1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-07-10 03:10:25 +02:00
guile/test-suite/tests/tree-il.test
Andy Wingo f6123e4fda attempt to prune unreferenced bindings
* module/language/tree-il/optimize.scm (peval): Rename `record-lexicals'
  to `record-lexical-bindings'.  Record residualized lexical
  references.  Record lexical references in maybe-unlambda.
  Unfortunately this has the disadvantage that the speculative mapping
  of lambda expressions to lexical references records that reference,
  even if we are not going to residualize it.  After processing a `let',
  prune pure unreferenced bindings.  (We can do better than this in the
  future: we can simply process them for effect.)

* test-suite/tests/tree-il.test (pass-if-peval): More debugging.
  ("partial evaluation"): Update to reflect the fact that the `y'
  binding won't be emitted.
2011-09-24 19:08:09 +02:00

2083 lines
76 KiB
Scheme
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

;;;; tree-il.test --- test suite for compiling tree-il -*- scheme -*-
;;;; Andy Wingo <wingo@pobox.com> --- May 2009
;;;;
;;;; Copyright (C) 2009, 2010, 2011 Free Software Foundation, Inc.
;;;;
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
(define-module (test-suite tree-il)
#:use-module (test-suite lib)
#:use-module (system base compile)
#:use-module (system base pmatch)
#:use-module (system base message)
#:use-module (language tree-il)
#:use-module (language tree-il primitives)
#:use-module (language glil)
#:use-module (srfi srfi-13))
;; Of course, the GLIL that is emitted depends on the source info of the
;; input. Here we're not concerned about that, so we strip source
;; information from the incoming tree-il.
(define (strip-source x)
(post-order! (lambda (x) (set! (tree-il-src x) #f))
x))
(define-syntax assert-tree-il->glil
(syntax-rules (with-partial-evaluation without-partial-evaluation
with-options)
((_ with-partial-evaluation in pat test ...)
(assert-tree-il->glil with-options (#:partial-eval? #t)
in pat test ...))
((_ without-partial-evaluation in pat test ...)
(assert-tree-il->glil with-options (#:partial-eval? #f)
in pat test ...))
((_ with-options opts in pat test ...)
(let ((exp 'in))
(pass-if 'in
(let ((glil (unparse-glil
(compile (strip-source (parse-tree-il exp))
#:from 'tree-il #:to 'glil
#:opts 'opts))))
(pmatch glil
(pat (guard test ...) #t)
(else #f))))))
((_ in pat test ...)
(assert-tree-il->glil with-partial-evaluation
in pat test ...))))
(define-syntax pass-if-tree-il->scheme
(syntax-rules ()
((_ in pat)
(assert-scheme->tree-il->scheme in pat #t))
((_ in pat guard-exp)
(pass-if 'in
(pmatch (tree-il->scheme
(compile 'in #:from 'scheme #:to 'tree-il))
(pat (guard guard-exp) #t)
(_ #f))))))
(define peval
;; The partial evaluator.
(@@ (language tree-il optimize) peval))
(define-syntax pass-if-peval
(syntax-rules (resolve-primitives)
((_ in pat)
(pass-if-peval in pat
(compile 'in #:from 'scheme #:to 'tree-il)))
((_ resolve-primitives in pat)
(pass-if-peval in pat
(expand-primitives!
(resolve-primitives!
(compile 'in #:from 'scheme #:to 'tree-il)
(current-module)))))
((_ in pat code)
(pass-if 'in
(let ((evaled (unparse-tree-il (peval code))))
(pmatch evaled
(pat #t)
(_ (pk 'peval-mismatch)
((@ (ice-9 pretty-print) pretty-print)
'in)
(newline)
((@ (ice-9 pretty-print) pretty-print)
evaled)
(newline)
((@ (ice-9 pretty-print) pretty-print)
'pat)
(newline)
#f)))))))
(with-test-prefix "tree-il->scheme"
(pass-if-tree-il->scheme
(case-lambda ((a) a) ((b c) (list b c)))
(case-lambda ((,a) ,a1) ((,b ,c) (list ,b1 ,c1)))
(and (eq? a a1) (eq? b b1) (eq? c c1))))
(with-test-prefix "void"
(assert-tree-il->glil
(void)
(program () (std-prelude 0 0 #f) (label _) (void) (call return 1)))
(assert-tree-il->glil
(begin (void) (const 1))
(program () (std-prelude 0 0 #f) (label _) (const 1) (call return 1)))
(assert-tree-il->glil
(apply (primitive +) (void) (const 1))
(program () (std-prelude 0 0 #f) (label _) (void) (call add1 1) (call return 1))))
(with-test-prefix "application"
(assert-tree-il->glil
(apply (toplevel foo) (const 1))
(program () (std-prelude 0 0 #f) (label _) (toplevel ref foo) (const 1) (call tail-call 1)))
(assert-tree-il->glil
(begin (apply (toplevel foo) (const 1)) (void))
(program () (std-prelude 0 0 #f) (label _) (call new-frame 0) (toplevel ref foo) (const 1) (mv-call 1 ,l1)
(call drop 1) (branch br ,l2)
(label ,l3) (mv-bind 0 #f)
(label ,l4)
(void) (call return 1))
(and (eq? l1 l3) (eq? l2 l4)))
(assert-tree-il->glil
(apply (toplevel foo) (apply (toplevel bar)))
(program () (std-prelude 0 0 #f) (label _) (toplevel ref foo) (call new-frame 0) (toplevel ref bar) (call call 0)
(call tail-call 1))))
(with-test-prefix "conditional"
(assert-tree-il->glil
(if (toplevel foo) (const 1) (const 2))
(program () (std-prelude 0 0 #f) (label _) (toplevel ref foo) (branch br-if-not ,l1)
(const 1) (call return 1)
(label ,l2) (const 2) (call return 1))
(eq? l1 l2))
(assert-tree-il->glil without-partial-evaluation
(begin (if (toplevel foo) (const 1) (const 2)) (const #f))
(program () (std-prelude 0 0 #f) (label _) (toplevel ref foo) (branch br-if-not ,l1) (branch br ,l2)
(label ,l3) (label ,l4) (const #f) (call return 1))
(eq? l1 l3) (eq? l2 l4))
(assert-tree-il->glil
(apply (primitive null?) (if (toplevel foo) (const 1) (const 2)))
(program () (std-prelude 0 0 #f) (label _) (toplevel ref foo) (branch br-if-not ,l1)
(const 1) (branch br ,l2)
(label ,l3) (const 2) (label ,l4)
(call null? 1) (call return 1))
(eq? l1 l3) (eq? l2 l4)))
(with-test-prefix "primitive-ref"
(assert-tree-il->glil
(primitive +)
(program () (std-prelude 0 0 #f) (label _) (toplevel ref +) (call return 1)))
(assert-tree-il->glil
(begin (primitive +) (const #f))
(program () (std-prelude 0 0 #f) (label _) (const #f) (call return 1)))
(assert-tree-il->glil
(apply (primitive null?) (primitive +))
(program () (std-prelude 0 0 #f) (label _) (toplevel ref +) (call null? 1)
(call return 1))))
(with-test-prefix "lexical refs"
(assert-tree-il->glil without-partial-evaluation
(let (x) (y) ((const 1)) (lexical x y))
(program () (std-prelude 0 1 #f) (label _)
(const 1) (bind (x #f 0)) (lexical #t #f set 0)
(lexical #t #f ref 0) (call return 1)
(unbind)))
(assert-tree-il->glil without-partial-evaluation
(let (x) (y) ((const 1)) (begin (lexical x y) (const #f)))
(program () (std-prelude 0 1 #f) (label _)
(const 1) (bind (x #f 0)) (lexical #t #f set 0)
(const #f) (call return 1)
(unbind)))
(assert-tree-il->glil without-partial-evaluation
(let (x) (y) ((const 1)) (apply (primitive null?) (lexical x y)))
(program () (std-prelude 0 1 #f) (label _)
(const 1) (bind (x #f 0)) (lexical #t #f set 0)
(lexical #t #f ref 0) (call null? 1) (call return 1)
(unbind))))
(with-test-prefix "lexical sets"
(assert-tree-il->glil
;; unreferenced sets may be optimized away -- make sure they are ref'd
(let (x) (y) ((const 1))
(set! (lexical x y) (apply (primitive 1+) (lexical x y))))
(program () (std-prelude 0 1 #f) (label _)
(const 1) (bind (x #t 0)) (lexical #t #t box 0)
(lexical #t #t ref 0) (call add1 1) (lexical #t #t set 0)
(void) (call return 1)
(unbind)))
(assert-tree-il->glil
(let (x) (y) ((const 1))
(begin (set! (lexical x y) (apply (primitive 1+) (lexical x y)))
(lexical x y)))
(program () (std-prelude 0 1 #f) (label _)
(const 1) (bind (x #t 0)) (lexical #t #t box 0)
(lexical #t #t ref 0) (call add1 1) (lexical #t #t set 0)
(lexical #t #t ref 0) (call return 1)
(unbind)))
(assert-tree-il->glil
(let (x) (y) ((const 1))
(apply (primitive null?)
(set! (lexical x y) (apply (primitive 1+) (lexical x y)))))
(program () (std-prelude 0 1 #f) (label _)
(const 1) (bind (x #t 0)) (lexical #t #t box 0)
(lexical #t #t ref 0) (call add1 1) (lexical #t #t set 0) (void)
(call null? 1) (call return 1)
(unbind))))
(with-test-prefix "module refs"
(assert-tree-il->glil
(@ (foo) bar)
(program () (std-prelude 0 0 #f) (label _)
(module public ref (foo) bar)
(call return 1)))
(assert-tree-il->glil
(begin (@ (foo) bar) (const #f))
(program () (std-prelude 0 0 #f) (label _)
(module public ref (foo) bar) (call drop 1)
(const #f) (call return 1)))
(assert-tree-il->glil
(apply (primitive null?) (@ (foo) bar))
(program () (std-prelude 0 0 #f) (label _)
(module public ref (foo) bar)
(call null? 1) (call return 1)))
(assert-tree-il->glil
(@@ (foo) bar)
(program () (std-prelude 0 0 #f) (label _)
(module private ref (foo) bar)
(call return 1)))
(assert-tree-il->glil
(begin (@@ (foo) bar) (const #f))
(program () (std-prelude 0 0 #f) (label _)
(module private ref (foo) bar) (call drop 1)
(const #f) (call return 1)))
(assert-tree-il->glil
(apply (primitive null?) (@@ (foo) bar))
(program () (std-prelude 0 0 #f) (label _)
(module private ref (foo) bar)
(call null? 1) (call return 1))))
(with-test-prefix "module sets"
(assert-tree-il->glil
(set! (@ (foo) bar) (const 2))
(program () (std-prelude 0 0 #f) (label _)
(const 2) (module public set (foo) bar)
(void) (call return 1)))
(assert-tree-il->glil
(begin (set! (@ (foo) bar) (const 2)) (const #f))
(program () (std-prelude 0 0 #f) (label _)
(const 2) (module public set (foo) bar)
(const #f) (call return 1)))
(assert-tree-il->glil
(apply (primitive null?) (set! (@ (foo) bar) (const 2)))
(program () (std-prelude 0 0 #f) (label _)
(const 2) (module public set (foo) bar)
(void) (call null? 1) (call return 1)))
(assert-tree-il->glil
(set! (@@ (foo) bar) (const 2))
(program () (std-prelude 0 0 #f) (label _)
(const 2) (module private set (foo) bar)
(void) (call return 1)))
(assert-tree-il->glil
(begin (set! (@@ (foo) bar) (const 2)) (const #f))
(program () (std-prelude 0 0 #f) (label _)
(const 2) (module private set (foo) bar)
(const #f) (call return 1)))
(assert-tree-il->glil
(apply (primitive null?) (set! (@@ (foo) bar) (const 2)))
(program () (std-prelude 0 0 #f) (label _)
(const 2) (module private set (foo) bar)
(void) (call null? 1) (call return 1))))
(with-test-prefix "toplevel refs"
(assert-tree-il->glil
(toplevel bar)
(program () (std-prelude 0 0 #f) (label _)
(toplevel ref bar)
(call return 1)))
(assert-tree-il->glil without-partial-evaluation
(begin (toplevel bar) (const #f))
(program () (std-prelude 0 0 #f) (label _)
(toplevel ref bar) (call drop 1)
(const #f) (call return 1)))
(assert-tree-il->glil
(apply (primitive null?) (toplevel bar))
(program () (std-prelude 0 0 #f) (label _)
(toplevel ref bar)
(call null? 1) (call return 1))))
(with-test-prefix "toplevel sets"
(assert-tree-il->glil
(set! (toplevel bar) (const 2))
(program () (std-prelude 0 0 #f) (label _)
(const 2) (toplevel set bar)
(void) (call return 1)))
(assert-tree-il->glil
(begin (set! (toplevel bar) (const 2)) (const #f))
(program () (std-prelude 0 0 #f) (label _)
(const 2) (toplevel set bar)
(const #f) (call return 1)))
(assert-tree-il->glil
(apply (primitive null?) (set! (toplevel bar) (const 2)))
(program () (std-prelude 0 0 #f) (label _)
(const 2) (toplevel set bar)
(void) (call null? 1) (call return 1))))
(with-test-prefix "toplevel defines"
(assert-tree-il->glil
(define bar (const 2))
(program () (std-prelude 0 0 #f) (label _)
(const 2) (toplevel define bar)
(void) (call return 1)))
(assert-tree-il->glil
(begin (define bar (const 2)) (const #f))
(program () (std-prelude 0 0 #f) (label _)
(const 2) (toplevel define bar)
(const #f) (call return 1)))
(assert-tree-il->glil
(apply (primitive null?) (define bar (const 2)))
(program () (std-prelude 0 0 #f) (label _)
(const 2) (toplevel define bar)
(void) (call null? 1) (call return 1))))
(with-test-prefix "constants"
(assert-tree-il->glil
(const 2)
(program () (std-prelude 0 0 #f) (label _)
(const 2) (call return 1)))
(assert-tree-il->glil
(begin (const 2) (const #f))
(program () (std-prelude 0 0 #f) (label _)
(const #f) (call return 1)))
(assert-tree-il->glil
;; This gets simplified by `peval'.
(apply (primitive null?) (const 2))
(program () (std-prelude 0 0 #f) (label _)
(const #f) (call return 1))))
(with-test-prefix "letrec"
;; simple bindings -> let
(assert-tree-il->glil without-partial-evaluation
(letrec (x y) (x1 y1) ((const 10) (const 20))
(apply (toplevel foo) (lexical x x1) (lexical y y1)))
(program () (std-prelude 0 2 #f) (label _)
(const 10) (const 20)
(bind (x #f 0) (y #f 1))
(lexical #t #f set 1) (lexical #t #f set 0)
(toplevel ref foo)
(lexical #t #f ref 0) (lexical #t #f ref 1)
(call tail-call 2)
(unbind)))
;; complex bindings -> box and set! within let
(assert-tree-il->glil without-partial-evaluation
(letrec (x y) (x1 y1) ((apply (toplevel foo)) (apply (toplevel bar)))
(apply (primitive +) (lexical x x1) (lexical y y1)))
(program () (std-prelude 0 4 #f) (label _)
(void) (void) ;; what are these?
(bind (x #t 0) (y #t 1))
(lexical #t #t box 1) (lexical #t #t box 0)
(call new-frame 0) (toplevel ref foo) (call call 0)
(call new-frame 0) (toplevel ref bar) (call call 0)
(bind (x #f 2) (y #f 3)) (lexical #t #f set 3) (lexical #t #f set 2)
(lexical #t #f ref 2) (lexical #t #t set 0)
(lexical #t #f ref 3) (lexical #t #t set 1) (unbind)
(lexical #t #t ref 0) (lexical #t #t ref 1)
(call add 2) (call return 1) (unbind)))
;; complex bindings in letrec* -> box and set! in order
(assert-tree-il->glil without-partial-evaluation
(letrec* (x y) (x1 y1) ((apply (toplevel foo)) (apply (toplevel bar)))
(apply (primitive +) (lexical x x1) (lexical y y1)))
(program () (std-prelude 0 2 #f) (label _)
(void) (void) ;; what are these?
(bind (x #t 0) (y #t 1))
(lexical #t #t box 1) (lexical #t #t box 0)
(call new-frame 0) (toplevel ref foo) (call call 0)
(lexical #t #t set 0)
(call new-frame 0) (toplevel ref bar) (call call 0)
(lexical #t #t set 1)
(lexical #t #t ref 0)
(lexical #t #t ref 1)
(call add 2) (call return 1) (unbind)))
;; simple bindings in letrec* -> equivalent to letrec
(assert-tree-il->glil without-partial-evaluation
(letrec* (x y) (xx yy) ((const 1) (const 2))
(lexical y yy))
(program () (std-prelude 0 1 #f) (label _)
(const 2)
(bind (y #f 0)) ;; X is removed, and Y is unboxed
(lexical #t #f set 0)
(lexical #t #f ref 0)
(call return 1) (unbind))))
(with-test-prefix "lambda"
(assert-tree-il->glil
(lambda ()
(lambda-case (((x) #f #f #f () (y)) (const 2)) #f))
(program () (std-prelude 0 0 #f) (label _)
(program () (std-prelude 1 1 #f)
(bind (x #f 0)) (label _)
(const 2) (call return 1) (unbind))
(call return 1)))
(assert-tree-il->glil
(lambda ()
(lambda-case (((x y) #f #f #f () (x1 y1))
(const 2))
#f))
(program () (std-prelude 0 0 #f) (label _)
(program () (std-prelude 2 2 #f)
(bind (x #f 0) (y #f 1)) (label _)
(const 2) (call return 1)
(unbind))
(call return 1)))
(assert-tree-il->glil
(lambda ()
(lambda-case ((() #f x #f () (y)) (const 2))
#f))
(program () (std-prelude 0 0 #f) (label _)
(program () (opt-prelude 0 0 0 1 #f)
(bind (x #f 0)) (label _)
(const 2) (call return 1)
(unbind))
(call return 1)))
(assert-tree-il->glil
(lambda ()
(lambda-case (((x) #f x1 #f () (y y1)) (const 2))
#f))
(program () (std-prelude 0 0 #f) (label _)
(program () (opt-prelude 1 0 1 2 #f)
(bind (x #f 0) (x1 #f 1)) (label _)
(const 2) (call return 1)
(unbind))
(call return 1)))
(assert-tree-il->glil
(lambda ()
(lambda-case (((x) #f x1 #f () (y y1)) (lexical x y))
#f))
(program () (std-prelude 0 0 #f) (label _)
(program () (opt-prelude 1 0 1 2 #f)
(bind (x #f 0) (x1 #f 1)) (label _)
(lexical #t #f ref 0) (call return 1)
(unbind))
(call return 1)))
(assert-tree-il->glil
(lambda ()
(lambda-case (((x) #f x1 #f () (y y1)) (lexical x1 y1))
#f))
(program () (std-prelude 0 0 #f) (label _)
(program () (opt-prelude 1 0 1 2 #f)
(bind (x #f 0) (x1 #f 1)) (label _)
(lexical #t #f ref 1) (call return 1)
(unbind))
(call return 1)))
(assert-tree-il->glil
(lambda ()
(lambda-case (((x) #f #f #f () (x1))
(lambda ()
(lambda-case (((y) #f #f #f () (y1))
(lexical x x1))
#f)))
#f))
(program () (std-prelude 0 0 #f) (label _)
(program () (std-prelude 1 1 #f)
(bind (x #f 0)) (label _)
(program () (std-prelude 1 1 #f)
(bind (y #f 0)) (label _)
(lexical #f #f ref 0) (call return 1)
(unbind))
(lexical #t #f ref 0)
(call make-closure 1)
(call return 1)
(unbind))
(call return 1))))
(with-test-prefix "sequence"
(assert-tree-il->glil
(begin (begin (const 2) (const #f)) (const #t))
(program () (std-prelude 0 0 #f) (label _)
(const #t) (call return 1)))
(assert-tree-il->glil
;; This gets simplified by `peval'.
(apply (primitive null?) (begin (const #f) (const 2)))
(program () (std-prelude 0 0 #f) (label _)
(const #f) (call return 1))))
(with-test-prefix "values"
(assert-tree-il->glil
(apply (primitive values)
(apply (primitive values) (const 1) (const 2)))
(program () (std-prelude 0 0 #f) (label _)
(const 1) (call return 1)))
(assert-tree-il->glil
(apply (primitive values)
(apply (primitive values) (const 1) (const 2))
(const 3))
(program () (std-prelude 0 0 #f) (label _)
(const 1) (const 3) (call return/values 2)))
(assert-tree-il->glil
(apply (primitive +)
(apply (primitive values) (const 1) (const 2)))
(program () (std-prelude 0 0 #f) (label _)
(const 1) (call return 1))))
;; FIXME: binding info for or-hacked locals might bork the disassembler,
;; and could be tightened in any case
(with-test-prefix "the or hack"
(assert-tree-il->glil without-partial-evaluation
(let (x) (y) ((const 1))
(if (lexical x y)
(lexical x y)
(let (a) (b) ((const 2))
(lexical a b))))
(program () (std-prelude 0 1 #f) (label _)
(const 1) (bind (x #f 0)) (lexical #t #f set 0)
(lexical #t #f ref 0) (branch br-if-not ,l1)
(lexical #t #f ref 0) (call return 1)
(label ,l2)
(const 2) (bind (a #f 0)) (lexical #t #f set 0)
(lexical #t #f ref 0) (call return 1)
(unbind)
(unbind))
(eq? l1 l2))
;; second bound var is unreferenced
(assert-tree-il->glil without-partial-evaluation
(let (x) (y) ((const 1))
(if (lexical x y)
(lexical x y)
(let (a) (b) ((const 2))
(lexical x y))))
(program () (std-prelude 0 1 #f) (label _)
(const 1) (bind (x #f 0)) (lexical #t #f set 0)
(lexical #t #f ref 0) (branch br-if-not ,l1)
(lexical #t #f ref 0) (call return 1)
(label ,l2)
(lexical #t #f ref 0) (call return 1)
(unbind))
(eq? l1 l2)))
(with-test-prefix "apply"
(assert-tree-il->glil
(apply (primitive @apply) (toplevel foo) (toplevel bar))
(program () (std-prelude 0 0 #f) (label _) (toplevel ref foo) (toplevel ref bar) (call tail-apply 2)))
(assert-tree-il->glil
(begin (apply (primitive @apply) (toplevel foo) (toplevel bar)) (void))
(program () (std-prelude 0 0 #f) (label _)
(call new-frame 0) (toplevel ref apply) (toplevel ref foo) (toplevel ref bar) (mv-call 2 ,l1)
(call drop 1) (branch br ,l2) (label ,l3) (mv-bind 0 #f)
(label ,l4)
(void) (call return 1))
(and (eq? l1 l3) (eq? l2 l4)))
(assert-tree-il->glil
(apply (toplevel foo) (apply (toplevel @apply) (toplevel bar) (toplevel baz)))
(program () (std-prelude 0 0 #f) (label _)
(toplevel ref foo)
(call new-frame 0) (toplevel ref bar) (toplevel ref baz) (call apply 2)
(call tail-call 1))))
(with-test-prefix "call/cc"
(assert-tree-il->glil
(apply (primitive @call-with-current-continuation) (toplevel foo))
(program () (std-prelude 0 0 #f) (label _) (toplevel ref foo) (call tail-call/cc 1)))
(assert-tree-il->glil
(begin (apply (primitive @call-with-current-continuation) (toplevel foo)) (void))
(program () (std-prelude 0 0 #f) (label _)
(call new-frame 0) (toplevel ref call-with-current-continuation) (toplevel ref foo) (mv-call 1 ,l1)
(call drop 1) (branch br ,l2) (label ,l3) (mv-bind 0 #f)
(label ,l4)
(void) (call return 1))
(and (eq? l1 l3) (eq? l2 l4)))
(assert-tree-il->glil
(apply (toplevel foo)
(apply (toplevel @call-with-current-continuation) (toplevel bar)))
(program () (std-prelude 0 0 #f) (label _)
(toplevel ref foo)
(toplevel ref bar) (call call/cc 1)
(call tail-call 1))))
(with-test-prefix "partial evaluation"
(pass-if-peval
;; First order, primitive.
(let ((x 1) (y 2)) (+ x y))
(const 3))
(pass-if-peval
;; First order, thunk.
(let ((x 1) (y 2))
(let ((f (lambda () (+ x y))))
(f)))
(const 3))
(pass-if-peval resolve-primitives
;; First order, let-values (requires primitive expansion for
;; `call-with-values'.)
(let ((x 0))
(call-with-values
(lambda () (if (zero? x) (values 1 2) (values 3 4)))
(lambda (a b)
(+ a b))))
(const 3))
(pass-if-peval
;; First order, coalesced.
(cons 0 (cons 1 (cons 2 (list 3 4 5))))
(const (0 1 2 3 4 5)))
(pass-if-peval
;; First order, coalesced, mutability preserved.
(define mutable
(cons 0 (cons 1 (cons 2 (list 3 4 5)))))
(define mutable
;; This must not be a constant.
(apply (primitive list)
(const 0) (const 1) (const 2) (const 3) (const 4) (const 5))))
(pass-if-peval
;; First order, mutability preserved.
(define mutable
(let loop ((i 3) (r '()))
(if (zero? i)
r
(loop (1- i) (cons (cons i i) r)))))
(define mutable
(apply (primitive list)
(apply (primitive cons) (const 1) (const 1))
(apply (primitive cons) (const 2) (const 2))
(apply (primitive cons) (const 3) (const 3)))))
(pass-if-peval
;; Mutability preserved.
(define mutable
((lambda (x y z) (list x y z)) 1 2 3))
(define mutable
(apply (primitive list) (const 1) (const 2) (const 3))))
(pass-if-peval
;; Don't propagate effect-free expressions that operate on mutable
;; objects.
(let* ((x (list 1))
(y (car x)))
(set-car! x 0)
y)
(let (x) (_) ((apply (primitive list) (const 1)))
(let (y) (_) ((apply (primitive car) (lexical x _)))
(begin
(apply (toplevel set-car!) (lexical x _) (const 0))
(lexical y _)))))
(pass-if-peval
;; Don't propagate effect-free expressions that operate on objects we
;; don't know about.
(let ((y (car x)))
(set-car! x 0)
y)
(let (y) (_) ((apply (primitive car) (toplevel x)))
(begin
(apply (toplevel set-car!) (toplevel x) (const 0))
(lexical y _))))
(pass-if-peval
;; First order, evaluated.
(define one
(let loop ((i 7)
(r '()))
(if (<= i 0)
(car r)
(loop (1- i) (cons i r)))))
(define one (const 1)))
(pass-if-peval
;; First order, aliased primitive.
(let* ((x *) (y (x 1 2))) y)
(const 2))
(pass-if-peval
;; First order, shadowed primitive.
(begin
(define (+ x y) (pk x y))
(+ 1 2))
(begin
(define +
(lambda (_)
(lambda-case
(((x y) #f #f #f () (_ _))
(apply (toplevel pk) (lexical x _) (lexical y _))))))
(apply (toplevel +) (const 1) (const 2))))
(pass-if-peval
;; First-order, effects preserved.
(let ((x 2))
(do-something!)
x)
(begin
(apply (toplevel do-something!))
(const 2)))
(pass-if-peval
;; First order, residual bindings removed.
(let ((x 2) (y 3))
(* (+ x y) z))
(apply (primitive *) (const 5) (toplevel z)))
(pass-if-peval
;; First order, with lambda.
(define (foo x)
(define (bar z) (* z z))
(+ x (bar 3)))
(define foo
(lambda (_)
(lambda-case
(((x) #f #f #f () (_))
(letrec* (bar) (_) ((lambda (_) . _))
(apply (primitive +) (lexical x _) (const 9))))))))
(pass-if-peval
;; First order, with lambda inlined & specialized twice.
(let ((f (lambda (x y)
(+ (* x top) y)))
(x 2)
(y 3))
(+ (* x (f x y))
(f something x)))
(let (f) (_) ((lambda (_)
(lambda-case
(((x y) #f #f #f () (_ _))
(apply (primitive +)
(apply (primitive *)
(lexical x _)
(toplevel top))
(lexical y _))))))
(apply (primitive +)
(apply (primitive *)
(const 2)
(apply (primitive +) ; (f 2 3)
(apply (primitive *)
(const 2)
(toplevel top))
(const 3)))
(apply (lexical f _) ; (f something 2)
;; This arg is not const, so the lambda does not
;; fold. We will fix this in the future when we
;; inline lambda to `let'. That will offer the
;; possibility of creating a lexical binding for
;; `something', to preserve the order of effects.
(toplevel something)
(const 2)))))
(pass-if-peval
;; First order, with lambda inlined & specialized 3 times.
(let ((f (lambda (x y) (if (> x 0) y x))))
(+ (f -1 0)
(f 1 0)
(f -1 y)
(f 2 y)
(f z y)))
(let (f) (_)
((lambda (_)
(lambda-case
(((x y) #f #f #f () (_ _))
(if (apply (primitive >) (lexical x _) (const 0))
(lexical y _)
(lexical x _))))))
(apply (primitive +)
(const -1) ; (f -1 0)
(const 0) ; (f 1 0)
(apply (lexical f _) ; (f -1 y)
(const -1) (toplevel y))
(apply (lexical f _) ; (f 2 y)
(const 2) (toplevel y))
(apply (lexical f _) ; (f z y)
(toplevel z) (toplevel y)))))
(pass-if-peval
;; First order, conditional.
(let ((y 2))
(lambda (x)
(if (> y 0)
(display x)
'never-reached)))
(lambda ()
(lambda-case
(((x) #f #f #f () (_))
(apply (toplevel display) (lexical x _))))))
(pass-if-peval
;; First order, recursive procedure.
(letrec ((fibo (lambda (n)
(if (<= n 1)
n
(+ (fibo (- n 1))
(fibo (- n 2)))))))
(fibo 7))
(const 13))
(pass-if-peval
;; Don't propagate toplevel references, as intervening expressions
;; could alter their bindings.
(let ((x top))
(foo)
x)
(let (x) (_) ((toplevel top))
(begin
(apply (toplevel foo))
(lexical x _))))
(pass-if-peval
;; Higher order.
((lambda (f x)
(f (* (car x) (cadr x))))
(lambda (x)
(+ x 1))
'(2 3))
(const 7))
(pass-if-peval
;; Higher order with optional argument (default value).
((lambda* (f x #:optional (y 0))
(+ y (f (* (car x) (cadr x)))))
(lambda (x)
(+ x 1))
'(2 3))
(const 7))
(pass-if-peval
;; Higher order with optional argument (caller-supplied value).
((lambda* (f x #:optional (y 0))
(+ y (f (* (car x) (cadr x)))))
(lambda (x)
(+ x 1))
'(2 3)
35)
(const 42))
(pass-if-peval
;; Higher order.
((lambda (f) (f x)) (lambda (x) x))
(apply (lambda ()
(lambda-case
(((x) #f #f #f () (_))
(lexical x _))))
(toplevel x)))
(pass-if-peval
;; Bug reported at
;; <https://lists.gnu.org/archive/html/bug-guile/2011-09/msg00019.html>.
(let ((fold (lambda (f g) (f (g top)))))
(fold 1+ (lambda (x) x)))
(let (fold) (_) (_)
(apply (primitive 1+)
(apply (lambda ()
(lambda-case
(((x) #f #f #f () (_))
(lexical x _))))
(toplevel top)))))
(pass-if-peval
;; Procedure not inlined when residual code contains recursive calls.
;; <http://debbugs.gnu.org/9542>
(letrec ((fold (lambda (f x3 b null? car cdr)
(if (null? x3)
b
(f (car x3) (fold f (cdr x3) b null? car cdr))))))
(fold * x 1 zero? (lambda (x1) x1) (lambda (x2) (- x2 1))))
(letrec (fold) (_) (_)
(apply (lexical fold _)
(primitive *)
(toplevel x)
(const 1)
(primitive zero?)
(lambda ()
(lambda-case
(((x1) #f #f #f () (_))
(lexical x1 _))))
(lambda ()
(lambda-case
(((x2) #f #f #f () (_))
(apply (primitive -) (lexical x2 _) (const 1))))))))
(pass-if "inlined lambdas are alpha-renamed"
;; In this example, `make-adder' is inlined more than once; thus,
;; they should use different gensyms for their arguments, because
;; the various optimization passes assume uniquely-named variables.
;;
;; Bug reported at
;; <https://lists.gnu.org/archive/html/bug-guile/2011-09/msg00019.html> and
;; <https://lists.gnu.org/archive/html/bug-guile/2011-09/msg00029.html>.
(pmatch (unparse-tree-il
(peval (compile
'(let ((make-adder
(lambda (x) (lambda (y) (+ x y)))))
(cons (make-adder 1) (make-adder 2)))
#:to 'tree-il)))
((let (make-adder) (_) (_)
(apply (primitive cons)
(lambda ()
(lambda-case
(((y) #f #f #f () (,gensym1))
(apply (primitive +)
(const 1)
(lexical y ,ref1)))))
(lambda ()
(lambda-case
(((y) #f #f #f () (,gensym2))
(apply (primitive +)
(const 2)
(lexical y ,ref2)))))))
(and (eq? gensym1 ref1)
(eq? gensym2 ref2)
(not (eq? gensym1 gensym2))))
(_ #f)))
(pass-if-peval
;; Higher order, mutually recursive procedures.
(letrec ((even? (lambda (x)
(or (= 0 x)
(odd? (- x 1)))))
(odd? (lambda (x)
(not (even? (- x 1))))))
(and (even? 4) (odd? 7)))
(const #t))
;;
;; Below are cases where constant propagation should bail out.
;;
(pass-if-peval
;; Non-constant lexical is not propagated.
(let ((v (make-vector 6 #f)))
(lambda (n)
(vector-set! v n n)))
(let (v) (_)
((apply (toplevel make-vector) (const 6) (const #f)))
(lambda ()
(lambda-case
(((n) #f #f #f () (_))
(apply (toplevel vector-set!)
(lexical v _) (lexical n _) (lexical n _)))))))
(pass-if-peval
;; Mutable lexical is not propagated.
(let ((v (vector 1 2 3)))
(lambda ()
v))
(let (v) (_)
((apply (primitive vector) (const 1) (const 2) (const 3)))
(lambda ()
(lambda-case
((() #f #f #f () ())
(lexical v _))))))
(pass-if-peval
;; Lexical that is not provably pure is not inlined nor propagated.
(let* ((x (if (> p q) (frob!) (display 'chbouib)))
(y (* x 2)))
(+ x x y))
(let (x) (_) ((if (apply (primitive >) (toplevel p) (toplevel q))
(apply (toplevel frob!))
(apply (toplevel display) (const chbouib))))
(apply (primitive +) (lexical x _) (lexical x _)
(apply (primitive *) (lexical x _) (const 2)))))
(pass-if-peval
;; Non-constant arguments not propagated to lambdas.
((lambda (x y z)
(vector-set! x 0 0)
(set-car! y 0)
(set-cdr! z '()))
(vector 1 2 3)
(make-list 10)
(list 1 2 3))
(apply (lambda ()
(lambda-case
(((x y z) #f #f #f () (_ _ _))
(begin
(apply (toplevel vector-set!)
(lexical x _) (const 0) (const 0))
(apply (toplevel set-car!)
(lexical y _) (const 0))
(apply (toplevel set-cdr!)
(lexical z _) (const ()))))))
(apply (primitive vector) (const 1) (const 2) (const 3))
(apply (toplevel make-list) (const 10))
(apply (primitive list) (const 1) (const 2) (const 3))))
(pass-if-peval
;; Procedure only called with dynamic args is not inlined.
(let ((foo top-foo) (bar top-bar))
(let* ((g (lambda (x y) (+ x y)))
(f (lambda (g x) (g x x))))
(+ (f g foo) (f g bar))))
(let (foo bar) (_ _) ((toplevel top-foo) (toplevel top-bar))
(let (g) (_)
((lambda _ ; g
(lambda-case
(((x y) #f #f #f () (_ _))
(apply (primitive +) (lexical x _) (lexical y _))))))
(let (f) (_)
((lambda _ ; f
(lambda-case
(((g x) #f #f #f () (_ _))
(apply (lexical g _) (lexical x _) (lexical x _))))))
(apply (primitive +)
(apply (lexical g _) (lexical foo _) (lexical foo _))
(apply (lexical g _) (lexical bar _) (lexical bar _)))))))
(pass-if-peval
;; Fresh objects are not turned into constants.
(let* ((c '(2 3))
(x (cons 1 c))
(y (cons 0 x)))
y)
(let (x) (_) ((apply (primitive list) (const 1) (const 2) (const 3)))
(let (y) (_) ((apply (primitive cons) (const 0) (lexical x _)))
(lexical y _))))
(pass-if-peval
;; Bindings mutated.
(let ((x 2))
(set! x 3)
x)
(let (x) (_) ((const 2))
(begin
(set! (lexical x _) (const 3))
(lexical x _))))
(pass-if-peval
;; Bindings mutated.
(letrec ((x 0)
(f (lambda ()
(set! x (+ 1 x))
x)))
(frob f) ; may mutate `x'
x)
(letrec (x f) (_ _) ((const 0) _)
(begin
(apply (toplevel frob) (lexical f _))
(lexical x _))))
(pass-if-peval
;; Bindings mutated.
(letrec ((f (lambda (x)
(set! f (lambda (_) x))
x)))
(f 2))
(letrec _ . _))
(pass-if-peval
;; Bindings possibly mutated.
(let ((x (make-foo)))
(frob! x) ; may mutate `x'
x)
(let (x) (_) ((apply (toplevel make-foo)))
(begin
(apply (toplevel frob!) (lexical x _))
(lexical x _))))
(pass-if-peval
;; Inlining stops at recursive calls with dynamic arguments.
(let loop ((x x))
(if (< x 0) x (loop (1- x))))
(letrec (loop) (_) ((lambda (_)
(lambda-case
(((x) #f #f #f () (_))
(if _ _
(apply (lexical loop _)
(apply (primitive 1-)
(lexical x _))))))))
(apply (lexical loop _) (toplevel x))))
(pass-if-peval
;; Recursion on the 2nd argument is fully evaluated.
(let ((x (top)))
(let loop ((x x) (y 10))
(if (> y 0)
(loop x (1- y))
(foo x y))))
(let (x) (_) ((apply (toplevel top)))
(letrec (loop) (_) (_)
(apply (toplevel foo) (lexical x _) (const 0)))))
(pass-if-peval
;; Inlining aborted when residual code contains recursive calls.
;; <http://debbugs.gnu.org/9542>
(let loop ((x x) (y 0))
(if (> y 0)
(loop (1+ x) (1+ y))
(if (< x 0) x (loop (1- x)))))
(letrec (loop) (_) ((lambda (_)
(lambda-case
(((x y) #f #f #f () (_ _))
(if (apply (primitive >)
(lexical y _) (const 0))
_ _)))))
(apply (lexical loop _) (toplevel x) (const 0))))
(pass-if-peval
;; Infinite recursion: `peval' gives up and leaves it as is.
(letrec ((f (lambda (x) (g (1- x))))
(g (lambda (x) (h (1+ x))))
(h (lambda (x) (f x))))
(f 0))
(letrec _ . _)))
(with-test-prefix "tree-il-fold"
(pass-if "empty tree"
(let ((leaf? #f) (up? #f) (down? #f) (mark (list 'mark)))
(and (eq? mark
(tree-il-fold (lambda (x y) (set! leaf? #t) y)
(lambda (x y) (set! down? #t) y)
(lambda (x y) (set! up? #t) y)
mark
'()))
(not leaf?)
(not up?)
(not down?))))
(pass-if "lambda and application"
(let* ((leaves '()) (ups '()) (downs '())
(result (tree-il-fold (lambda (x y)
(set! leaves (cons x leaves))
(1+ y))
(lambda (x y)
(set! downs (cons x downs))
(1+ y))
(lambda (x y)
(set! ups (cons x ups))
(1+ y))
0
(parse-tree-il
'(lambda ()
(lambda-case
(((x y) #f #f #f () (x1 y1))
(apply (toplevel +)
(lexical x x1)
(lexical y y1)))
#f))))))
(and (equal? (map strip-source leaves)
(list (make-lexical-ref #f 'y 'y1)
(make-lexical-ref #f 'x 'x1)
(make-toplevel-ref #f '+)))
(= (length downs) 3)
(equal? (reverse (map strip-source ups))
(map strip-source downs))))))
;;;
;;; Warnings.
;;;
;; Make sure we get English messages.
(setlocale LC_ALL "C")
(define (call-with-warnings thunk)
(let ((port (open-output-string)))
(with-fluids ((*current-warning-port* port)
(*current-warning-prefix* ""))
(thunk))
(let ((warnings (get-output-string port)))
(string-tokenize warnings
(char-set-complement (char-set #\newline))))))
(define %opts-w-unused
'(#:warnings (unused-variable)))
(define %opts-w-unused-toplevel
'(#:warnings (unused-toplevel)))
(define %opts-w-unbound
'(#:warnings (unbound-variable)))
(define %opts-w-arity
'(#:warnings (arity-mismatch)))
(define %opts-w-format
'(#:warnings (format)))
(with-test-prefix "warnings"
(pass-if "unknown warning type"
(let ((w (call-with-warnings
(lambda ()
(compile #t #:opts '(#:warnings (does-not-exist)))))))
(and (= (length w) 1)
(number? (string-contains (car w) "unknown warning")))))
(with-test-prefix "unused-variable"
(pass-if "quiet"
(null? (call-with-warnings
(lambda ()
(compile '(lambda (x y) (+ x y))
#:opts %opts-w-unused)))))
(pass-if "let/unused"
(let ((w (call-with-warnings
(lambda ()
(compile '(lambda (x)
(let ((y (+ x 2)))
x))
#:opts %opts-w-unused)))))
(and (= (length w) 1)
(number? (string-contains (car w) "unused variable `y'")))))
(pass-if "shadowed variable"
(let ((w (call-with-warnings
(lambda ()
(compile '(lambda (x)
(let ((y x))
(let ((y (+ x 2)))
(+ x y))))
#:opts %opts-w-unused)))))
(and (= (length w) 1)
(number? (string-contains (car w) "unused variable `y'")))))
(pass-if "letrec"
(null? (call-with-warnings
(lambda ()
(compile '(lambda ()
(letrec ((x (lambda () (y)))
(y (lambda () (x))))
y))
#:opts %opts-w-unused)))))
(pass-if "unused argument"
;; Unused arguments should not be reported.
(null? (call-with-warnings
(lambda ()
(compile '(lambda (x y z) #t)
#:opts %opts-w-unused)))))
(pass-if "special variable names"
(null? (call-with-warnings
(lambda ()
(compile '(lambda ()
(let ((_ 'underscore)
(#{gensym name}# 'ignore-me))
#t))
#:to 'assembly
#:opts %opts-w-unused))))))
(with-test-prefix "unused-toplevel"
(pass-if "used after definition"
(null? (call-with-warnings
(lambda ()
(let ((in (open-input-string
"(define foo 2) foo")))
(read-and-compile in
#:to 'assembly
#:opts %opts-w-unused-toplevel))))))
(pass-if "used before definition"
(null? (call-with-warnings
(lambda ()
(let ((in (open-input-string
"(define (bar) foo) (define foo 2) (bar)")))
(read-and-compile in
#:to 'assembly
#:opts %opts-w-unused-toplevel))))))
(pass-if "unused but public"
(let ((in (open-input-string
"(define-module (test-suite tree-il x) #:export (bar))
(define (bar) #t)")))
(null? (call-with-warnings
(lambda ()
(read-and-compile in
#:to 'assembly
#:opts %opts-w-unused-toplevel))))))
(pass-if "unused but public (more)"
(let ((in (open-input-string
"(define-module (test-suite tree-il x) #:export (bar))
(define (bar) (baz))
(define (baz) (foo))
(define (foo) #t)")))
(null? (call-with-warnings
(lambda ()
(read-and-compile in
#:to 'assembly
#:opts %opts-w-unused-toplevel))))))
(pass-if "unused but define-public"
(null? (call-with-warnings
(lambda ()
(compile '(define-public foo 2)
#:to 'assembly
#:opts %opts-w-unused-toplevel)))))
(pass-if "used by macro"
;; FIXME: See comment about macros at `unused-toplevel-analysis'.
(throw 'unresolved)
(null? (call-with-warnings
(lambda ()
(let ((in (open-input-string
"(define (bar) 'foo)
(define-syntax baz
(syntax-rules () ((_) (bar))))")))
(read-and-compile in
#:to 'assembly
#:opts %opts-w-unused-toplevel))))))
(pass-if "unused"
(let ((w (call-with-warnings
(lambda ()
(compile '(define foo 2)
#:to 'assembly
#:opts %opts-w-unused-toplevel)))))
(and (= (length w) 1)
(number? (string-contains (car w)
(format #f "top-level variable `~A'"
'foo))))))
(pass-if "unused recursive"
(let ((w (call-with-warnings
(lambda ()
(compile '(define (foo) (foo))
#:to 'assembly
#:opts %opts-w-unused-toplevel)))))
(and (= (length w) 1)
(number? (string-contains (car w)
(format #f "top-level variable `~A'"
'foo))))))
(pass-if "unused mutually recursive"
(let* ((in (open-input-string
"(define (foo) (bar)) (define (bar) (foo))"))
(w (call-with-warnings
(lambda ()
(read-and-compile in
#:to 'assembly
#:opts %opts-w-unused-toplevel)))))
(and (= (length w) 2)
(number? (string-contains (car w)
(format #f "top-level variable `~A'"
'foo)))
(number? (string-contains (cadr w)
(format #f "top-level variable `~A'"
'bar))))))
(pass-if "special variable names"
(null? (call-with-warnings
(lambda ()
(compile '(define #{gensym name}# 'ignore-me)
#:to 'assembly
#:opts %opts-w-unused-toplevel))))))
(with-test-prefix "unbound variable"
(pass-if "quiet"
(null? (call-with-warnings
(lambda ()
(compile '+ #:opts %opts-w-unbound)))))
(pass-if "ref"
(let* ((v (gensym))
(w (call-with-warnings
(lambda ()
(compile v
#:to 'assembly
#:opts %opts-w-unbound)))))
(and (= (length w) 1)
(number? (string-contains (car w)
(format #f "unbound variable `~A'"
v))))))
(pass-if "set!"
(let* ((v (gensym))
(w (call-with-warnings
(lambda ()
(compile `(set! ,v 7)
#:to 'assembly
#:opts %opts-w-unbound)))))
(and (= (length w) 1)
(number? (string-contains (car w)
(format #f "unbound variable `~A'"
v))))))
(pass-if "module-local top-level is visible"
(let ((m (make-module))
(v (gensym)))
(beautify-user-module! m)
(compile `(define ,v 123)
#:env m #:opts %opts-w-unbound)
(null? (call-with-warnings
(lambda ()
(compile v
#:env m
#:to 'assembly
#:opts %opts-w-unbound))))))
(pass-if "module-local top-level is visible after"
(let ((m (make-module))
(v (gensym)))
(beautify-user-module! m)
(null? (call-with-warnings
(lambda ()
(let ((in (open-input-string
"(define (f)
(set! chbouib 3))
(define chbouib 5)")))
(read-and-compile in
#:env m
#:opts %opts-w-unbound)))))))
(pass-if "optional arguments are visible"
(null? (call-with-warnings
(lambda ()
(compile '(lambda* (x #:optional y z) (list x y z))
#:opts %opts-w-unbound
#:to 'assembly)))))
(pass-if "keyword arguments are visible"
(null? (call-with-warnings
(lambda ()
(compile '(lambda* (x #:key y z) (list x y z))
#:opts %opts-w-unbound
#:to 'assembly)))))
(pass-if "GOOPS definitions are visible"
(let ((m (make-module))
(v (gensym)))
(beautify-user-module! m)
(module-use! m (resolve-interface '(oop goops)))
(null? (call-with-warnings
(lambda ()
(let ((in (open-input-string
"(define-class <foo> ()
(bar #:getter foo-bar))
(define z (foo-bar (make <foo>)))")))
(read-and-compile in
#:env m
#:opts %opts-w-unbound))))))))
(with-test-prefix "arity mismatch"
(pass-if "quiet"
(null? (call-with-warnings
(lambda ()
(compile '(cons 'a 'b) #:opts %opts-w-arity)))))
(pass-if "direct application"
(let ((w (call-with-warnings
(lambda ()
(compile '((lambda (x y) (or x y)) 1 2 3 4 5)
#:opts %opts-w-arity
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"wrong number of arguments to")))))
(pass-if "local"
(let ((w (call-with-warnings
(lambda ()
(compile '(let ((f (lambda (x y) (+ x y))))
(f 2))
#:opts %opts-w-arity
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"wrong number of arguments to")))))
(pass-if "global"
(let ((w (call-with-warnings
(lambda ()
(compile '(cons 1 2 3 4)
#:opts %opts-w-arity
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"wrong number of arguments to")))))
(pass-if "alias to global"
(let ((w (call-with-warnings
(lambda ()
(compile '(let ((f cons)) (f 1 2 3 4))
#:opts %opts-w-arity
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"wrong number of arguments to")))))
(pass-if "alias to lexical to global"
(let ((w (call-with-warnings
(lambda ()
(compile '(let ((f number?))
(let ((g f))
(f 1 2 3 4)))
#:opts %opts-w-arity
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"wrong number of arguments to")))))
(pass-if "alias to lexical"
(let ((w (call-with-warnings
(lambda ()
(compile '(let ((f (lambda (x y z) (+ x y z))))
(let ((g f))
(g 1)))
#:opts %opts-w-arity
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"wrong number of arguments to")))))
(pass-if "letrec"
(let ((w (call-with-warnings
(lambda ()
(compile '(letrec ((odd? (lambda (x) (even? (1- x))))
(even? (lambda (x)
(or (= 0 x)
(odd?)))))
(odd? 1))
#:opts %opts-w-arity
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"wrong number of arguments to")))))
(pass-if "case-lambda"
(null? (call-with-warnings
(lambda ()
(compile '(let ((f (case-lambda
((x) 1)
((x y) 2)
((x y z) 3))))
(list (f 1)
(f 1 2)
(f 1 2 3)))
#:opts %opts-w-arity
#:to 'assembly)))))
(pass-if "case-lambda with wrong number of arguments"
(let ((w (call-with-warnings
(lambda ()
(compile '(let ((f (case-lambda
((x) 1)
((x y) 2))))
(f 1 2 3))
#:opts %opts-w-arity
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"wrong number of arguments to")))))
(pass-if "case-lambda*"
(null? (call-with-warnings
(lambda ()
(compile '(let ((f (case-lambda*
((x #:optional y) 1)
((x #:key y) 2)
((x y #:key z) 3))))
(list (f 1)
(f 1 2)
(f #:y 2)
(f 1 2 #:z 3)))
#:opts %opts-w-arity
#:to 'assembly)))))
(pass-if "case-lambda* with wrong arguments"
(let ((w (call-with-warnings
(lambda ()
(compile '(let ((f (case-lambda*
((x #:optional y) 1)
((x #:key y) 2)
((x y #:key z) 3))))
(list (f)
(f 1 #:z 3)))
#:opts %opts-w-arity
#:to 'assembly)))))
(and (= (length w) 2)
(null? (filter (lambda (w)
(not
(number?
(string-contains
w "wrong number of arguments to"))))
w)))))
(pass-if "local toplevel-defines"
(let ((w (call-with-warnings
(lambda ()
(let ((in (open-input-string "
(define (g x) (f x))
(define (f) 1)")))
(read-and-compile in
#:opts %opts-w-arity
#:to 'assembly))))))
(and (= (length w) 1)
(number? (string-contains (car w)
"wrong number of arguments to")))))
(pass-if "global toplevel alias"
(let ((w (call-with-warnings
(lambda ()
(let ((in (open-input-string "
(define f cons)
(define (g) (f))")))
(read-and-compile in
#:opts %opts-w-arity
#:to 'assembly))))))
(and (= (length w) 1)
(number? (string-contains (car w)
"wrong number of arguments to")))))
(pass-if "local toplevel overrides global"
(null? (call-with-warnings
(lambda ()
(let ((in (open-input-string "
(define (cons) 0)
(define (foo x) (cons))")))
(read-and-compile in
#:opts %opts-w-arity
#:to 'assembly))))))
(pass-if "keyword not passed and quiet"
(null? (call-with-warnings
(lambda ()
(compile '(let ((f (lambda* (x #:key y) y)))
(f 2))
#:opts %opts-w-arity
#:to 'assembly)))))
(pass-if "keyword passed and quiet"
(null? (call-with-warnings
(lambda ()
(compile '(let ((f (lambda* (x #:key y) y)))
(f 2 #:y 3))
#:opts %opts-w-arity
#:to 'assembly)))))
(pass-if "keyword passed to global and quiet"
(null? (call-with-warnings
(lambda ()
(let ((in (open-input-string "
(use-modules (system base compile))
(compile '(+ 2 3) #:env (current-module))")))
(read-and-compile in
#:opts %opts-w-arity
#:to 'assembly))))))
(pass-if "extra keyword"
(let ((w (call-with-warnings
(lambda ()
(compile '(let ((f (lambda* (x #:key y) y)))
(f 2 #:Z 3))
#:opts %opts-w-arity
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"wrong number of arguments to")))))
(pass-if "extra keywords allowed"
(null? (call-with-warnings
(lambda ()
(compile '(let ((f (lambda* (x #:key y #:allow-other-keys)
y)))
(f 2 #:Z 3))
#:opts %opts-w-arity
#:to 'assembly))))))
(with-test-prefix "format"
(pass-if "quiet (no args)"
(null? (call-with-warnings
(lambda ()
(compile '(format #t "hey!")
#:opts %opts-w-format
#:to 'assembly)))))
(pass-if "quiet (1 arg)"
(null? (call-with-warnings
(lambda ()
(compile '(format #t "hey ~A!" "you")
#:opts %opts-w-format
#:to 'assembly)))))
(pass-if "quiet (2 args)"
(null? (call-with-warnings
(lambda ()
(compile '(format #t "~A ~A!" "hello" "world")
#:opts %opts-w-format
#:to 'assembly)))))
(pass-if "wrong port arg"
(let ((w (call-with-warnings
(lambda ()
(compile '(format 10 "foo")
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"wrong port argument")))))
(pass-if "non-literal format string"
(let ((w (call-with-warnings
(lambda ()
(compile '(format #f fmt)
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"non-literal format string")))))
(pass-if "non-literal format string using gettext"
(null? (call-with-warnings
(lambda ()
(compile '(format #t (_ "~A ~A!") "hello" "world")
#:opts %opts-w-format
#:to 'assembly)))))
(pass-if "wrong format string"
(let ((w (call-with-warnings
(lambda ()
(compile '(format #f 'not-a-string)
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"wrong format string")))))
(pass-if "wrong number of args"
(let ((w (call-with-warnings
(lambda ()
(compile '(format "shbweeb")
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"wrong number of arguments")))))
(pass-if "~%, ~~, ~&, ~t, ~_, and ~\\n"
(null? (call-with-warnings
(lambda ()
(compile '(format some-port "~&~3_~~ ~\n~12they~%")
#:opts %opts-w-format
#:to 'assembly)))))
(pass-if "one missing argument"
(let ((w (call-with-warnings
(lambda ()
(compile '(format some-port "foo ~A~%")
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"expected 1, got 0")))))
(pass-if "one missing argument, gettext"
(let ((w (call-with-warnings
(lambda ()
(compile '(format some-port (_ "foo ~A~%"))
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"expected 1, got 0")))))
(pass-if "two missing arguments"
(let ((w (call-with-warnings
(lambda ()
(compile '(format #f "foo ~10,2f and bar ~S~%")
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"expected 2, got 0")))))
(pass-if "one given, one missing argument"
(let ((w (call-with-warnings
(lambda ()
(compile '(format #t "foo ~A and ~S~%" hey)
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"expected 2, got 1")))))
(pass-if "too many arguments"
(let ((w (call-with-warnings
(lambda ()
(compile '(format #t "foo ~A~%" 1 2)
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"expected 1, got 2")))))
(with-test-prefix "conditionals"
(pass-if "literals"
(null? (call-with-warnings
(lambda ()
(compile '(format #f "~A ~[foo~;bar~;baz~;~] ~10,2f"
'a 1 3.14)
#:opts %opts-w-format
#:to 'assembly)))))
(pass-if "literals with selector"
(let ((w (call-with-warnings
(lambda ()
(compile '(format #f "~2[foo~;bar~;baz~;~] ~A"
1 'dont-ignore-me)
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"expected 1, got 2")))))
(pass-if "escapes (exact count)"
(let ((w (call-with-warnings
(lambda ()
(compile '(format #f "~[~a~;~a~]")
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"expected 2, got 0")))))
(pass-if "escapes with selector"
(let ((w (call-with-warnings
(lambda ()
(compile '(format #f "~1[chbouib~;~a~]")
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"expected 1, got 0")))))
(pass-if "escapes, range"
(let ((w (call-with-warnings
(lambda ()
(compile '(format #f "~[chbouib~;~a~;~2*~a~]")
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"expected 1 to 4, got 0")))))
(pass-if "@"
(let ((w (call-with-warnings
(lambda ()
(compile '(format #f "~@[temperature=~d~]")
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"expected 1, got 0")))))
(pass-if "nested"
(let ((w (call-with-warnings
(lambda ()
(compile '(format #f "~:[~[hey~;~a~;~va~]~;~3*~]")
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"expected 2 to 4, got 0")))))
(pass-if "unterminated"
(let ((w (call-with-warnings
(lambda ()
(compile '(format #f "~[unterminated")
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"unterminated conditional")))))
(pass-if "unexpected ~;"
(let ((w (call-with-warnings
(lambda ()
(compile '(format #f "foo~;bar")
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"unexpected")))))
(pass-if "unexpected ~]"
(let ((w (call-with-warnings
(lambda ()
(compile '(format #f "foo~]")
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"unexpected"))))))
(pass-if "~{...~}"
(null? (call-with-warnings
(lambda ()
(compile '(format #f "~A ~{~S~} ~A"
'hello '("ladies" "and")
'gentlemen)
#:opts %opts-w-format
#:to 'assembly)))))
(pass-if "~{...~}, too many args"
(let ((w (call-with-warnings
(lambda ()
(compile '(format #f "~{~S~}" 1 2 3)
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"expected 1, got 3")))))
(pass-if "~@{...~}"
(null? (call-with-warnings
(lambda ()
(compile '(format #f "~@{~S~}" 1 2 3)
#:opts %opts-w-format
#:to 'assembly)))))
(pass-if "~@{...~}, too few args"
(let ((w (call-with-warnings
(lambda ()
(compile '(format #f "~A ~@{~S~}")
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"expected at least 1, got 0")))))
(pass-if "unterminated ~{...~}"
(let ((w (call-with-warnings
(lambda ()
(compile '(format #f "~{")
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"unterminated")))))
(pass-if "~(...~)"
(null? (call-with-warnings
(lambda ()
(compile '(format #f "~:@(~A ~A~)" 'foo 'bar)
#:opts %opts-w-format
#:to 'assembly)))))
(pass-if "~v"
(let ((w (call-with-warnings
(lambda ()
(compile '(format #f "~v_foo")
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"expected 1, got 0")))))
(pass-if "~v:@y"
(null? (call-with-warnings
(lambda ()
(compile '(format #f "~v:@y" 1 123)
#:opts %opts-w-format
#:to 'assembly)))))
(pass-if "~*"
(let ((w (call-with-warnings
(lambda ()
(compile '(format #f "~2*~a" 'a 'b)
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"expected 3, got 2")))))
(pass-if "~?"
(null? (call-with-warnings
(lambda ()
(compile '(format #f "~?" "~d ~d" '(1 2))
#:opts %opts-w-format
#:to 'assembly)))))
(pass-if "complex 1"
(let ((w (call-with-warnings
(lambda ()
(compile '(format #f
"~4@S ~32S~@[;; ~1{~@?~}~]~@[~61t at ~a~]\n"
1 2 3 4 5 6)
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"expected 4, got 6")))))
(pass-if "complex 2"
(let ((w (call-with-warnings
(lambda ()
(compile '(format #f
"~:(~A~) Commands~:[~; [abbrev]~]:~2%"
1 2 3 4)
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"expected 2, got 4")))))
(pass-if "complex 3"
(let ((w (call-with-warnings
(lambda ()
(compile '(format #f "~9@a~:[~*~3_~;~3d~] ~v:@y~%")
#:opts %opts-w-format
#:to 'assembly)))))
(and (= (length w) 1)
(number? (string-contains (car w)
"expected 5, got 0")))))
(pass-if "ice-9 format"
(let ((w (call-with-warnings
(lambda ()
(let ((in (open-input-string
"(use-modules ((ice-9 format)
#:renamer (symbol-prefix-proc 'i9-)))
(i9-format #t \"yo! ~A\" 1 2)")))
(read-and-compile in
#:opts %opts-w-format
#:to 'assembly))))))
(and (= (length w) 1)
(number? (string-contains (car w)
"expected 1, got 2")))))
(pass-if "not format"
(null? (call-with-warnings
(lambda ()
(compile '(let ((format chbouib))
(format #t "not ~A a format string"))
#:opts %opts-w-format
#:to 'assembly)))))))