1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-30 03:40:34 +02:00
guile/module/slib/factor.scm
2001-04-14 11:24:45 +00:00

245 lines
8.8 KiB
Scheme

;;;; "factor.scm" factorization, prime test and generation
;;; Copyright (C) 1991, 1992, 1993, 1998 Aubrey Jaffer.
;
;Permission to copy this software, to redistribute it, and to use it
;for any purpose is granted, subject to the following restrictions and
;understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warrantee or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
(require 'common-list-functions)
(require 'modular)
(require 'random)
(require 'byte)
;;@body
;;@0 is the random-state (@pxref{Random Numbers}) used by these
;;procedures. If you call these procedures from more than one thread
;;(or from interrupt), @code{random} may complain about reentrant
;;calls.
(define prime:prngs
(make-random-state "repeatable seed for primes"))
;;@emph{Note:} The prime test and generation procedures implement (or
;;use) the Solovay-Strassen primality test. See
;;
;;@itemize @bullet
;;@item Robert Solovay and Volker Strassen,
;;@cite{A Fast Monte-Carlo Test for Primality},
;;SIAM Journal on Computing, 1977, pp 84-85.
;;@end itemize
;;; Solovay-Strassen Prime Test
;;; if n is prime, then J(a,n) is congruent mod n to a**((n-1)/2)
;;; (modulo p 16) is because we care only about the low order bits.
;;; The odd? tests are inline of (expt -1 ...)
(define (prime:jacobi-symbol p q)
(cond ((zero? p) 0)
((= 1 p) 1)
((odd? p)
(if (odd? (quotient (* (- (modulo p 16) 1) (- q 1)) 4))
(- (prime:jacobi-symbol (modulo q p) p))
(prime:jacobi-symbol (modulo q p) p)))
(else
(let ((qq (modulo q 16)))
(if (odd? (quotient (- (* qq qq) 1) 8))
(- (prime:jacobi-symbol (quotient p 2) q))
(prime:jacobi-symbol (quotient p 2) q))))))
;;@args p q
;;Returns the value (+1, @minus{}1, or 0) of the Jacobi-Symbol of
;;exact non-negative integer @1 and exact positive odd integer @2.
(define jacobi-symbol prime:jacobi-symbol)
;;@body
;;@0 the maxinum number of iterations of Solovay-Strassen that will
;;be done to test a number for primality.
(define prime:trials 30)
;;; checks if n is prime. Returns #f if not prime. #t if (probably) prime.
;;; probability of a mistake = (expt 2 (- prime:trials))
;;; choosing prime:trials=30 should be enough
(define (Solovay-Strassen-prime? n)
(do ((i prime:trials (- i 1))
(a (+ 2 (random (- n 2) prime:prngs))
(+ 2 (random (- n 2) prime:prngs))))
((not (and (positive? i)
(= (gcd a n) 1)
(= (modulo (prime:jacobi-symbol a n) n)
(modular:expt n a (quotient (- n 1) 2)))))
(if (positive? i) #f #t))))
;;; prime:products are products of small primes.
(define (primes-gcd? n comps)
(comlist:notevery (lambda (prd) (= 1 (gcd n prd))) comps))
(define prime:prime-sqr 121)
(define prime:products '(105))
(define prime:sieve (bytes 0 0 1 1 0 1 0 1 0 0 0))
(letrec ((lp (lambda (comp comps primes nexp)
(cond ((< comp (quotient most-positive-fixnum nexp))
(let ((ncomp (* nexp comp)))
(lp ncomp comps
(cons nexp primes)
(next-prime nexp (cons ncomp comps)))))
((< (quotient comp nexp) (* nexp nexp))
(set! prime:prime-sqr (* nexp nexp))
(set! prime:sieve (make-bytes nexp 0))
(for-each (lambda (prime)
(byte-set! prime:sieve prime 1))
primes)
(set! prime:products (reverse (cons comp comps))))
(else
(lp nexp (cons comp comps)
(cons nexp primes)
(next-prime nexp (cons comp comps)))))))
(next-prime (lambda (nexp comps)
(set! comps (reverse comps))
(do ((nexp (+ 2 nexp) (+ 2 nexp)))
((not (primes-gcd? nexp comps)) nexp)))))
(lp 3 '() '(2 3) 5))
(define (prime:prime? n)
(set! n (abs n))
(cond ((< n (bytes-length prime:sieve)) (positive? (byte-ref prime:sieve n)))
((even? n) #f)
((primes-gcd? n prime:products) #f)
((< n prime:prime-sqr) #t)
(else (Solovay-Strassen-prime? n))))
;;@args n
;;Returns @code{#f} if @1 is composite; @code{#t} if @1 is prime.
;;There is a slight chance @code{(expt 2 (- prime:trials))} that a
;;composite will return @code{#t}.
(define prime? prime:prime?)
(define probably-prime? prime:prime?) ;legacy
(define (prime:prime< start)
(do ((nbr (+ -1 start) (+ -1 nbr)))
((or (negative? nbr) (prime:prime? nbr))
(if (negative? nbr) #f nbr))))
(define (prime:primes< start count)
(do ((cnt (+ -2 count) (+ -1 cnt))
(lst '() (cons prime lst))
(prime (prime:prime< start) (prime:prime< prime)))
((or (not prime) (negative? cnt))
(if prime (cons prime lst) lst))))
;;@args start count
;;Returns a list of the first @2 prime numbers less than
;;@1. If there are fewer than @var{count} prime numbers
;;less than @var{start}, then the returned list will have fewer than
;;@var{start} elements.
(define primes< prime:primes<)
(define (prime:prime> start)
(do ((nbr (+ 1 start) (+ 1 nbr)))
((prime:prime? nbr) nbr)))
(define (prime:primes> start count)
(set! start (max 0 start))
(do ((cnt (+ -2 count) (+ -1 cnt))
(lst '() (cons prime lst))
(prime (prime:prime> start) (prime:prime> prime)))
((negative? cnt)
(reverse (cons prime lst)))))
;;@args start count
;;Returns a list of the first @2 prime numbers greater than @1.
(define primes> prime:primes>)
;;;;Lankinen's recursive factoring algorithm:
;From: ld231782@longs.LANCE.ColoState.EDU (L. Detweiler)
; | undefined if n<0,
; | (u,v) if n=0,
;Let f(u,v,b,n) := | [otherwise]
; | f(u+b,v,2b,(n-v)/2) or f(u,v+b,2b,(n-u)/2) if n odd
; | f(u,v,2b,n/2) or f(u+b,v+b,2b,(n-u-v-b)/2) if n even
;Thm: f(1,1,2,(m-1)/2) = (p,q) iff pq=m for odd m.
;It may be illuminating to consider the relation of the Lankinen function in
;a `computational hierarchy' of other factoring functions.* Assumptions are
;made herein on the basis of conventional digital (binary) computers. Also,
;complexity orders are given for the worst case scenarios (when the number to
;be factored is prime). However, all algorithms would probably perform to
;the same constant multiple of the given orders for complete composite
;factorizations.
;Thm: Eratosthenes' Sieve is very roughtly O(ln(n)/n) in time and
; O(n*log2(n)) in space.
;Pf: It works with all prime factors less than n (about ln(n)/n by the prime
; number thm), requiring an array of size proportional to n with log2(n)
; space for each entry.
;Thm: `Odd factors' is O((sqrt(n)/2)*log2(n)) in time and O(log2(n)) in
; space.
;Pf: It tests all odd factors less than the square root of n (about
; sqrt(n)/2), with log2(n) time for each division. It requires only
; log2(n) space for the number and divisors.
;Thm: Lankinen's algorithm is O(sqrt(n)/2) in time and O((sqrt(n)/2)*log2(n))
; in space.
;Pf: The algorithm is easily modified to seach only for factors p<q for all
; pq=m. Then the recursive call tree forms a geometric progression
; starting at one, and doubling until reaching sqrt(n)/2, or a length of
; log2(sqrt(n)/2). From the formula for a geometric progression, there is
; a total of about 2^log2(sqrt(n)/2) = sqrt(n)/2 calls. Assuming that
; addition, subtraction, comparison, and multiplication/division by two
; occur in constant time, this implies O(sqrt(n)/2) time and a
; O((sqrt(n)/2)*log2(n)) requirement of stack space.
(define (prime:f u v b n)
(if (<= n 0)
(cond ((negative? n) #f)
((= u 1) #f)
((= v 1) #f)
; Do both of these factors need to be factored?
(else (append (or (prime:f 1 1 2 (quotient (- u 1) 2))
(list u))
(or (prime:f 1 1 2 (quotient (- v 1) 2))
(list v)))))
(if (even? n)
(or (prime:f u v (+ b b) (quotient n 2))
(prime:f (+ u b) (+ v b) (+ b b) (quotient (- n (+ u v b)) 2)))
(or (prime:f (+ u b) v (+ b b) (quotient (- n v) 2))
(prime:f u (+ v b) (+ b b) (quotient (- n u) 2))))))
(define (prime:fo m)
(let* ((s (gcd m (car prime:products)))
(r (quotient m s)))
(if (= 1 s)
(or (prime:f 1 1 2 (quotient (- m 1) 2)) (list m))
(append
(if (= 1 r) '()
(or (prime:f 1 1 2 (quotient (- r 1) 2)) (list r)))
(or (prime:f 1 1 2 (quotient (- s 1) 2)) (list s))))))
(define (prime:fe m)
(if (even? m)
(cons 2 (prime:fe (quotient m 2)))
(if (eqv? 1 m)
'()
(prime:fo m))))
(define (prime:factor k)
(case k
((-1 0 1) (list k))
(else (if (negative? k)
(cons -1 (prime:fe (- k)))
(prime:fe k)))))
;;@args k
;;Returns a list of the prime factors of @1. The order of the
;;factors is unspecified. In order to obtain a sorted list do
;;@code{(sort! (factor @var{k}) <)}.
(define factor prime:factor)