mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-04-30 03:40:34 +02:00
* module/language/cps/switch.scm: New pass. * module/Makefile.am (SOURCES): * am/bootstrap.am (SOURCES): Add switch.scm. * module/system/base/optimize.scm (available-optimizations): * module/language/cps/optimize.scm (optimize-first-order-cps): Run switch optimization at level 2. * libguile/hash.c (JENKINS_LOOKUP3_HASHWORD2): Add note regarding cross-compilation. * module/language/cps/graphs.scm (intmap-select): New definition. * module/language/cps/utils.scm (compute-singly-referenced-labels): Move here, from various places. Doesn't take a body intset argument. * module/language/cps/contification.scm: * module/language/cps/closure-conversion.scm: * module/language/cps/simplify.scm: Use compute-singly-referenced-labels from utils. * module/language/cps/effects-analysis.scm (annotation->memory-kind*): (annotation->memory-kind): Add symbol annotation cases.
353 lines
14 KiB
Scheme
353 lines
14 KiB
Scheme
;;; Continuation-passing style (CPS) intermediate language (IL)
|
|
|
|
;; Copyright (C) 2013, 2014, 2015, 2017, 2018, 2019, 2020 Free Software Foundation, Inc.
|
|
|
|
;;;; This library is free software; you can redistribute it and/or
|
|
;;;; modify it under the terms of the GNU Lesser General Public
|
|
;;;; License as published by the Free Software Foundation; either
|
|
;;;; version 3 of the License, or (at your option) any later version.
|
|
;;;;
|
|
;;;; This library is distributed in the hope that it will be useful,
|
|
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
;;;; Lesser General Public License for more details.
|
|
;;;;
|
|
;;;; You should have received a copy of the GNU Lesser General Public
|
|
;;;; License along with this library; if not, write to the Free Software
|
|
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
;;; Commentary:
|
|
;;;
|
|
;;; Helper facilities for working with CPS.
|
|
;;;
|
|
;;; Code:
|
|
|
|
(define-module (language cps utils)
|
|
#:use-module (ice-9 match)
|
|
#:use-module (srfi srfi-1)
|
|
#:use-module (srfi srfi-11)
|
|
#:use-module (language cps)
|
|
#:use-module (language cps intset)
|
|
#:use-module (language cps intmap)
|
|
#:use-module (language cps graphs)
|
|
#:export (;; Fresh names.
|
|
label-counter var-counter
|
|
fresh-label fresh-var
|
|
with-fresh-name-state compute-max-label-and-var
|
|
let-fresh
|
|
|
|
;; Graphs.
|
|
compute-function-body
|
|
compute-singly-referenced-labels
|
|
compute-reachable-functions
|
|
compute-successors
|
|
compute-predecessors
|
|
compute-idoms
|
|
compute-dom-edges)
|
|
#:re-export (fold1 fold2
|
|
trivial-intset
|
|
intmap-map
|
|
intmap-keys
|
|
invert-bijection invert-partition
|
|
intset->intmap
|
|
intmap-select
|
|
worklist-fold
|
|
fixpoint
|
|
|
|
;; Flow analysis.
|
|
invert-graph
|
|
compute-reverse-post-order
|
|
compute-strongly-connected-components
|
|
compute-sorted-strongly-connected-components
|
|
solve-flow-equations))
|
|
|
|
(define label-counter (make-parameter #f))
|
|
(define var-counter (make-parameter #f))
|
|
|
|
(define (fresh-label)
|
|
(let ((count (or (label-counter)
|
|
(error "fresh-label outside with-fresh-name-state"))))
|
|
(label-counter (1+ count))
|
|
count))
|
|
|
|
(define (fresh-var)
|
|
(let ((count (or (var-counter)
|
|
(error "fresh-var outside with-fresh-name-state"))))
|
|
(var-counter (1+ count))
|
|
count))
|
|
|
|
(define-syntax-rule (let-fresh (label ...) (var ...) body ...)
|
|
(let* ((label (fresh-label)) ...
|
|
(var (fresh-var)) ...)
|
|
body ...))
|
|
|
|
(define-syntax-rule (with-fresh-name-state fun body ...)
|
|
(call-with-values (lambda () (compute-max-label-and-var fun))
|
|
(lambda (max-label max-var)
|
|
(parameterize ((label-counter (1+ max-label))
|
|
(var-counter (1+ max-var)))
|
|
body ...))))
|
|
|
|
(define (compute-max-label-and-var conts)
|
|
(values (or (intmap-prev conts) -1)
|
|
(intmap-fold (lambda (k cont max-var)
|
|
(match cont
|
|
(($ $kargs names syms body)
|
|
(apply max max-var syms))
|
|
(($ $kfun src meta (and self (not #f)))
|
|
(max max-var self))
|
|
(_ max-var)))
|
|
conts
|
|
-1)))
|
|
|
|
(define (compute-function-body conts kfun)
|
|
(persistent-intset
|
|
(let visit-cont ((label kfun) (labels empty-intset))
|
|
(cond
|
|
((intset-ref labels label) labels)
|
|
(else
|
|
(let ((labels (intset-add! labels label)))
|
|
(match (intmap-ref conts label)
|
|
(($ $kreceive arity k) (visit-cont k labels))
|
|
(($ $kfun src meta self ktail kclause)
|
|
(let ((labels (visit-cont ktail labels)))
|
|
(if kclause
|
|
(visit-cont kclause labels)
|
|
labels)))
|
|
(($ $ktail) labels)
|
|
(($ $kclause arity kbody kalt)
|
|
(if kalt
|
|
(visit-cont kalt (visit-cont kbody labels))
|
|
(visit-cont kbody labels)))
|
|
(($ $kargs names syms term)
|
|
(match term
|
|
(($ $continue k)
|
|
(visit-cont k labels))
|
|
(($ $branch kf kt)
|
|
(visit-cont kf (visit-cont kt labels)))
|
|
(($ $switch kf kt*)
|
|
(visit-cont kf (fold1 visit-cont kt* labels)))
|
|
(($ $prompt k kh)
|
|
(visit-cont k (visit-cont kh labels)))
|
|
(($ $throw)
|
|
labels))))))))))
|
|
|
|
(define (compute-singly-referenced-labels conts)
|
|
"Compute the set of labels in CONTS that have exactly one
|
|
predecessor."
|
|
(define (add-ref label cont single multiple)
|
|
(define (ref k single multiple)
|
|
(if (intset-ref single k)
|
|
(values single (intset-add! multiple k))
|
|
(values (intset-add! single k) multiple)))
|
|
(define (ref0) (values single multiple))
|
|
(define (ref1 k) (ref k single multiple))
|
|
(define (ref2 k k*)
|
|
(if k*
|
|
(let-values (((single multiple) (ref k single multiple)))
|
|
(ref k* single multiple))
|
|
(ref1 k)))
|
|
(match cont
|
|
(($ $kreceive arity k) (ref1 k))
|
|
(($ $kfun src meta self ktail kclause) (ref2 ktail kclause))
|
|
(($ $ktail) (ref0))
|
|
(($ $kclause arity kbody kalt) (ref2 kbody kalt))
|
|
(($ $kargs names syms ($ $continue k)) (ref1 k))
|
|
(($ $kargs names syms ($ $branch kf kt)) (ref2 kf kt))
|
|
(($ $kargs names syms ($ $switch kf kt*))
|
|
(fold2 ref (cons kf kt*) single multiple))
|
|
(($ $kargs names syms ($ $prompt k kh)) (ref2 k kh))
|
|
(($ $kargs names syms ($ $throw)) (ref0))))
|
|
(let*-values (((single multiple) (values empty-intset empty-intset))
|
|
((single multiple) (intmap-fold add-ref conts single multiple)))
|
|
(intset-subtract (persistent-intset single)
|
|
(persistent-intset multiple))))
|
|
|
|
(define* (compute-reachable-functions conts #:optional (kfun 0))
|
|
"Compute a mapping LABEL->LABEL..., where each key is a reachable
|
|
$kfun and each associated value is the body of the function, as an
|
|
intset."
|
|
(define (intset-cons i set) (intset-add set i))
|
|
(define (visit-fun kfun body to-visit)
|
|
(intset-fold
|
|
(lambda (label to-visit)
|
|
(define (return kfun*) (fold intset-cons to-visit kfun*))
|
|
(define (return1 kfun) (intset-add to-visit kfun))
|
|
(define (return0) to-visit)
|
|
(match (intmap-ref conts label)
|
|
(($ $kargs _ _ ($ $continue _ _ exp))
|
|
(match exp
|
|
(($ $fun label) (return1 label))
|
|
(($ $rec _ _ (($ $fun labels) ...)) (return labels))
|
|
(($ $const-fun label) (return1 label))
|
|
(($ $code label) (return1 label))
|
|
(($ $callk label) (return1 label))
|
|
(_ (return0))))
|
|
(_ (return0))))
|
|
body
|
|
to-visit))
|
|
(let lp ((to-visit (intset kfun)) (visited empty-intmap))
|
|
(let ((to-visit (intset-subtract to-visit (intmap-keys visited))))
|
|
(if (eq? to-visit empty-intset)
|
|
visited
|
|
(call-with-values
|
|
(lambda ()
|
|
(intset-fold
|
|
(lambda (kfun to-visit visited)
|
|
(let ((body (compute-function-body conts kfun)))
|
|
(values (visit-fun kfun body to-visit)
|
|
(intmap-add visited kfun body))))
|
|
to-visit
|
|
empty-intset
|
|
visited))
|
|
lp)))))
|
|
|
|
(define* (compute-successors conts #:optional (kfun (intmap-next conts)))
|
|
(define (visit label succs)
|
|
(let visit ((label kfun) (succs empty-intmap))
|
|
(define (propagate0)
|
|
(intmap-add! succs label empty-intset))
|
|
(define (propagate1 succ)
|
|
(visit succ (intmap-add! succs label (intset succ))))
|
|
(define (propagate2 succ0 succ1)
|
|
(let ((succs (intmap-add! succs label (intset succ0 succ1))))
|
|
(visit succ1 (visit succ0 succs))))
|
|
(define (propagate* k*)
|
|
(define (list->intset ls)
|
|
(fold1 (lambda (elt set) (intset-add set elt)) ls empty-intset))
|
|
(fold1 visit k* (intmap-add! succs label (list->intset k*))))
|
|
(if (intmap-ref succs label (lambda (_) #f))
|
|
succs
|
|
(match (intmap-ref conts label)
|
|
(($ $kargs names vars term)
|
|
(match term
|
|
(($ $continue k) (propagate1 k))
|
|
(($ $branch kf kt) (propagate2 kf kt))
|
|
(($ $switch kf kt*) (propagate* (cons kf kt*)))
|
|
(($ $prompt k kh) (propagate2 k kh))
|
|
(($ $throw) (propagate0))))
|
|
(($ $kreceive arity k)
|
|
(propagate1 k))
|
|
(($ $kfun src meta self tail clause)
|
|
(if clause
|
|
(propagate2 clause tail)
|
|
(propagate1 tail)))
|
|
(($ $kclause arity kbody kalt)
|
|
(if kalt
|
|
(propagate2 kbody kalt)
|
|
(propagate1 kbody)))
|
|
(($ $ktail) (propagate0))))))
|
|
(persistent-intmap (visit kfun empty-intmap)))
|
|
|
|
(define* (compute-predecessors conts kfun #:key
|
|
(labels (compute-function-body conts kfun)))
|
|
(define (meet cdr car)
|
|
(cons car cdr))
|
|
(define (add-preds label preds)
|
|
(define (add-pred k preds)
|
|
(intmap-add! preds k label meet))
|
|
(match (intmap-ref conts label)
|
|
(($ $kreceive arity k)
|
|
(add-pred k preds))
|
|
(($ $kfun src meta self ktail kclause)
|
|
(add-pred ktail (if kclause (add-pred kclause preds) preds)))
|
|
(($ $ktail)
|
|
preds)
|
|
(($ $kclause arity kbody kalt)
|
|
(add-pred kbody (if kalt (add-pred kalt preds) preds)))
|
|
(($ $kargs names syms term)
|
|
(match term
|
|
(($ $continue k) (add-pred k preds))
|
|
(($ $branch kf kt) (add-pred kf (add-pred kt preds)))
|
|
(($ $switch kf kt*) (fold1 add-pred (cons kf kt*) preds))
|
|
(($ $prompt k kh) (add-pred k (add-pred kh preds)))
|
|
(($ $throw) preds)))))
|
|
(persistent-intmap
|
|
(intset-fold add-preds labels
|
|
(intset->intmap (lambda (label) '()) labels))))
|
|
|
|
;; Precondition: For each function in CONTS, the continuation names are
|
|
;; topologically sorted.
|
|
(define (compute-idoms conts kfun)
|
|
;; This is the iterative O(n^2) fixpoint algorithm, originally from
|
|
;; Allen and Cocke ("Graph-theoretic constructs for program flow
|
|
;; analysis", 1972). See the discussion in Cooper, Harvey, and
|
|
;; Kennedy's "A Simple, Fast Dominance Algorithm", 2001.
|
|
(let ((preds-map (compute-predecessors conts kfun)))
|
|
(define (compute-idom idoms preds)
|
|
(define (idom-ref label)
|
|
(intmap-ref idoms label (lambda (_) #f)))
|
|
(match preds
|
|
(() -1)
|
|
((pred) pred) ; Shortcut.
|
|
((pred . preds)
|
|
(define (common-idom d0 d1)
|
|
;; We exploit the fact that a reverse post-order is a
|
|
;; topological sort, and so the idom of a node is always
|
|
;; numerically less than the node itself.
|
|
(let lp ((d0 d0) (d1 d1))
|
|
(cond
|
|
;; d0 or d1 can be false on the first iteration.
|
|
((not d0) d1)
|
|
((not d1) d0)
|
|
((= d0 d1) d0)
|
|
((< d0 d1) (lp d0 (idom-ref d1)))
|
|
(else (lp (idom-ref d0) d1)))))
|
|
(fold1 common-idom preds pred))))
|
|
(define (adjoin-idom label preds idoms)
|
|
(let ((idom (compute-idom idoms preds)))
|
|
;; Don't use intmap-add! here.
|
|
(intmap-add idoms label idom (lambda (old new) new))))
|
|
(fixpoint (lambda (idoms)
|
|
(intmap-fold adjoin-idom preds-map idoms))
|
|
empty-intmap)))
|
|
|
|
;; Precondition: For each function in CONTS, the continuation names are
|
|
;; topologically sorted.
|
|
(define (compute-idoms conts kfun)
|
|
;; This is the iterative O(n^2) fixpoint algorithm, originally from
|
|
;; Allen and Cocke ("Graph-theoretic constructs for program flow
|
|
;; analysis", 1972). See the discussion in Cooper, Harvey, and
|
|
;; Kennedy's "A Simple, Fast Dominance Algorithm", 2001.
|
|
(let ((preds-map (compute-predecessors conts kfun)))
|
|
(define (compute-idom idoms preds)
|
|
(define (idom-ref label)
|
|
(intmap-ref idoms label (lambda (_) #f)))
|
|
(match preds
|
|
(() -1)
|
|
((pred) pred) ; Shortcut.
|
|
((pred . preds)
|
|
(define (common-idom d0 d1)
|
|
;; We exploit the fact that a reverse post-order is a
|
|
;; topological sort, and so the idom of a node is always
|
|
;; numerically less than the node itself.
|
|
(let lp ((d0 d0) (d1 d1))
|
|
(cond
|
|
;; d0 or d1 can be false on the first iteration.
|
|
((not d0) d1)
|
|
((not d1) d0)
|
|
((= d0 d1) d0)
|
|
((< d0 d1) (lp d0 (idom-ref d1)))
|
|
(else (lp (idom-ref d0) d1)))))
|
|
(fold1 common-idom preds pred))))
|
|
(define (adjoin-idom label preds idoms)
|
|
(let ((idom (compute-idom idoms preds)))
|
|
;; Don't use intmap-add! here.
|
|
(intmap-add idoms label idom (lambda (old new) new))))
|
|
(fixpoint (lambda (idoms)
|
|
(intmap-fold adjoin-idom preds-map idoms))
|
|
empty-intmap)))
|
|
|
|
;; Compute a vector containing, for each node, a list of the nodes that
|
|
;; it immediately dominates. These are the "D" edges in the DJ tree.
|
|
(define (compute-dom-edges idoms)
|
|
(define (snoc cdr car) (cons car cdr))
|
|
(persistent-intmap
|
|
(intmap-fold (lambda (label idom doms)
|
|
(let ((doms (intmap-add! doms label '())))
|
|
(cond
|
|
((< idom 0) doms) ;; No edge to entry.
|
|
(else (intmap-add! doms idom label snoc)))))
|
|
idoms
|
|
empty-intmap)))
|
|
|