ $kclause arity kbody kalt)
(if kalt
(visit-cont kalt (visit-cont kbody labels))
(visit-cont kbody labels)))
(($ $kargs names syms term)
(match term
(($ $continue k)
(visit-cont k labels))
(($ $branch kf kt)
(visit-cont kf (visit-cont kt labels)))
(($ $switch kf kt*)
(visit-cont kf (fold1 visit-cont kt* labels)))
(($ $prompt k kh)
(visit-cont k (visit-cont kh labels)))
(($ $throw)
labels))))))))))
(define (compute-singly-referenced-labels conts)
"Compute the set of labels in CONTS that have exactly one
predecessor."
(define (add-ref label cont single multiple)
(define (ref k single multiple)
(if (intset-ref single k)
(values single (intset-add! multiple k))
(values (intset-add! single k) multiple)))
(define (ref0) (values single multiple))
(define (ref1 k) (ref k single multiple))
(define (ref2 k k*)
(if k*
(let-values (((single multiple) (ref k single multiple)))
(ref k* single multiple))
(ref1 k)))
(match cont
(($ $kreceive arity k) (ref1 k))
(($ $kfun src meta self ktail kclause) (ref2 ktail kclause))
(($ $ktail) (ref0))
(($ $kclause arity kbody kalt) (ref2 kbody kalt))
(($ $kargs names syms ($ $continue k)) (ref1 k))
(($ $kargs names syms ($ $branch kf kt)) (ref2 kf kt))
(($ $kargs names syms ($ $switch kf kt*))
(fold2 ref (cons kf kt*) single multiple))
(($ $kargs names syms ($ $prompt k kh)) (ref2 k kh))
(($ $kargs names syms ($ $throw)) (ref0))))
(let*-values (((single multiple) (values empty-intset empty-intset))
((single multiple) (intmap-fold add-ref conts single multiple)))
(intset-subtract (persistent-intset single)
(persistent-intset multiple))))
(define* (compute-reachable-functions conts #:optional (kfun 0))
"Compute a mapping LABEL->LABEL..., where each key is a reachable
$kfun and each associated value is the body of the function, as an
intset."
(define (intset-cons i set) (intset-add set i))
(define (visit-fun kfun body to-visit)
(intset-fold
(lambda (label to-visit)
(define (return kfun*) (fold intset-cons to-visit kfun*))
(define (return1 kfun) (intset-add to-visit kfun))
(define (return0) to-visit)
(match (intmap-ref conts label)
(($ $kargs _ _ ($ $continue _ _ exp))
(match exp
(($ $fun label) (return1 label))
(($ $rec _ _ (($ $fun labels) ...)) (return labels))
(($ $const-fun label) (return1 label))
(($ $code label) (return1 label))
(($ $callk label) (return1 label))
(_ (return0))))
(_ (return0))))
body
to-visit))
(let lp ((to-visit (intset kfun)) (visited empty-intmap))
(let ((to-visit (intset-subtract to-visit (intmap-keys visited))))
(if (eq? to-visit empty-intset)
visited
(call-with-values
(lambda ()
(intset-fold
(lambda (kfun to-visit visited)
(let ((body (compute-function-body conts kfun)))
(values (visit-fun kfun body to-visit)
(intmap-add visited kfun body))))
to-visit
empty-intset
visited))
lp)))))
(define* (compute-successors conts #:optional (kfun (intmap-next conts)))
(define (visit label succs)
(let visit ((label kfun) (succs empty-intmap))
(define (propagate0)
(intmap-add! succs label empty-intset))
(define (propagate1 succ)
(visit succ (intmap-add! succs label (intset succ))))
(define (propagate2 succ0 succ1)
(let ((succs (intmap-add! succs label (intset succ0 succ1))))
(visit succ1 (visit succ0 succs))))
(define (propagate* k*)
(define (list->intset ls)
(fold1 (lambda (elt set) (intset-add set elt)) ls empty-intset))
(fold1 visit k* (intmap-add! succs label (list->intset k*))))
(if (intmap-ref succs label (lambda (_) #f))
succs
(match (intmap-ref conts label)
(($ $kargs names vars term)
(match term
(($ $continue k) (propagate1 k))
(($ $branch kf kt) (propagate2 kf kt))
(($ $switch kf kt*) (propagate* (cons kf kt*)))
(($ $prompt k kh) (propagate2 k kh))
(($ $throw) (propagate0))))
(($ $kreceive arity k)
(propagate1 k))
(($ $kfun src meta self tail clause)
(if clause
(propagate2 clause tail)
(propagate1 tail)))
(($ $kclause arity kbody kalt)
(if kalt
(propagate2 kbody kalt)
(propagate1 kbody)))
(($ $ktail) (propagate0))))))
(persistent-intmap (visit kfun empty-intmap)))
(define* (compute-predecessors conts kfun #:key
(labels (compute-function-body conts kfun)))
(define (meet cdr car)
(cons car cdr))
(define (add-preds label preds)
(define (add-pred k preds)
(intmap-add! preds k label meet))
(match (intmap-ref conts label)
(($ $kreceive arity k)
(add-pred k preds))
(($ $kfun src meta self ktail kclause)
(add-pred ktail (if kclause (add-pred kclause preds) preds)))
(($ $ktail)
preds)
(($ $kclause arity kbody kalt)
(add-pred kbody (if kalt (add-pred kalt preds) preds)))
(($ $kargs names syms term)
(match term
(($ $continue k) (add-pred k preds))
(($ $branch kf kt) (add-pred kf (add-pred kt preds)))
(($ $switch kf kt*) (fold1 add-pred (cons kf kt*) preds))
(($ $prompt k kh) (add-pred k (add-pred kh preds)))
(($ $throw) preds)))))
(persistent-intmap
(intset-fold add-preds labels
(intset->intmap (lambda (label) '()) labels))))
;; Precondition: For each function in CONTS, the continuation names are
;; topologically sorted.
(define (compute-idoms conts kfun)
;; This is the iterative O(n^2) fixpoint algorithm, originally from
;; Allen and Cocke ("Graph-theoretic constructs for program flow
;; analysis", 1972). See the discussion in Cooper, Harvey, and
;; Kennedy's "A Simple, Fast Dominance Algorithm", 2001.
(let ((preds-map (compute-predecessors conts kfun)))
(define (compute-idom idoms preds)
(define (idom-ref label)
(intmap-ref idoms label (lambda (_) #f)))
(match preds
(() -1)
((pred) pred) ; Shortcut.
((pred . preds)
(define (common-idom d0 d1)
;; We exploit the fact that a reverse post-order is a
;; topological sort, and so the idom of a node is always
;; numerically less than the node itself.
(let lp ((d0 d0) (d1 d1))
(cond
;; d0 or d1 can be false on the first iteration.
((not d0) d1)
((not d1) d0)
((= d0 d1) d0)
((< d0 d1) (lp d0 (idom-ref d1)))
(else (lp (idom-ref d0) d1)))))
(fold1 common-idom preds pred))))
(define (adjoin-idom label preds idoms)
(let ((idom (compute-idom idoms preds)))
;; Don't use intmap-add! here.
(intmap-add idoms label idom (lambda (old new) new))))
(fixpoint (lambda (idoms)
(intmap-fold adjoin-idom preds-map idoms))
empty-intmap)))
;; Precondition: For each function in CONTS, the continuation names are
;; topologically sorted.
(define (compute-idoms conts kfun)
;; This is the iterative O(n^2) fixpoint algorithm, originally from
;; Allen and Cocke ("Graph-theoretic constructs for program flow
;; analysis", 1972). See the discussion in Cooper, Harvey, and
;; Kennedy's "A Simple, Fast Dominance Algorithm", 2001.
(let ((preds-map (compute-predecessors conts kfun)))
(define (compute-idom idoms preds)
(define (idom-ref label)
(intmap-ref idoms label (lambda (_) #f)))
(match preds
(() -1)
((pred) pred) ; Shortcut.
((pred . preds)
(define (common-idom d0 d1)
;; We exploit the fact that a reverse post-order is a
;; topological sort, and so the idom of a node is always
;; numerically less than the node itself.
(let lp ((d0 d0) (d1 d1))
(cond
;; d0 or d1 can be false on the first iteration.
((not d0) d1)
((not d1) d0)
((= d0 d1) d0)
((< d0 d1) (lp d0 (idom-ref d1)))
(else (lp (idom-ref d0) d1)))))
(fold1 common-idom preds pred))))
(define (adjoin-idom label preds idoms)
(let ((idom (compute-idom idoms preds)))
;; Don't use intmap-add! here.
(intmap-add idoms label idom (lambda (old new) new))))
(fixpoint (lambda (idoms)
(intmap-fold adjoin-idom preds-map idoms))
empty-intmap)))
;; Compute a vector containing, for each node, a list of the nodes that
;; it immediately dominates. These are the "D" edges in the DJ tree.
(define (compute-dom-edges idoms)
(define (snoc cdr car) (cons car cdr))
(persistent-intmap
(intmap-fold (lambda (label idom doms)
(let ((doms (intmap-add! doms label '())))
(cond
((< idom 0) doms) ;; No edge to entry.
(else (intmap-add! doms idom label snoc)))))
idoms
empty-intmap)))