mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-04-30 20:00:19 +02:00
* libguile/Makefile.am (lib_LTLIBRARIES): Instead of just "libguile.la", make "libguile-@EFFECTIVE_VERSION@.la". This allows multiple versions of Guile to be installed at once. See http://www106.pair.com/rhp/parallel.html for a rationale. (libguile_@GUILE_EFFECTIVE_VERSION@_la_CFLAGS): (libguile_@GUILE_EFFECTIVE_VERSION@_la_SOURCES): (EXTRA_libguile_@GUILE_EFFECTIVE_VERSION@_la_SOURCES): (libguile_@GUILE_EFFECTIVE_VERSION@_la_DEPENDENCIES): (libguile_@GUILE_EFFECTIVE_VERSION@_la_LIBADD): (libguile_@GUILE_EFFECTIVE_VERSION@_la_LDFLAGS): Fixup automake vars to include the effective version. (guile_LDADD): Fix up the spelling of libguile. * libguile/bytevectors.c (scm_bootstrap_bytevectors): * libguile/foreign.c (scm_register_foreign): * libguile/i18n.c (scm_bootstrap_i18n): * libguile/instructions.c (scm_bootstrap_instructions): * libguile/objcodes.c (scm_bootstrap_objcodes): * libguile/programs.c (scm_bootstrap_programs): * libguile/vm.c (scm_bootstrap_vm): Register extensions using e.g. "libguile-2.0" as the libname -- i.e., including the effective version in the libname. * module/ice-9/i18n.scm: * module/rnrs/bytevector.scm: * module/rnrs/io/ports.scm: * module/system/foreign.scm: * module/system/vm/instruction.scm: * module/system/vm/objcode.scm: * module/system/vm/program.scm: * module/system/vm/vm.scm: When doing a load-extension for something in Guile, use the effective version also. * meta/guile-2.0-uninstalled.pc.in (Libs): * meta/guile-2.0.pc.in (Libs): Use -lguile-@EFFECTIVE_VERSION@. This change should mean that code built against Guile should not be affected by the libguile rename. * guile-readline/Makefile.am (libguilereadline_v_@LIBGUILEREADLINE_MAJOR@_la_LIBADD): * srfi/Makefile.am (libguile_srfi_srfi_1_v_@LIBGUILE_SRFI_SRFI_1_MAJOR@_la_LIBADD): (libguile_srfi_srfi_4_v_@LIBGUILE_SRFI_SRFI_4_MAJOR@_la_LIBADD): (libguile_srfi_srfi_13_14_v_@LIBGUILE_SRFI_SRFI_13_14_MAJOR@_la_LIBADD): (libguile_srfi_srfi_60_v_@LIBGUILE_SRFI_SRFI_60_MAJOR@_la_LIBADD): * test-suite/standalone/Makefile.am (test_num2integral_LDADD): (test_round_LDADD): (libtest_asmobs_la_LIBADD): (libtest_ffi_la_LIBADD): (test_list_LDADD): (test_unwind_LDADD): (test_conversion_LDADD): (test_loose_ends_LDADD): (test_scm_c_read_LDADD): (test_scm_take_locale_symbol_LDADD): (test_scm_take_u8vector_LDADD): (libtest_extensions_la_LIBADD): (test_with_guile_module_LDADD): (test_scm_with_guile_LDADD): Fix up the spelling of libguile.la.
2253 lines
64 KiB
C
2253 lines
64 KiB
C
/* Copyright (C) 2009, 2010 Free Software Foundation, Inc.
|
||
*
|
||
* This library is free software; you can redistribute it and/or
|
||
* modify it under the terms of the GNU Lesser General Public License
|
||
* as published by the Free Software Foundation; either version 3 of
|
||
* the License, or (at your option) any later version.
|
||
*
|
||
* This library is distributed in the hope that it will be useful, but
|
||
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
* Lesser General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU Lesser General Public
|
||
* License along with this library; if not, write to the Free Software
|
||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
||
* 02110-1301 USA
|
||
*/
|
||
|
||
|
||
#ifdef HAVE_CONFIG_H
|
||
# include <config.h>
|
||
#endif
|
||
|
||
#include <alloca.h>
|
||
#include <assert.h>
|
||
|
||
#include <gmp.h>
|
||
|
||
#include "libguile/_scm.h"
|
||
#include "libguile/extensions.h"
|
||
#include "libguile/bytevectors.h"
|
||
#include "libguile/strings.h"
|
||
#include "libguile/validate.h"
|
||
#include "libguile/ieee-754.h"
|
||
#include "libguile/arrays.h"
|
||
#include "libguile/array-handle.h"
|
||
#include "libguile/uniform.h"
|
||
#include "libguile/srfi-4.h"
|
||
|
||
#include <byteswap.h>
|
||
#include <striconveh.h>
|
||
#include <uniconv.h>
|
||
#include <unistr.h>
|
||
|
||
#ifdef HAVE_LIMITS_H
|
||
# include <limits.h>
|
||
#else
|
||
/* Assuming 32-bit longs. */
|
||
# define ULONG_MAX 4294967295UL
|
||
#endif
|
||
|
||
#include <string.h>
|
||
|
||
|
||
|
||
/* Utilities. */
|
||
|
||
/* Convenience macros. These are used by the various templates (macros) that
|
||
are parameterized by integer signedness. */
|
||
#define INT8_T_signed scm_t_int8
|
||
#define INT8_T_unsigned scm_t_uint8
|
||
#define INT16_T_signed scm_t_int16
|
||
#define INT16_T_unsigned scm_t_uint16
|
||
#define INT32_T_signed scm_t_int32
|
||
#define INT32_T_unsigned scm_t_uint32
|
||
#define is_signed_int8(_x) (((_x) >= -128L) && ((_x) <= 127L))
|
||
#define is_unsigned_int8(_x) ((_x) <= 255UL)
|
||
#define is_signed_int16(_x) (((_x) >= -32768L) && ((_x) <= 32767L))
|
||
#define is_unsigned_int16(_x) ((_x) <= 65535UL)
|
||
#define is_signed_int32(_x) (((_x) >= -2147483648L) && ((_x) <= 2147483647L))
|
||
#define is_unsigned_int32(_x) ((_x) <= 4294967295UL)
|
||
#define SIGNEDNESS_signed 1
|
||
#define SIGNEDNESS_unsigned 0
|
||
|
||
#define INT_TYPE(_size, _sign) INT ## _size ## _T_ ## _sign
|
||
#define INT_SWAP(_size) bswap_ ## _size
|
||
#define INT_VALID_P(_size, _sign) is_ ## _sign ## _int ## _size
|
||
#define SIGNEDNESS(_sign) SIGNEDNESS_ ## _sign
|
||
|
||
|
||
#define INTEGER_ACCESSOR_PROLOGUE(_len, _sign) \
|
||
size_t c_len, c_index; \
|
||
_sign char *c_bv; \
|
||
\
|
||
SCM_VALIDATE_BYTEVECTOR (1, bv); \
|
||
c_index = scm_to_uint (index); \
|
||
\
|
||
c_len = SCM_BYTEVECTOR_LENGTH (bv); \
|
||
c_bv = (_sign char *) SCM_BYTEVECTOR_CONTENTS (bv); \
|
||
\
|
||
if (SCM_UNLIKELY (c_index + ((_len) >> 3UL) - 1 >= c_len)) \
|
||
scm_out_of_range (FUNC_NAME, index);
|
||
|
||
/* Template for fixed-size integer access (only 8, 16 or 32-bit). */
|
||
#define INTEGER_REF(_len, _sign) \
|
||
SCM result; \
|
||
\
|
||
INTEGER_ACCESSOR_PROLOGUE (_len, _sign); \
|
||
SCM_VALIDATE_SYMBOL (3, endianness); \
|
||
\
|
||
{ \
|
||
INT_TYPE (_len, _sign) c_result; \
|
||
\
|
||
memcpy (&c_result, &c_bv[c_index], (_len) / 8); \
|
||
if (!scm_is_eq (endianness, scm_i_native_endianness)) \
|
||
c_result = INT_SWAP (_len) (c_result); \
|
||
\
|
||
result = SCM_I_MAKINUM (c_result); \
|
||
} \
|
||
\
|
||
return result;
|
||
|
||
/* Template for fixed-size integer access using the native endianness. */
|
||
#define INTEGER_NATIVE_REF(_len, _sign) \
|
||
SCM result; \
|
||
\
|
||
INTEGER_ACCESSOR_PROLOGUE (_len, _sign); \
|
||
\
|
||
{ \
|
||
INT_TYPE (_len, _sign) c_result; \
|
||
\
|
||
memcpy (&c_result, &c_bv[c_index], (_len) / 8); \
|
||
result = SCM_I_MAKINUM (c_result); \
|
||
} \
|
||
\
|
||
return result;
|
||
|
||
/* Template for fixed-size integer modification (only 8, 16 or 32-bit). */
|
||
#define INTEGER_SET(_len, _sign) \
|
||
INTEGER_ACCESSOR_PROLOGUE (_len, _sign); \
|
||
SCM_VALIDATE_SYMBOL (3, endianness); \
|
||
\
|
||
{ \
|
||
_sign long c_value; \
|
||
INT_TYPE (_len, _sign) c_value_short; \
|
||
\
|
||
if (SCM_UNLIKELY (!SCM_I_INUMP (value))) \
|
||
scm_wrong_type_arg (FUNC_NAME, 3, value); \
|
||
\
|
||
c_value = SCM_I_INUM (value); \
|
||
if (SCM_UNLIKELY (!INT_VALID_P (_len, _sign) (c_value))) \
|
||
scm_out_of_range (FUNC_NAME, value); \
|
||
\
|
||
c_value_short = (INT_TYPE (_len, _sign)) c_value; \
|
||
if (!scm_is_eq (endianness, scm_i_native_endianness)) \
|
||
c_value_short = INT_SWAP (_len) (c_value_short); \
|
||
\
|
||
memcpy (&c_bv[c_index], &c_value_short, (_len) / 8); \
|
||
} \
|
||
\
|
||
return SCM_UNSPECIFIED;
|
||
|
||
/* Template for fixed-size integer modification using the native
|
||
endianness. */
|
||
#define INTEGER_NATIVE_SET(_len, _sign) \
|
||
INTEGER_ACCESSOR_PROLOGUE (_len, _sign); \
|
||
\
|
||
{ \
|
||
_sign long c_value; \
|
||
INT_TYPE (_len, _sign) c_value_short; \
|
||
\
|
||
if (SCM_UNLIKELY (!SCM_I_INUMP (value))) \
|
||
scm_wrong_type_arg (FUNC_NAME, 3, value); \
|
||
\
|
||
c_value = SCM_I_INUM (value); \
|
||
if (SCM_UNLIKELY (!INT_VALID_P (_len, _sign) (c_value))) \
|
||
scm_out_of_range (FUNC_NAME, value); \
|
||
\
|
||
c_value_short = (INT_TYPE (_len, _sign)) c_value; \
|
||
\
|
||
memcpy (&c_bv[c_index], &c_value_short, (_len) / 8); \
|
||
} \
|
||
\
|
||
return SCM_UNSPECIFIED;
|
||
|
||
|
||
|
||
/* Bytevector type. */
|
||
|
||
#define SCM_BYTEVECTOR_HEADER_BYTES \
|
||
(SCM_BYTEVECTOR_HEADER_SIZE * sizeof (SCM))
|
||
|
||
#define SCM_BYTEVECTOR_SET_LENGTH(_bv, _len) \
|
||
SCM_SET_CELL_WORD_1 ((_bv), (scm_t_bits) (_len))
|
||
#define SCM_BYTEVECTOR_SET_CONTENTS(_bv, _contents) \
|
||
SCM_SET_CELL_WORD_2 ((_bv), (scm_t_bits) (_contents))
|
||
#define SCM_BYTEVECTOR_SET_CONTIGUOUS_P(bv, contiguous_p) \
|
||
SCM_SET_BYTEVECTOR_FLAGS ((bv), \
|
||
SCM_BYTEVECTOR_ELEMENT_TYPE (bv) \
|
||
| ((contiguous_p) << 8UL))
|
||
|
||
#define SCM_BYTEVECTOR_SET_ELEMENT_TYPE(bv, hint) \
|
||
SCM_SET_BYTEVECTOR_FLAGS ((bv), \
|
||
(hint) \
|
||
| (SCM_BYTEVECTOR_CONTIGUOUS_P (bv) << 8UL))
|
||
#define SCM_BYTEVECTOR_TYPE_SIZE(var) \
|
||
(scm_i_array_element_type_sizes[SCM_BYTEVECTOR_ELEMENT_TYPE (var)]/8)
|
||
#define SCM_BYTEVECTOR_TYPED_LENGTH(var) \
|
||
(SCM_BYTEVECTOR_LENGTH (var) / SCM_BYTEVECTOR_TYPE_SIZE (var))
|
||
|
||
/* The empty bytevector. */
|
||
SCM scm_null_bytevector = SCM_UNSPECIFIED;
|
||
|
||
|
||
static inline SCM
|
||
make_bytevector (size_t len, scm_t_array_element_type element_type)
|
||
{
|
||
SCM ret;
|
||
size_t c_len;
|
||
|
||
if (SCM_UNLIKELY (element_type > SCM_ARRAY_ELEMENT_TYPE_LAST
|
||
|| scm_i_array_element_type_sizes[element_type] < 8
|
||
|| len >= (SCM_I_SIZE_MAX
|
||
/ (scm_i_array_element_type_sizes[element_type]/8))))
|
||
/* This would be an internal Guile programming error */
|
||
abort ();
|
||
|
||
if (SCM_UNLIKELY (len == 0 && element_type == SCM_ARRAY_ELEMENT_TYPE_VU8
|
||
&& SCM_BYTEVECTOR_P (scm_null_bytevector)))
|
||
ret = scm_null_bytevector;
|
||
else
|
||
{
|
||
signed char *contents;
|
||
|
||
c_len = len * (scm_i_array_element_type_sizes[element_type] / 8);
|
||
|
||
contents = scm_gc_malloc_pointerless (SCM_BYTEVECTOR_HEADER_BYTES + c_len,
|
||
SCM_GC_BYTEVECTOR);
|
||
ret = PTR2SCM (contents);
|
||
contents += SCM_BYTEVECTOR_HEADER_BYTES;
|
||
|
||
SCM_BYTEVECTOR_SET_LENGTH (ret, c_len);
|
||
SCM_BYTEVECTOR_SET_CONTENTS (ret, contents);
|
||
SCM_BYTEVECTOR_SET_CONTIGUOUS_P (ret, 1);
|
||
SCM_BYTEVECTOR_SET_ELEMENT_TYPE (ret, element_type);
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Return a bytevector of LEN elements of type ELEMENT_TYPE, with element
|
||
values taken from CONTENTS. Assume that the storage for CONTENTS will be
|
||
automatically reclaimed when it becomes unreachable. */
|
||
static inline SCM
|
||
make_bytevector_from_buffer (size_t len, void *contents,
|
||
scm_t_array_element_type element_type)
|
||
{
|
||
SCM ret;
|
||
|
||
if (SCM_UNLIKELY (len == 0))
|
||
ret = make_bytevector (len, element_type);
|
||
else
|
||
{
|
||
size_t c_len;
|
||
|
||
ret = PTR2SCM (scm_gc_malloc (SCM_BYTEVECTOR_HEADER_BYTES,
|
||
SCM_GC_BYTEVECTOR));
|
||
|
||
c_len = len * (scm_i_array_element_type_sizes[element_type] / 8);
|
||
|
||
SCM_BYTEVECTOR_SET_LENGTH (ret, c_len);
|
||
SCM_BYTEVECTOR_SET_CONTENTS (ret, contents);
|
||
SCM_BYTEVECTOR_SET_CONTIGUOUS_P (ret, 0);
|
||
SCM_BYTEVECTOR_SET_ELEMENT_TYPE (ret, element_type);
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
|
||
/* Return a new bytevector of size LEN octets. */
|
||
SCM
|
||
scm_c_make_bytevector (size_t len)
|
||
{
|
||
return make_bytevector (len, SCM_ARRAY_ELEMENT_TYPE_VU8);
|
||
}
|
||
|
||
/* Return a new bytevector of size LEN elements. */
|
||
SCM
|
||
scm_i_make_typed_bytevector (size_t len, scm_t_array_element_type element_type)
|
||
{
|
||
return make_bytevector (len, element_type);
|
||
}
|
||
|
||
/* Return a bytevector of size LEN made up of CONTENTS. The area pointed to
|
||
by CONTENTS must have been allocated using `scm_gc_malloc ()'. */
|
||
SCM
|
||
scm_c_take_bytevector (signed char *contents, size_t len)
|
||
{
|
||
return make_bytevector_from_buffer (len, contents, SCM_ARRAY_ELEMENT_TYPE_VU8);
|
||
}
|
||
|
||
SCM
|
||
scm_c_take_typed_bytevector (signed char *contents, size_t len,
|
||
scm_t_array_element_type element_type)
|
||
{
|
||
return make_bytevector_from_buffer (len, contents, element_type);
|
||
}
|
||
|
||
/* Shrink BV to C_NEW_LEN (which is assumed to be smaller than its current
|
||
size) and return the new bytevector (possibly different from BV). */
|
||
SCM
|
||
scm_c_shrink_bytevector (SCM bv, size_t c_new_len)
|
||
{
|
||
SCM new_bv;
|
||
size_t c_len;
|
||
|
||
if (SCM_UNLIKELY (c_new_len % SCM_BYTEVECTOR_TYPE_SIZE (bv)))
|
||
/* This would be an internal Guile programming error */
|
||
abort ();
|
||
|
||
c_len = SCM_BYTEVECTOR_LENGTH (bv);
|
||
if (SCM_UNLIKELY (c_new_len > c_len))
|
||
abort ();
|
||
|
||
SCM_BYTEVECTOR_SET_LENGTH (bv, c_new_len);
|
||
|
||
if (SCM_BYTEVECTOR_CONTIGUOUS_P (bv))
|
||
new_bv = PTR2SCM (scm_gc_realloc (SCM2PTR (bv),
|
||
c_len + SCM_BYTEVECTOR_HEADER_BYTES,
|
||
c_new_len + SCM_BYTEVECTOR_HEADER_BYTES,
|
||
SCM_GC_BYTEVECTOR));
|
||
else
|
||
{
|
||
signed char *c_bv;
|
||
|
||
c_bv = scm_gc_realloc (SCM_BYTEVECTOR_CONTENTS (bv),
|
||
c_len, c_new_len, SCM_GC_BYTEVECTOR);
|
||
SCM_BYTEVECTOR_SET_CONTENTS (bv, c_bv);
|
||
|
||
new_bv = bv;
|
||
}
|
||
|
||
return new_bv;
|
||
}
|
||
|
||
int
|
||
scm_is_bytevector (SCM obj)
|
||
{
|
||
return SCM_BYTEVECTOR_P (obj);
|
||
}
|
||
|
||
size_t
|
||
scm_c_bytevector_length (SCM bv)
|
||
#define FUNC_NAME "scm_c_bytevector_length"
|
||
{
|
||
SCM_VALIDATE_BYTEVECTOR (1, bv);
|
||
|
||
return SCM_BYTEVECTOR_LENGTH (bv);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
scm_t_uint8
|
||
scm_c_bytevector_ref (SCM bv, size_t index)
|
||
#define FUNC_NAME "scm_c_bytevector_ref"
|
||
{
|
||
size_t c_len;
|
||
const scm_t_uint8 *c_bv;
|
||
|
||
SCM_VALIDATE_BYTEVECTOR (1, bv);
|
||
|
||
c_len = SCM_BYTEVECTOR_LENGTH (bv);
|
||
c_bv = (scm_t_uint8 *) SCM_BYTEVECTOR_CONTENTS (bv);
|
||
|
||
if (SCM_UNLIKELY (index >= c_len))
|
||
scm_out_of_range (FUNC_NAME, scm_from_size_t (index));
|
||
|
||
return c_bv[index];
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
void
|
||
scm_c_bytevector_set_x (SCM bv, size_t index, scm_t_uint8 value)
|
||
#define FUNC_NAME "scm_c_bytevector_set_x"
|
||
{
|
||
size_t c_len;
|
||
scm_t_uint8 *c_bv;
|
||
|
||
SCM_VALIDATE_BYTEVECTOR (1, bv);
|
||
|
||
c_len = SCM_BYTEVECTOR_LENGTH (bv);
|
||
c_bv = (scm_t_uint8 *) SCM_BYTEVECTOR_CONTENTS (bv);
|
||
|
||
if (SCM_UNLIKELY (index >= c_len))
|
||
scm_out_of_range (FUNC_NAME, scm_from_size_t (index));
|
||
|
||
c_bv[index] = value;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
|
||
int
|
||
scm_i_print_bytevector (SCM bv, SCM port, scm_print_state *pstate SCM_UNUSED)
|
||
{
|
||
ssize_t ubnd, inc, i;
|
||
scm_t_array_handle h;
|
||
|
||
scm_array_get_handle (bv, &h);
|
||
|
||
scm_putc ('#', port);
|
||
scm_write (scm_array_handle_element_type (&h), port);
|
||
scm_putc ('(', port);
|
||
for (i = h.dims[0].lbnd, ubnd = h.dims[0].ubnd, inc = h.dims[0].inc;
|
||
i <= ubnd; i += inc)
|
||
{
|
||
if (i > 0)
|
||
scm_putc (' ', port);
|
||
scm_write (scm_array_handle_ref (&h, i), port);
|
||
}
|
||
scm_putc (')', port);
|
||
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* General operations. */
|
||
|
||
SCM_SYMBOL (scm_sym_big, "big");
|
||
SCM_SYMBOL (scm_sym_little, "little");
|
||
|
||
SCM scm_endianness_big, scm_endianness_little;
|
||
|
||
/* Host endianness (a symbol). */
|
||
SCM scm_i_native_endianness = SCM_UNSPECIFIED;
|
||
|
||
/* Byte-swapping. */
|
||
#ifndef bswap_24
|
||
# define bswap_24(_x) \
|
||
((((_x) & 0xff0000) >> 16) | \
|
||
(((_x) & 0x00ff00)) | \
|
||
(((_x) & 0x0000ff) << 16))
|
||
#endif
|
||
|
||
|
||
SCM_DEFINE (scm_native_endianness, "native-endianness", 0, 0, 0,
|
||
(void),
|
||
"Return a symbol denoting the machine's native endianness.")
|
||
#define FUNC_NAME s_scm_native_endianness
|
||
{
|
||
return scm_i_native_endianness;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_p, "bytevector?", 1, 0, 0,
|
||
(SCM obj),
|
||
"Return true if @var{obj} is a bytevector.")
|
||
#define FUNC_NAME s_scm_bytevector_p
|
||
{
|
||
return scm_from_bool (scm_is_bytevector (obj));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_make_bytevector, "make-bytevector", 1, 1, 0,
|
||
(SCM len, SCM fill),
|
||
"Return a newly allocated bytevector of @var{len} bytes, "
|
||
"optionally filled with @var{fill}.")
|
||
#define FUNC_NAME s_scm_make_bytevector
|
||
{
|
||
SCM bv;
|
||
unsigned c_len;
|
||
signed char c_fill = '\0';
|
||
|
||
SCM_VALIDATE_UINT_COPY (1, len, c_len);
|
||
if (fill != SCM_UNDEFINED)
|
||
{
|
||
int value;
|
||
|
||
value = scm_to_int (fill);
|
||
if (SCM_UNLIKELY ((value < -128) || (value > 255)))
|
||
scm_out_of_range (FUNC_NAME, fill);
|
||
c_fill = (signed char) value;
|
||
}
|
||
|
||
bv = make_bytevector (c_len, SCM_ARRAY_ELEMENT_TYPE_VU8);
|
||
if (fill != SCM_UNDEFINED)
|
||
{
|
||
unsigned i;
|
||
signed char *contents;
|
||
|
||
contents = SCM_BYTEVECTOR_CONTENTS (bv);
|
||
for (i = 0; i < c_len; i++)
|
||
contents[i] = c_fill;
|
||
}
|
||
|
||
return bv;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_length, "bytevector-length", 1, 0, 0,
|
||
(SCM bv),
|
||
"Return the length (in bytes) of @var{bv}.")
|
||
#define FUNC_NAME s_scm_bytevector_length
|
||
{
|
||
return scm_from_uint (scm_c_bytevector_length (bv));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_eq_p, "bytevector=?", 2, 0, 0,
|
||
(SCM bv1, SCM bv2),
|
||
"Return is @var{bv1} equals to @var{bv2}---i.e., if they "
|
||
"have the same length and contents.")
|
||
#define FUNC_NAME s_scm_bytevector_eq_p
|
||
{
|
||
SCM result = SCM_BOOL_F;
|
||
unsigned c_len1, c_len2;
|
||
|
||
SCM_VALIDATE_BYTEVECTOR (1, bv1);
|
||
SCM_VALIDATE_BYTEVECTOR (2, bv2);
|
||
|
||
c_len1 = SCM_BYTEVECTOR_LENGTH (bv1);
|
||
c_len2 = SCM_BYTEVECTOR_LENGTH (bv2);
|
||
|
||
if (c_len1 == c_len2)
|
||
{
|
||
signed char *c_bv1, *c_bv2;
|
||
|
||
c_bv1 = SCM_BYTEVECTOR_CONTENTS (bv1);
|
||
c_bv2 = SCM_BYTEVECTOR_CONTENTS (bv2);
|
||
|
||
result = scm_from_bool (!memcmp (c_bv1, c_bv2, c_len1));
|
||
}
|
||
|
||
return result;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_fill_x, "bytevector-fill!", 2, 0, 0,
|
||
(SCM bv, SCM fill),
|
||
"Fill bytevector @var{bv} with @var{fill}, a byte.")
|
||
#define FUNC_NAME s_scm_bytevector_fill_x
|
||
{
|
||
unsigned c_len, i;
|
||
signed char *c_bv, c_fill;
|
||
|
||
SCM_VALIDATE_BYTEVECTOR (1, bv);
|
||
c_fill = scm_to_int8 (fill);
|
||
|
||
c_len = SCM_BYTEVECTOR_LENGTH (bv);
|
||
c_bv = SCM_BYTEVECTOR_CONTENTS (bv);
|
||
|
||
for (i = 0; i < c_len; i++)
|
||
c_bv[i] = c_fill;
|
||
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_copy_x, "bytevector-copy!", 5, 0, 0,
|
||
(SCM source, SCM source_start, SCM target, SCM target_start,
|
||
SCM len),
|
||
"Copy @var{len} bytes from @var{source} into @var{target}, "
|
||
"starting reading from @var{source_start} (a positive index "
|
||
"within @var{source}) and start writing at "
|
||
"@var{target_start}.")
|
||
#define FUNC_NAME s_scm_bytevector_copy_x
|
||
{
|
||
unsigned c_len, c_source_len, c_target_len;
|
||
unsigned c_source_start, c_target_start;
|
||
signed char *c_source, *c_target;
|
||
|
||
SCM_VALIDATE_BYTEVECTOR (1, source);
|
||
SCM_VALIDATE_BYTEVECTOR (3, target);
|
||
|
||
c_len = scm_to_uint (len);
|
||
c_source_start = scm_to_uint (source_start);
|
||
c_target_start = scm_to_uint (target_start);
|
||
|
||
c_source = SCM_BYTEVECTOR_CONTENTS (source);
|
||
c_target = SCM_BYTEVECTOR_CONTENTS (target);
|
||
c_source_len = SCM_BYTEVECTOR_LENGTH (source);
|
||
c_target_len = SCM_BYTEVECTOR_LENGTH (target);
|
||
|
||
if (SCM_UNLIKELY (c_source_start + c_len > c_source_len))
|
||
scm_out_of_range (FUNC_NAME, source_start);
|
||
if (SCM_UNLIKELY (c_target_start + c_len > c_target_len))
|
||
scm_out_of_range (FUNC_NAME, target_start);
|
||
|
||
memcpy (c_target + c_target_start,
|
||
c_source + c_source_start,
|
||
c_len);
|
||
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_copy, "bytevector-copy", 1, 0, 0,
|
||
(SCM bv),
|
||
"Return a newly allocated copy of @var{bv}.")
|
||
#define FUNC_NAME s_scm_bytevector_copy
|
||
{
|
||
SCM copy;
|
||
unsigned c_len;
|
||
signed char *c_bv, *c_copy;
|
||
|
||
SCM_VALIDATE_BYTEVECTOR (1, bv);
|
||
|
||
c_len = SCM_BYTEVECTOR_LENGTH (bv);
|
||
c_bv = SCM_BYTEVECTOR_CONTENTS (bv);
|
||
|
||
copy = make_bytevector (c_len, SCM_BYTEVECTOR_ELEMENT_TYPE (bv));
|
||
c_copy = SCM_BYTEVECTOR_CONTENTS (copy);
|
||
memcpy (c_copy, c_bv, c_len);
|
||
|
||
return copy;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_uniform_array_to_bytevector, "uniform-array->bytevector",
|
||
1, 0, 0, (SCM array),
|
||
"Return a newly allocated bytevector whose contents\n"
|
||
"will be copied from the uniform array @var{array}.")
|
||
#define FUNC_NAME s_scm_uniform_array_to_bytevector
|
||
{
|
||
SCM contents, ret;
|
||
size_t len, sz, byte_len;
|
||
scm_t_array_handle h;
|
||
const void *elts;
|
||
|
||
contents = scm_array_contents (array, SCM_BOOL_T);
|
||
if (scm_is_false (contents))
|
||
scm_wrong_type_arg_msg (FUNC_NAME, 0, array, "uniform contiguous array");
|
||
|
||
scm_array_get_handle (contents, &h);
|
||
assert (h.base == 0);
|
||
|
||
elts = h.elements;
|
||
len = h.dims->inc * (h.dims->ubnd - h.dims->lbnd + 1);
|
||
sz = scm_array_handle_uniform_element_bit_size (&h);
|
||
if (sz >= 8 && ((sz % 8) == 0))
|
||
byte_len = len * (sz / 8);
|
||
else if (sz < 8)
|
||
/* byte_len = ceil (len * sz / 8) */
|
||
byte_len = (len * sz + 7) / 8;
|
||
else
|
||
/* an internal guile error, really */
|
||
SCM_MISC_ERROR ("uniform elements larger than 8 bits must fill whole bytes", SCM_EOL);
|
||
|
||
ret = make_bytevector (byte_len, SCM_ARRAY_ELEMENT_TYPE_VU8);
|
||
memcpy (SCM_BYTEVECTOR_CONTENTS (ret), elts, byte_len);
|
||
|
||
scm_array_handle_release (&h);
|
||
|
||
return ret;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
/* Operations on bytes and octets. */
|
||
|
||
SCM_DEFINE (scm_bytevector_u8_ref, "bytevector-u8-ref", 2, 0, 0,
|
||
(SCM bv, SCM index),
|
||
"Return the octet located at @var{index} in @var{bv}.")
|
||
#define FUNC_NAME s_scm_bytevector_u8_ref
|
||
{
|
||
INTEGER_NATIVE_REF (8, unsigned);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_s8_ref, "bytevector-s8-ref", 2, 0, 0,
|
||
(SCM bv, SCM index),
|
||
"Return the byte located at @var{index} in @var{bv}.")
|
||
#define FUNC_NAME s_scm_bytevector_s8_ref
|
||
{
|
||
INTEGER_NATIVE_REF (8, signed);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_u8_set_x, "bytevector-u8-set!", 3, 0, 0,
|
||
(SCM bv, SCM index, SCM value),
|
||
"Return the octet located at @var{index} in @var{bv}.")
|
||
#define FUNC_NAME s_scm_bytevector_u8_set_x
|
||
{
|
||
INTEGER_NATIVE_SET (8, unsigned);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_s8_set_x, "bytevector-s8-set!", 3, 0, 0,
|
||
(SCM bv, SCM index, SCM value),
|
||
"Return the octet located at @var{index} in @var{bv}.")
|
||
#define FUNC_NAME s_scm_bytevector_s8_set_x
|
||
{
|
||
INTEGER_NATIVE_SET (8, signed);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
#undef OCTET_ACCESSOR_PROLOGUE
|
||
|
||
|
||
SCM_DEFINE (scm_bytevector_to_u8_list, "bytevector->u8-list", 1, 0, 0,
|
||
(SCM bv),
|
||
"Return a newly allocated list of octets containing the "
|
||
"contents of @var{bv}.")
|
||
#define FUNC_NAME s_scm_bytevector_to_u8_list
|
||
{
|
||
SCM lst, pair;
|
||
unsigned c_len, i;
|
||
unsigned char *c_bv;
|
||
|
||
SCM_VALIDATE_BYTEVECTOR (1, bv);
|
||
|
||
c_len = SCM_BYTEVECTOR_LENGTH (bv);
|
||
c_bv = (unsigned char *) SCM_BYTEVECTOR_CONTENTS (bv);
|
||
|
||
lst = scm_make_list (scm_from_uint (c_len), SCM_UNSPECIFIED);
|
||
for (i = 0, pair = lst;
|
||
i < c_len;
|
||
i++, pair = SCM_CDR (pair))
|
||
{
|
||
SCM_SETCAR (pair, SCM_I_MAKINUM (c_bv[i]));
|
||
}
|
||
|
||
return lst;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_u8_list_to_bytevector, "u8-list->bytevector", 1, 0, 0,
|
||
(SCM lst),
|
||
"Turn @var{lst}, a list of octets, into a bytevector.")
|
||
#define FUNC_NAME s_scm_u8_list_to_bytevector
|
||
{
|
||
SCM bv, item;
|
||
long c_len, i;
|
||
unsigned char *c_bv;
|
||
|
||
SCM_VALIDATE_LIST_COPYLEN (1, lst, c_len);
|
||
|
||
bv = make_bytevector (c_len, SCM_ARRAY_ELEMENT_TYPE_VU8);
|
||
c_bv = (unsigned char *) SCM_BYTEVECTOR_CONTENTS (bv);
|
||
|
||
for (i = 0; i < c_len; lst = SCM_CDR (lst), i++)
|
||
{
|
||
item = SCM_CAR (lst);
|
||
|
||
if (SCM_LIKELY (SCM_I_INUMP (item)))
|
||
{
|
||
long c_item;
|
||
|
||
c_item = SCM_I_INUM (item);
|
||
if (SCM_LIKELY ((c_item >= 0) && (c_item < 256)))
|
||
c_bv[i] = (unsigned char) c_item;
|
||
else
|
||
goto type_error;
|
||
}
|
||
else
|
||
goto type_error;
|
||
}
|
||
|
||
return bv;
|
||
|
||
type_error:
|
||
scm_wrong_type_arg (FUNC_NAME, 1, item);
|
||
|
||
return SCM_BOOL_F;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
/* Compute the two's complement of VALUE (a positive integer) on SIZE octets
|
||
using (2^(SIZE * 8) - VALUE). */
|
||
static inline void
|
||
twos_complement (mpz_t value, size_t size)
|
||
{
|
||
unsigned long bit_count;
|
||
|
||
/* We expect BIT_COUNT to fit in a unsigned long thanks to the range
|
||
checking on SIZE performed earlier. */
|
||
bit_count = (unsigned long) size << 3UL;
|
||
|
||
if (SCM_LIKELY (bit_count < sizeof (unsigned long)))
|
||
mpz_ui_sub (value, 1UL << bit_count, value);
|
||
else
|
||
{
|
||
mpz_t max;
|
||
|
||
mpz_init (max);
|
||
mpz_ui_pow_ui (max, 2, bit_count);
|
||
mpz_sub (value, max, value);
|
||
mpz_clear (max);
|
||
}
|
||
}
|
||
|
||
static inline SCM
|
||
bytevector_large_ref (const char *c_bv, size_t c_size, int signed_p,
|
||
SCM endianness)
|
||
{
|
||
SCM result;
|
||
mpz_t c_mpz;
|
||
int c_endianness, negative_p = 0;
|
||
|
||
if (signed_p)
|
||
{
|
||
if (scm_is_eq (endianness, scm_sym_big))
|
||
negative_p = c_bv[0] & 0x80;
|
||
else
|
||
negative_p = c_bv[c_size - 1] & 0x80;
|
||
}
|
||
|
||
c_endianness = scm_is_eq (endianness, scm_sym_big) ? 1 : -1;
|
||
|
||
mpz_init (c_mpz);
|
||
mpz_import (c_mpz, 1 /* 1 word */, 1 /* word order doesn't matter */,
|
||
c_size /* word is C_SIZE-byte long */,
|
||
c_endianness,
|
||
0 /* nails */, c_bv);
|
||
|
||
if (signed_p && negative_p)
|
||
{
|
||
twos_complement (c_mpz, c_size);
|
||
mpz_neg (c_mpz, c_mpz);
|
||
}
|
||
|
||
result = scm_from_mpz (c_mpz);
|
||
mpz_clear (c_mpz); /* FIXME: Needed? */
|
||
|
||
return result;
|
||
}
|
||
|
||
static inline int
|
||
bytevector_large_set (char *c_bv, size_t c_size, int signed_p,
|
||
SCM value, SCM endianness)
|
||
{
|
||
mpz_t c_mpz;
|
||
int c_endianness, c_sign, err = 0;
|
||
|
||
c_endianness = scm_is_eq (endianness, scm_sym_big) ? 1 : -1;
|
||
|
||
mpz_init (c_mpz);
|
||
scm_to_mpz (value, c_mpz);
|
||
|
||
c_sign = mpz_sgn (c_mpz);
|
||
if (c_sign < 0)
|
||
{
|
||
if (SCM_LIKELY (signed_p))
|
||
{
|
||
mpz_neg (c_mpz, c_mpz);
|
||
twos_complement (c_mpz, c_size);
|
||
}
|
||
else
|
||
{
|
||
err = -1;
|
||
goto finish;
|
||
}
|
||
}
|
||
|
||
if (c_sign == 0)
|
||
/* Zero. */
|
||
memset (c_bv, 0, c_size);
|
||
else
|
||
{
|
||
size_t word_count, value_size;
|
||
|
||
value_size = (mpz_sizeinbase (c_mpz, 2) + (8 * c_size)) / (8 * c_size);
|
||
if (SCM_UNLIKELY (value_size > c_size))
|
||
{
|
||
err = -2;
|
||
goto finish;
|
||
}
|
||
|
||
|
||
mpz_export (c_bv, &word_count, 1 /* word order doesn't matter */,
|
||
c_size, c_endianness,
|
||
0 /* nails */, c_mpz);
|
||
if (SCM_UNLIKELY (word_count != 1))
|
||
/* Shouldn't happen since we already checked with VALUE_SIZE. */
|
||
abort ();
|
||
}
|
||
|
||
finish:
|
||
mpz_clear (c_mpz);
|
||
|
||
return err;
|
||
}
|
||
|
||
#define GENERIC_INTEGER_ACCESSOR_PROLOGUE(_sign) \
|
||
unsigned long c_len, c_index, c_size; \
|
||
char *c_bv; \
|
||
\
|
||
SCM_VALIDATE_BYTEVECTOR (1, bv); \
|
||
c_index = scm_to_ulong (index); \
|
||
c_size = scm_to_ulong (size); \
|
||
\
|
||
c_len = SCM_BYTEVECTOR_LENGTH (bv); \
|
||
c_bv = (char *) SCM_BYTEVECTOR_CONTENTS (bv); \
|
||
\
|
||
/* C_SIZE must have its 3 higher bits set to zero so that \
|
||
multiplying it by 8 yields a number that fits in an \
|
||
unsigned long. */ \
|
||
if (SCM_UNLIKELY ((c_size == 0) || (c_size >= (ULONG_MAX >> 3L)))) \
|
||
scm_out_of_range (FUNC_NAME, size); \
|
||
if (SCM_UNLIKELY (c_index + c_size > c_len)) \
|
||
scm_out_of_range (FUNC_NAME, index);
|
||
|
||
|
||
/* Template of an integer reference function. */
|
||
#define GENERIC_INTEGER_REF(_sign) \
|
||
SCM result; \
|
||
\
|
||
if (c_size < 3) \
|
||
{ \
|
||
int swap; \
|
||
_sign int value; \
|
||
\
|
||
swap = !scm_is_eq (endianness, scm_i_native_endianness); \
|
||
switch (c_size) \
|
||
{ \
|
||
case 1: \
|
||
{ \
|
||
_sign char c_value8; \
|
||
memcpy (&c_value8, c_bv, 1); \
|
||
value = c_value8; \
|
||
} \
|
||
break; \
|
||
case 2: \
|
||
{ \
|
||
INT_TYPE (16, _sign) c_value16; \
|
||
memcpy (&c_value16, c_bv, 2); \
|
||
if (swap) \
|
||
value = (INT_TYPE (16, _sign)) bswap_16 (c_value16); \
|
||
else \
|
||
value = c_value16; \
|
||
} \
|
||
break; \
|
||
default: \
|
||
abort (); \
|
||
} \
|
||
\
|
||
result = SCM_I_MAKINUM ((_sign int) value); \
|
||
} \
|
||
else \
|
||
result = bytevector_large_ref ((char *) c_bv, \
|
||
c_size, SIGNEDNESS (_sign), \
|
||
endianness); \
|
||
\
|
||
return result;
|
||
|
||
static inline SCM
|
||
bytevector_signed_ref (const char *c_bv, size_t c_size, SCM endianness)
|
||
{
|
||
GENERIC_INTEGER_REF (signed);
|
||
}
|
||
|
||
static inline SCM
|
||
bytevector_unsigned_ref (const char *c_bv, size_t c_size, SCM endianness)
|
||
{
|
||
GENERIC_INTEGER_REF (unsigned);
|
||
}
|
||
|
||
|
||
/* Template of an integer assignment function. */
|
||
#define GENERIC_INTEGER_SET(_sign) \
|
||
if (c_size < 3) \
|
||
{ \
|
||
_sign int c_value; \
|
||
\
|
||
if (SCM_UNLIKELY (!SCM_I_INUMP (value))) \
|
||
goto range_error; \
|
||
\
|
||
c_value = SCM_I_INUM (value); \
|
||
switch (c_size) \
|
||
{ \
|
||
case 1: \
|
||
if (SCM_LIKELY (INT_VALID_P (8, _sign) (c_value))) \
|
||
{ \
|
||
_sign char c_value8; \
|
||
c_value8 = (_sign char) c_value; \
|
||
memcpy (c_bv, &c_value8, 1); \
|
||
} \
|
||
else \
|
||
goto range_error; \
|
||
break; \
|
||
\
|
||
case 2: \
|
||
if (SCM_LIKELY (INT_VALID_P (16, _sign) (c_value))) \
|
||
{ \
|
||
int swap; \
|
||
INT_TYPE (16, _sign) c_value16; \
|
||
\
|
||
swap = !scm_is_eq (endianness, scm_i_native_endianness); \
|
||
\
|
||
if (swap) \
|
||
c_value16 = (INT_TYPE (16, _sign)) bswap_16 (c_value); \
|
||
else \
|
||
c_value16 = c_value; \
|
||
\
|
||
memcpy (c_bv, &c_value16, 2); \
|
||
} \
|
||
else \
|
||
goto range_error; \
|
||
break; \
|
||
\
|
||
default: \
|
||
abort (); \
|
||
} \
|
||
} \
|
||
else \
|
||
{ \
|
||
int err; \
|
||
\
|
||
err = bytevector_large_set (c_bv, c_size, \
|
||
SIGNEDNESS (_sign), \
|
||
value, endianness); \
|
||
if (err) \
|
||
goto range_error; \
|
||
} \
|
||
\
|
||
return; \
|
||
\
|
||
range_error: \
|
||
scm_out_of_range (FUNC_NAME, value); \
|
||
return;
|
||
|
||
static inline void
|
||
bytevector_signed_set (char *c_bv, size_t c_size,
|
||
SCM value, SCM endianness,
|
||
const char *func_name)
|
||
#define FUNC_NAME func_name
|
||
{
|
||
GENERIC_INTEGER_SET (signed);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static inline void
|
||
bytevector_unsigned_set (char *c_bv, size_t c_size,
|
||
SCM value, SCM endianness,
|
||
const char *func_name)
|
||
#define FUNC_NAME func_name
|
||
{
|
||
GENERIC_INTEGER_SET (unsigned);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
#undef GENERIC_INTEGER_SET
|
||
#undef GENERIC_INTEGER_REF
|
||
|
||
|
||
SCM_DEFINE (scm_bytevector_uint_ref, "bytevector-uint-ref", 4, 0, 0,
|
||
(SCM bv, SCM index, SCM endianness, SCM size),
|
||
"Return the @var{size}-octet long unsigned integer at index "
|
||
"@var{index} in @var{bv}.")
|
||
#define FUNC_NAME s_scm_bytevector_uint_ref
|
||
{
|
||
GENERIC_INTEGER_ACCESSOR_PROLOGUE (unsigned);
|
||
|
||
return (bytevector_unsigned_ref (&c_bv[c_index], c_size, endianness));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_sint_ref, "bytevector-sint-ref", 4, 0, 0,
|
||
(SCM bv, SCM index, SCM endianness, SCM size),
|
||
"Return the @var{size}-octet long unsigned integer at index "
|
||
"@var{index} in @var{bv}.")
|
||
#define FUNC_NAME s_scm_bytevector_sint_ref
|
||
{
|
||
GENERIC_INTEGER_ACCESSOR_PROLOGUE (signed);
|
||
|
||
return (bytevector_signed_ref (&c_bv[c_index], c_size, endianness));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_uint_set_x, "bytevector-uint-set!", 5, 0, 0,
|
||
(SCM bv, SCM index, SCM value, SCM endianness, SCM size),
|
||
"Set the @var{size}-octet long unsigned integer at @var{index} "
|
||
"to @var{value}.")
|
||
#define FUNC_NAME s_scm_bytevector_uint_set_x
|
||
{
|
||
GENERIC_INTEGER_ACCESSOR_PROLOGUE (unsigned);
|
||
|
||
bytevector_unsigned_set (&c_bv[c_index], c_size, value, endianness,
|
||
FUNC_NAME);
|
||
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_sint_set_x, "bytevector-sint-set!", 5, 0, 0,
|
||
(SCM bv, SCM index, SCM value, SCM endianness, SCM size),
|
||
"Set the @var{size}-octet long signed integer at @var{index} "
|
||
"to @var{value}.")
|
||
#define FUNC_NAME s_scm_bytevector_sint_set_x
|
||
{
|
||
GENERIC_INTEGER_ACCESSOR_PROLOGUE (signed);
|
||
|
||
bytevector_signed_set (&c_bv[c_index], c_size, value, endianness,
|
||
FUNC_NAME);
|
||
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
|
||
/* Operations on integers of arbitrary size. */
|
||
|
||
#define INTEGERS_TO_LIST(_sign) \
|
||
SCM lst, pair; \
|
||
size_t i, c_len, c_size; \
|
||
\
|
||
SCM_VALIDATE_BYTEVECTOR (1, bv); \
|
||
SCM_VALIDATE_SYMBOL (2, endianness); \
|
||
c_size = scm_to_uint (size); \
|
||
\
|
||
c_len = SCM_BYTEVECTOR_LENGTH (bv); \
|
||
if (SCM_UNLIKELY (c_len == 0)) \
|
||
lst = SCM_EOL; \
|
||
else if (SCM_UNLIKELY (c_len < c_size)) \
|
||
scm_out_of_range (FUNC_NAME, size); \
|
||
else \
|
||
{ \
|
||
const char *c_bv; \
|
||
\
|
||
c_bv = (char *) SCM_BYTEVECTOR_CONTENTS (bv); \
|
||
\
|
||
lst = scm_make_list (scm_from_uint (c_len / c_size), \
|
||
SCM_UNSPECIFIED); \
|
||
for (i = 0, pair = lst; \
|
||
i <= c_len - c_size; \
|
||
i += c_size, c_bv += c_size, pair = SCM_CDR (pair)) \
|
||
{ \
|
||
SCM_SETCAR (pair, \
|
||
bytevector_ ## _sign ## _ref (c_bv, c_size, \
|
||
endianness)); \
|
||
} \
|
||
} \
|
||
\
|
||
return lst;
|
||
|
||
SCM_DEFINE (scm_bytevector_to_sint_list, "bytevector->sint-list",
|
||
3, 0, 0,
|
||
(SCM bv, SCM endianness, SCM size),
|
||
"Return a list of signed integers of @var{size} octets "
|
||
"representing the contents of @var{bv}.")
|
||
#define FUNC_NAME s_scm_bytevector_to_sint_list
|
||
{
|
||
INTEGERS_TO_LIST (signed);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_to_uint_list, "bytevector->uint-list",
|
||
3, 0, 0,
|
||
(SCM bv, SCM endianness, SCM size),
|
||
"Return a list of unsigned integers of @var{size} octets "
|
||
"representing the contents of @var{bv}.")
|
||
#define FUNC_NAME s_scm_bytevector_to_uint_list
|
||
{
|
||
INTEGERS_TO_LIST (unsigned);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
#undef INTEGER_TO_LIST
|
||
|
||
|
||
#define INTEGER_LIST_TO_BYTEVECTOR(_sign) \
|
||
SCM bv; \
|
||
long c_len; \
|
||
size_t c_size; \
|
||
char *c_bv, *c_bv_ptr; \
|
||
\
|
||
SCM_VALIDATE_LIST_COPYLEN (1, lst, c_len); \
|
||
SCM_VALIDATE_SYMBOL (2, endianness); \
|
||
c_size = scm_to_uint (size); \
|
||
\
|
||
if (SCM_UNLIKELY ((c_size == 0) || (c_size >= (ULONG_MAX >> 3L)))) \
|
||
scm_out_of_range (FUNC_NAME, size); \
|
||
\
|
||
bv = make_bytevector (c_len * c_size, SCM_ARRAY_ELEMENT_TYPE_VU8); \
|
||
c_bv = (char *) SCM_BYTEVECTOR_CONTENTS (bv); \
|
||
\
|
||
for (c_bv_ptr = c_bv; \
|
||
!scm_is_null (lst); \
|
||
lst = SCM_CDR (lst), c_bv_ptr += c_size) \
|
||
{ \
|
||
bytevector_ ## _sign ## _set (c_bv_ptr, c_size, \
|
||
SCM_CAR (lst), endianness, \
|
||
FUNC_NAME); \
|
||
} \
|
||
\
|
||
return bv;
|
||
|
||
|
||
SCM_DEFINE (scm_uint_list_to_bytevector, "uint-list->bytevector",
|
||
3, 0, 0,
|
||
(SCM lst, SCM endianness, SCM size),
|
||
"Return a bytevector containing the unsigned integers "
|
||
"listed in @var{lst} and encoded on @var{size} octets "
|
||
"according to @var{endianness}.")
|
||
#define FUNC_NAME s_scm_uint_list_to_bytevector
|
||
{
|
||
INTEGER_LIST_TO_BYTEVECTOR (unsigned);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_sint_list_to_bytevector, "sint-list->bytevector",
|
||
3, 0, 0,
|
||
(SCM lst, SCM endianness, SCM size),
|
||
"Return a bytevector containing the signed integers "
|
||
"listed in @var{lst} and encoded on @var{size} octets "
|
||
"according to @var{endianness}.")
|
||
#define FUNC_NAME s_scm_sint_list_to_bytevector
|
||
{
|
||
INTEGER_LIST_TO_BYTEVECTOR (signed);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
#undef INTEGER_LIST_TO_BYTEVECTOR
|
||
|
||
|
||
|
||
/* Operations on 16-bit integers. */
|
||
|
||
SCM_DEFINE (scm_bytevector_u16_ref, "bytevector-u16-ref",
|
||
3, 0, 0,
|
||
(SCM bv, SCM index, SCM endianness),
|
||
"Return the unsigned 16-bit integer from @var{bv} at "
|
||
"@var{index}.")
|
||
#define FUNC_NAME s_scm_bytevector_u16_ref
|
||
{
|
||
INTEGER_REF (16, unsigned);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_s16_ref, "bytevector-s16-ref",
|
||
3, 0, 0,
|
||
(SCM bv, SCM index, SCM endianness),
|
||
"Return the signed 16-bit integer from @var{bv} at "
|
||
"@var{index}.")
|
||
#define FUNC_NAME s_scm_bytevector_s16_ref
|
||
{
|
||
INTEGER_REF (16, signed);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_u16_native_ref, "bytevector-u16-native-ref",
|
||
2, 0, 0,
|
||
(SCM bv, SCM index),
|
||
"Return the unsigned 16-bit integer from @var{bv} at "
|
||
"@var{index} using the native endianness.")
|
||
#define FUNC_NAME s_scm_bytevector_u16_native_ref
|
||
{
|
||
INTEGER_NATIVE_REF (16, unsigned);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_s16_native_ref, "bytevector-s16-native-ref",
|
||
2, 0, 0,
|
||
(SCM bv, SCM index),
|
||
"Return the unsigned 16-bit integer from @var{bv} at "
|
||
"@var{index} using the native endianness.")
|
||
#define FUNC_NAME s_scm_bytevector_s16_native_ref
|
||
{
|
||
INTEGER_NATIVE_REF (16, signed);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_u16_set_x, "bytevector-u16-set!",
|
||
4, 0, 0,
|
||
(SCM bv, SCM index, SCM value, SCM endianness),
|
||
"Store @var{value} in @var{bv} at @var{index} according to "
|
||
"@var{endianness}.")
|
||
#define FUNC_NAME s_scm_bytevector_u16_set_x
|
||
{
|
||
INTEGER_SET (16, unsigned);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_s16_set_x, "bytevector-s16-set!",
|
||
4, 0, 0,
|
||
(SCM bv, SCM index, SCM value, SCM endianness),
|
||
"Store @var{value} in @var{bv} at @var{index} according to "
|
||
"@var{endianness}.")
|
||
#define FUNC_NAME s_scm_bytevector_s16_set_x
|
||
{
|
||
INTEGER_SET (16, signed);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_u16_native_set_x, "bytevector-u16-native-set!",
|
||
3, 0, 0,
|
||
(SCM bv, SCM index, SCM value),
|
||
"Store the unsigned integer @var{value} at index @var{index} "
|
||
"of @var{bv} using the native endianness.")
|
||
#define FUNC_NAME s_scm_bytevector_u16_native_set_x
|
||
{
|
||
INTEGER_NATIVE_SET (16, unsigned);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_s16_native_set_x, "bytevector-s16-native-set!",
|
||
3, 0, 0,
|
||
(SCM bv, SCM index, SCM value),
|
||
"Store the signed integer @var{value} at index @var{index} "
|
||
"of @var{bv} using the native endianness.")
|
||
#define FUNC_NAME s_scm_bytevector_s16_native_set_x
|
||
{
|
||
INTEGER_NATIVE_SET (16, signed);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
|
||
/* Operations on 32-bit integers. */
|
||
|
||
/* Unfortunately, on 32-bit machines `SCM' is not large enough to hold
|
||
arbitrary 32-bit integers. Thus we fall back to using the
|
||
`large_{ref,set}' variants on 32-bit machines. */
|
||
|
||
#define LARGE_INTEGER_REF(_len, _sign) \
|
||
INTEGER_ACCESSOR_PROLOGUE(_len, _sign); \
|
||
SCM_VALIDATE_SYMBOL (3, endianness); \
|
||
\
|
||
return (bytevector_large_ref ((char *) c_bv + c_index, _len / 8, \
|
||
SIGNEDNESS (_sign), endianness));
|
||
|
||
#define LARGE_INTEGER_SET(_len, _sign) \
|
||
int err; \
|
||
INTEGER_ACCESSOR_PROLOGUE (_len, _sign); \
|
||
SCM_VALIDATE_SYMBOL (4, endianness); \
|
||
\
|
||
err = bytevector_large_set ((char *) c_bv + c_index, _len / 8, \
|
||
SIGNEDNESS (_sign), value, endianness); \
|
||
if (SCM_UNLIKELY (err)) \
|
||
scm_out_of_range (FUNC_NAME, value); \
|
||
\
|
||
return SCM_UNSPECIFIED;
|
||
|
||
#define LARGE_INTEGER_NATIVE_REF(_len, _sign) \
|
||
INTEGER_ACCESSOR_PROLOGUE(_len, _sign); \
|
||
return (bytevector_large_ref ((char *) c_bv + c_index, _len / 8, \
|
||
SIGNEDNESS (_sign), scm_i_native_endianness));
|
||
|
||
#define LARGE_INTEGER_NATIVE_SET(_len, _sign) \
|
||
int err; \
|
||
INTEGER_ACCESSOR_PROLOGUE (_len, _sign); \
|
||
\
|
||
err = bytevector_large_set ((char *) c_bv + c_index, _len / 8, \
|
||
SIGNEDNESS (_sign), value, \
|
||
scm_i_native_endianness); \
|
||
if (SCM_UNLIKELY (err)) \
|
||
scm_out_of_range (FUNC_NAME, value); \
|
||
\
|
||
return SCM_UNSPECIFIED;
|
||
|
||
|
||
SCM_DEFINE (scm_bytevector_u32_ref, "bytevector-u32-ref",
|
||
3, 0, 0,
|
||
(SCM bv, SCM index, SCM endianness),
|
||
"Return the unsigned 32-bit integer from @var{bv} at "
|
||
"@var{index}.")
|
||
#define FUNC_NAME s_scm_bytevector_u32_ref
|
||
{
|
||
#if SIZEOF_VOID_P > 4
|
||
INTEGER_REF (32, unsigned);
|
||
#else
|
||
LARGE_INTEGER_REF (32, unsigned);
|
||
#endif
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_s32_ref, "bytevector-s32-ref",
|
||
3, 0, 0,
|
||
(SCM bv, SCM index, SCM endianness),
|
||
"Return the signed 32-bit integer from @var{bv} at "
|
||
"@var{index}.")
|
||
#define FUNC_NAME s_scm_bytevector_s32_ref
|
||
{
|
||
#if SIZEOF_VOID_P > 4
|
||
INTEGER_REF (32, signed);
|
||
#else
|
||
LARGE_INTEGER_REF (32, signed);
|
||
#endif
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_u32_native_ref, "bytevector-u32-native-ref",
|
||
2, 0, 0,
|
||
(SCM bv, SCM index),
|
||
"Return the unsigned 32-bit integer from @var{bv} at "
|
||
"@var{index} using the native endianness.")
|
||
#define FUNC_NAME s_scm_bytevector_u32_native_ref
|
||
{
|
||
#if SIZEOF_VOID_P > 4
|
||
INTEGER_NATIVE_REF (32, unsigned);
|
||
#else
|
||
LARGE_INTEGER_NATIVE_REF (32, unsigned);
|
||
#endif
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_s32_native_ref, "bytevector-s32-native-ref",
|
||
2, 0, 0,
|
||
(SCM bv, SCM index),
|
||
"Return the unsigned 32-bit integer from @var{bv} at "
|
||
"@var{index} using the native endianness.")
|
||
#define FUNC_NAME s_scm_bytevector_s32_native_ref
|
||
{
|
||
#if SIZEOF_VOID_P > 4
|
||
INTEGER_NATIVE_REF (32, signed);
|
||
#else
|
||
LARGE_INTEGER_NATIVE_REF (32, signed);
|
||
#endif
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_u32_set_x, "bytevector-u32-set!",
|
||
4, 0, 0,
|
||
(SCM bv, SCM index, SCM value, SCM endianness),
|
||
"Store @var{value} in @var{bv} at @var{index} according to "
|
||
"@var{endianness}.")
|
||
#define FUNC_NAME s_scm_bytevector_u32_set_x
|
||
{
|
||
#if SIZEOF_VOID_P > 4
|
||
INTEGER_SET (32, unsigned);
|
||
#else
|
||
LARGE_INTEGER_SET (32, unsigned);
|
||
#endif
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_s32_set_x, "bytevector-s32-set!",
|
||
4, 0, 0,
|
||
(SCM bv, SCM index, SCM value, SCM endianness),
|
||
"Store @var{value} in @var{bv} at @var{index} according to "
|
||
"@var{endianness}.")
|
||
#define FUNC_NAME s_scm_bytevector_s32_set_x
|
||
{
|
||
#if SIZEOF_VOID_P > 4
|
||
INTEGER_SET (32, signed);
|
||
#else
|
||
LARGE_INTEGER_SET (32, signed);
|
||
#endif
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_u32_native_set_x, "bytevector-u32-native-set!",
|
||
3, 0, 0,
|
||
(SCM bv, SCM index, SCM value),
|
||
"Store the unsigned integer @var{value} at index @var{index} "
|
||
"of @var{bv} using the native endianness.")
|
||
#define FUNC_NAME s_scm_bytevector_u32_native_set_x
|
||
{
|
||
#if SIZEOF_VOID_P > 4
|
||
INTEGER_NATIVE_SET (32, unsigned);
|
||
#else
|
||
LARGE_INTEGER_NATIVE_SET (32, unsigned);
|
||
#endif
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_s32_native_set_x, "bytevector-s32-native-set!",
|
||
3, 0, 0,
|
||
(SCM bv, SCM index, SCM value),
|
||
"Store the signed integer @var{value} at index @var{index} "
|
||
"of @var{bv} using the native endianness.")
|
||
#define FUNC_NAME s_scm_bytevector_s32_native_set_x
|
||
{
|
||
#if SIZEOF_VOID_P > 4
|
||
INTEGER_NATIVE_SET (32, signed);
|
||
#else
|
||
LARGE_INTEGER_NATIVE_SET (32, signed);
|
||
#endif
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
|
||
/* Operations on 64-bit integers. */
|
||
|
||
/* For 64-bit integers, we use only the `large_{ref,set}' variant. */
|
||
|
||
SCM_DEFINE (scm_bytevector_u64_ref, "bytevector-u64-ref",
|
||
3, 0, 0,
|
||
(SCM bv, SCM index, SCM endianness),
|
||
"Return the unsigned 64-bit integer from @var{bv} at "
|
||
"@var{index}.")
|
||
#define FUNC_NAME s_scm_bytevector_u64_ref
|
||
{
|
||
LARGE_INTEGER_REF (64, unsigned);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_s64_ref, "bytevector-s64-ref",
|
||
3, 0, 0,
|
||
(SCM bv, SCM index, SCM endianness),
|
||
"Return the signed 64-bit integer from @var{bv} at "
|
||
"@var{index}.")
|
||
#define FUNC_NAME s_scm_bytevector_s64_ref
|
||
{
|
||
LARGE_INTEGER_REF (64, signed);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_u64_native_ref, "bytevector-u64-native-ref",
|
||
2, 0, 0,
|
||
(SCM bv, SCM index),
|
||
"Return the unsigned 64-bit integer from @var{bv} at "
|
||
"@var{index} using the native endianness.")
|
||
#define FUNC_NAME s_scm_bytevector_u64_native_ref
|
||
{
|
||
LARGE_INTEGER_NATIVE_REF (64, unsigned);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_s64_native_ref, "bytevector-s64-native-ref",
|
||
2, 0, 0,
|
||
(SCM bv, SCM index),
|
||
"Return the unsigned 64-bit integer from @var{bv} at "
|
||
"@var{index} using the native endianness.")
|
||
#define FUNC_NAME s_scm_bytevector_s64_native_ref
|
||
{
|
||
LARGE_INTEGER_NATIVE_REF (64, signed);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_u64_set_x, "bytevector-u64-set!",
|
||
4, 0, 0,
|
||
(SCM bv, SCM index, SCM value, SCM endianness),
|
||
"Store @var{value} in @var{bv} at @var{index} according to "
|
||
"@var{endianness}.")
|
||
#define FUNC_NAME s_scm_bytevector_u64_set_x
|
||
{
|
||
LARGE_INTEGER_SET (64, unsigned);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_s64_set_x, "bytevector-s64-set!",
|
||
4, 0, 0,
|
||
(SCM bv, SCM index, SCM value, SCM endianness),
|
||
"Store @var{value} in @var{bv} at @var{index} according to "
|
||
"@var{endianness}.")
|
||
#define FUNC_NAME s_scm_bytevector_s64_set_x
|
||
{
|
||
LARGE_INTEGER_SET (64, signed);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_u64_native_set_x, "bytevector-u64-native-set!",
|
||
3, 0, 0,
|
||
(SCM bv, SCM index, SCM value),
|
||
"Store the unsigned integer @var{value} at index @var{index} "
|
||
"of @var{bv} using the native endianness.")
|
||
#define FUNC_NAME s_scm_bytevector_u64_native_set_x
|
||
{
|
||
LARGE_INTEGER_NATIVE_SET (64, unsigned);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_s64_native_set_x, "bytevector-s64-native-set!",
|
||
3, 0, 0,
|
||
(SCM bv, SCM index, SCM value),
|
||
"Store the signed integer @var{value} at index @var{index} "
|
||
"of @var{bv} using the native endianness.")
|
||
#define FUNC_NAME s_scm_bytevector_s64_native_set_x
|
||
{
|
||
LARGE_INTEGER_NATIVE_SET (64, signed);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
|
||
/* Operations on IEEE-754 numbers. */
|
||
|
||
/* There are two possible word endians, visible in glibc's <ieee754.h>.
|
||
However, in R6RS, when the endianness is `little', little endian is
|
||
assumed for both the byte order and the word order. This is clear from
|
||
Section 2.1 of R6RS-lib (in response to
|
||
http://www.r6rs.org/formal-comments/comment-187.txt). */
|
||
|
||
|
||
/* Convert to/from a floating-point number with different endianness. This
|
||
method is probably not the most efficient but it should be portable. */
|
||
|
||
static inline void
|
||
float_to_foreign_endianness (union scm_ieee754_float *target,
|
||
float source)
|
||
{
|
||
union scm_ieee754_float src;
|
||
|
||
src.f = source;
|
||
|
||
#ifdef WORDS_BIGENDIAN
|
||
/* Assuming little endian for both byte and word order. */
|
||
target->little_endian.negative = src.big_endian.negative;
|
||
target->little_endian.exponent = src.big_endian.exponent;
|
||
target->little_endian.mantissa = src.big_endian.mantissa;
|
||
#else
|
||
target->big_endian.negative = src.little_endian.negative;
|
||
target->big_endian.exponent = src.little_endian.exponent;
|
||
target->big_endian.mantissa = src.little_endian.mantissa;
|
||
#endif
|
||
}
|
||
|
||
static inline float
|
||
float_from_foreign_endianness (const union scm_ieee754_float *source)
|
||
{
|
||
union scm_ieee754_float result;
|
||
|
||
#ifdef WORDS_BIGENDIAN
|
||
/* Assuming little endian for both byte and word order. */
|
||
result.big_endian.negative = source->little_endian.negative;
|
||
result.big_endian.exponent = source->little_endian.exponent;
|
||
result.big_endian.mantissa = source->little_endian.mantissa;
|
||
#else
|
||
result.little_endian.negative = source->big_endian.negative;
|
||
result.little_endian.exponent = source->big_endian.exponent;
|
||
result.little_endian.mantissa = source->big_endian.mantissa;
|
||
#endif
|
||
|
||
return (result.f);
|
||
}
|
||
|
||
static inline void
|
||
double_to_foreign_endianness (union scm_ieee754_double *target,
|
||
double source)
|
||
{
|
||
union scm_ieee754_double src;
|
||
|
||
src.d = source;
|
||
|
||
#ifdef WORDS_BIGENDIAN
|
||
/* Assuming little endian for both byte and word order. */
|
||
target->little_little_endian.negative = src.big_endian.negative;
|
||
target->little_little_endian.exponent = src.big_endian.exponent;
|
||
target->little_little_endian.mantissa0 = src.big_endian.mantissa0;
|
||
target->little_little_endian.mantissa1 = src.big_endian.mantissa1;
|
||
#else
|
||
target->big_endian.negative = src.little_little_endian.negative;
|
||
target->big_endian.exponent = src.little_little_endian.exponent;
|
||
target->big_endian.mantissa0 = src.little_little_endian.mantissa0;
|
||
target->big_endian.mantissa1 = src.little_little_endian.mantissa1;
|
||
#endif
|
||
}
|
||
|
||
static inline double
|
||
double_from_foreign_endianness (const union scm_ieee754_double *source)
|
||
{
|
||
union scm_ieee754_double result;
|
||
|
||
#ifdef WORDS_BIGENDIAN
|
||
/* Assuming little endian for both byte and word order. */
|
||
result.big_endian.negative = source->little_little_endian.negative;
|
||
result.big_endian.exponent = source->little_little_endian.exponent;
|
||
result.big_endian.mantissa0 = source->little_little_endian.mantissa0;
|
||
result.big_endian.mantissa1 = source->little_little_endian.mantissa1;
|
||
#else
|
||
result.little_little_endian.negative = source->big_endian.negative;
|
||
result.little_little_endian.exponent = source->big_endian.exponent;
|
||
result.little_little_endian.mantissa0 = source->big_endian.mantissa0;
|
||
result.little_little_endian.mantissa1 = source->big_endian.mantissa1;
|
||
#endif
|
||
|
||
return (result.d);
|
||
}
|
||
|
||
/* Template macros to abstract over doubles and floats.
|
||
XXX: Guile can only convert to/from doubles. */
|
||
#define IEEE754_UNION(_c_type) union scm_ieee754_ ## _c_type
|
||
#define IEEE754_TO_SCM(_c_type) scm_from_double
|
||
#define IEEE754_FROM_SCM(_c_type) scm_to_double
|
||
#define IEEE754_FROM_FOREIGN_ENDIANNESS(_c_type) \
|
||
_c_type ## _from_foreign_endianness
|
||
#define IEEE754_TO_FOREIGN_ENDIANNESS(_c_type) \
|
||
_c_type ## _to_foreign_endianness
|
||
|
||
|
||
/* FIXME: SCM_VALIDATE_REAL rejects integers, etc. grrr */
|
||
#define VALIDATE_REAL(pos, v) \
|
||
do { \
|
||
SCM_ASSERT_TYPE (scm_is_true (scm_rational_p (v)), v, pos, FUNC_NAME, "real"); \
|
||
} while (0)
|
||
|
||
/* Templace getters and setters. */
|
||
|
||
#define IEEE754_ACCESSOR_PROLOGUE(_type) \
|
||
INTEGER_ACCESSOR_PROLOGUE (sizeof (_type) << 3UL, signed);
|
||
|
||
#define IEEE754_REF(_type) \
|
||
_type c_result; \
|
||
\
|
||
IEEE754_ACCESSOR_PROLOGUE (_type); \
|
||
SCM_VALIDATE_SYMBOL (3, endianness); \
|
||
\
|
||
if (scm_is_eq (endianness, scm_i_native_endianness)) \
|
||
memcpy (&c_result, &c_bv[c_index], sizeof (c_result)); \
|
||
else \
|
||
{ \
|
||
IEEE754_UNION (_type) c_raw; \
|
||
\
|
||
memcpy (&c_raw, &c_bv[c_index], sizeof (c_raw)); \
|
||
c_result = \
|
||
IEEE754_FROM_FOREIGN_ENDIANNESS (_type) (&c_raw); \
|
||
} \
|
||
\
|
||
return (IEEE754_TO_SCM (_type) (c_result));
|
||
|
||
#define IEEE754_NATIVE_REF(_type) \
|
||
_type c_result; \
|
||
\
|
||
IEEE754_ACCESSOR_PROLOGUE (_type); \
|
||
\
|
||
memcpy (&c_result, &c_bv[c_index], sizeof (c_result)); \
|
||
return (IEEE754_TO_SCM (_type) (c_result));
|
||
|
||
#define IEEE754_SET(_type) \
|
||
_type c_value; \
|
||
\
|
||
IEEE754_ACCESSOR_PROLOGUE (_type); \
|
||
VALIDATE_REAL (3, value); \
|
||
SCM_VALIDATE_SYMBOL (4, endianness); \
|
||
c_value = IEEE754_FROM_SCM (_type) (value); \
|
||
\
|
||
if (scm_is_eq (endianness, scm_i_native_endianness)) \
|
||
memcpy (&c_bv[c_index], &c_value, sizeof (c_value)); \
|
||
else \
|
||
{ \
|
||
IEEE754_UNION (_type) c_raw; \
|
||
\
|
||
IEEE754_TO_FOREIGN_ENDIANNESS (_type) (&c_raw, c_value); \
|
||
memcpy (&c_bv[c_index], &c_raw, sizeof (c_raw)); \
|
||
} \
|
||
\
|
||
return SCM_UNSPECIFIED;
|
||
|
||
#define IEEE754_NATIVE_SET(_type) \
|
||
_type c_value; \
|
||
\
|
||
IEEE754_ACCESSOR_PROLOGUE (_type); \
|
||
VALIDATE_REAL (3, value); \
|
||
c_value = IEEE754_FROM_SCM (_type) (value); \
|
||
\
|
||
memcpy (&c_bv[c_index], &c_value, sizeof (c_value)); \
|
||
return SCM_UNSPECIFIED;
|
||
|
||
|
||
/* Single precision. */
|
||
|
||
SCM_DEFINE (scm_bytevector_ieee_single_ref,
|
||
"bytevector-ieee-single-ref",
|
||
3, 0, 0,
|
||
(SCM bv, SCM index, SCM endianness),
|
||
"Return the IEEE-754 single from @var{bv} at "
|
||
"@var{index}.")
|
||
#define FUNC_NAME s_scm_bytevector_ieee_single_ref
|
||
{
|
||
IEEE754_REF (float);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_ieee_single_native_ref,
|
||
"bytevector-ieee-single-native-ref",
|
||
2, 0, 0,
|
||
(SCM bv, SCM index),
|
||
"Return the IEEE-754 single from @var{bv} at "
|
||
"@var{index} using the native endianness.")
|
||
#define FUNC_NAME s_scm_bytevector_ieee_single_native_ref
|
||
{
|
||
IEEE754_NATIVE_REF (float);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_ieee_single_set_x,
|
||
"bytevector-ieee-single-set!",
|
||
4, 0, 0,
|
||
(SCM bv, SCM index, SCM value, SCM endianness),
|
||
"Store real @var{value} in @var{bv} at @var{index} according to "
|
||
"@var{endianness}.")
|
||
#define FUNC_NAME s_scm_bytevector_ieee_single_set_x
|
||
{
|
||
IEEE754_SET (float);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_ieee_single_native_set_x,
|
||
"bytevector-ieee-single-native-set!",
|
||
3, 0, 0,
|
||
(SCM bv, SCM index, SCM value),
|
||
"Store the real @var{value} at index @var{index} "
|
||
"of @var{bv} using the native endianness.")
|
||
#define FUNC_NAME s_scm_bytevector_ieee_single_native_set_x
|
||
{
|
||
IEEE754_NATIVE_SET (float);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
/* Double precision. */
|
||
|
||
SCM_DEFINE (scm_bytevector_ieee_double_ref,
|
||
"bytevector-ieee-double-ref",
|
||
3, 0, 0,
|
||
(SCM bv, SCM index, SCM endianness),
|
||
"Return the IEEE-754 double from @var{bv} at "
|
||
"@var{index}.")
|
||
#define FUNC_NAME s_scm_bytevector_ieee_double_ref
|
||
{
|
||
IEEE754_REF (double);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_ieee_double_native_ref,
|
||
"bytevector-ieee-double-native-ref",
|
||
2, 0, 0,
|
||
(SCM bv, SCM index),
|
||
"Return the IEEE-754 double from @var{bv} at "
|
||
"@var{index} using the native endianness.")
|
||
#define FUNC_NAME s_scm_bytevector_ieee_double_native_ref
|
||
{
|
||
IEEE754_NATIVE_REF (double);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_ieee_double_set_x,
|
||
"bytevector-ieee-double-set!",
|
||
4, 0, 0,
|
||
(SCM bv, SCM index, SCM value, SCM endianness),
|
||
"Store real @var{value} in @var{bv} at @var{index} according to "
|
||
"@var{endianness}.")
|
||
#define FUNC_NAME s_scm_bytevector_ieee_double_set_x
|
||
{
|
||
IEEE754_SET (double);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_bytevector_ieee_double_native_set_x,
|
||
"bytevector-ieee-double-native-set!",
|
||
3, 0, 0,
|
||
(SCM bv, SCM index, SCM value),
|
||
"Store the real @var{value} at index @var{index} "
|
||
"of @var{bv} using the native endianness.")
|
||
#define FUNC_NAME s_scm_bytevector_ieee_double_native_set_x
|
||
{
|
||
IEEE754_NATIVE_SET (double);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
#undef IEEE754_UNION
|
||
#undef IEEE754_TO_SCM
|
||
#undef IEEE754_FROM_SCM
|
||
#undef IEEE754_FROM_FOREIGN_ENDIANNESS
|
||
#undef IEEE754_TO_FOREIGN_ENDIANNESS
|
||
#undef IEEE754_REF
|
||
#undef IEEE754_NATIVE_REF
|
||
#undef IEEE754_SET
|
||
#undef IEEE754_NATIVE_SET
|
||
|
||
|
||
/* Operations on strings. */
|
||
|
||
|
||
/* Produce a function that returns the length of a UTF-encoded string. */
|
||
#define UTF_STRLEN_FUNCTION(_utf_width) \
|
||
static inline size_t \
|
||
utf ## _utf_width ## _strlen (const uint ## _utf_width ## _t *str) \
|
||
{ \
|
||
size_t len = 0; \
|
||
const uint ## _utf_width ## _t *ptr; \
|
||
for (ptr = str; \
|
||
*ptr != 0; \
|
||
ptr++) \
|
||
{ \
|
||
len++; \
|
||
} \
|
||
\
|
||
return (len * ((_utf_width) / 8)); \
|
||
}
|
||
|
||
UTF_STRLEN_FUNCTION (8)
|
||
|
||
|
||
/* Return the length (in bytes) of STR, a UTF-(UTF_WIDTH) encoded string. */
|
||
#define UTF_STRLEN(_utf_width, _str) \
|
||
utf ## _utf_width ## _strlen (_str)
|
||
|
||
/* Return the "portable" name of the UTF encoding of size UTF_WIDTH and
|
||
ENDIANNESS (Gnulib's `iconv_open' module guarantees the portability of the
|
||
encoding name). */
|
||
static inline void
|
||
utf_encoding_name (char *name, size_t utf_width, SCM endianness)
|
||
{
|
||
strcpy (name, "UTF-");
|
||
strcat (name, ((utf_width == 8)
|
||
? "8"
|
||
: ((utf_width == 16)
|
||
? "16"
|
||
: ((utf_width == 32)
|
||
? "32"
|
||
: "??"))));
|
||
strcat (name,
|
||
((scm_is_eq (endianness, scm_sym_big))
|
||
? "BE"
|
||
: ((scm_is_eq (endianness, scm_sym_little))
|
||
? "LE"
|
||
: "unknown")));
|
||
}
|
||
|
||
/* Maximum length of a UTF encoding name. */
|
||
#define MAX_UTF_ENCODING_NAME_LEN 16
|
||
|
||
/* Produce the body of a `string->utf' function. */
|
||
#define STRING_TO_UTF(_utf_width) \
|
||
SCM utf; \
|
||
int err; \
|
||
char c_utf_name[MAX_UTF_ENCODING_NAME_LEN]; \
|
||
char *c_utf = NULL; \
|
||
size_t c_strlen, c_utf_len = 0; \
|
||
\
|
||
SCM_VALIDATE_STRING (1, str); \
|
||
if (endianness == SCM_UNDEFINED) \
|
||
endianness = scm_sym_big; \
|
||
else \
|
||
SCM_VALIDATE_SYMBOL (2, endianness); \
|
||
\
|
||
utf_encoding_name (c_utf_name, (_utf_width), endianness); \
|
||
\
|
||
c_strlen = scm_i_string_length (str); \
|
||
if (scm_i_is_narrow_string (str)) \
|
||
{ \
|
||
err = mem_iconveh (scm_i_string_chars (str), c_strlen, \
|
||
"ISO-8859-1", c_utf_name, \
|
||
iconveh_question_mark, NULL, \
|
||
&c_utf, &c_utf_len); \
|
||
if (SCM_UNLIKELY (err)) \
|
||
scm_syserror_msg (FUNC_NAME, "failed to convert string: ~A", \
|
||
scm_list_1 (str), err); \
|
||
} \
|
||
else \
|
||
{ \
|
||
const scm_t_wchar *wbuf = scm_i_string_wide_chars (str); \
|
||
c_utf = u32_conv_to_encoding (c_utf_name, \
|
||
iconveh_question_mark, \
|
||
(scm_t_uint32 *) wbuf, \
|
||
c_strlen, NULL, NULL, &c_utf_len); \
|
||
if (SCM_UNLIKELY (c_utf == NULL)) \
|
||
scm_syserror_msg (FUNC_NAME, "failed to convert string: ~A", \
|
||
scm_list_1 (str), errno); \
|
||
} \
|
||
scm_dynwind_begin (0); \
|
||
scm_dynwind_free (c_utf); \
|
||
utf = make_bytevector (c_utf_len, SCM_ARRAY_ELEMENT_TYPE_VU8); \
|
||
memcpy (SCM_BYTEVECTOR_CONTENTS (utf), c_utf, c_utf_len); \
|
||
scm_dynwind_end (); \
|
||
\
|
||
return (utf);
|
||
|
||
|
||
|
||
SCM_DEFINE (scm_string_to_utf8, "string->utf8",
|
||
1, 0, 0,
|
||
(SCM str),
|
||
"Return a newly allocated bytevector that contains the UTF-8 "
|
||
"encoding of @var{str}.")
|
||
#define FUNC_NAME s_scm_string_to_utf8
|
||
{
|
||
SCM utf;
|
||
uint8_t *c_utf;
|
||
size_t c_strlen, c_utf_len = 0;
|
||
|
||
SCM_VALIDATE_STRING (1, str);
|
||
|
||
c_strlen = scm_i_string_length (str);
|
||
if (scm_i_is_narrow_string (str))
|
||
c_utf = u8_conv_from_encoding ("ISO-8859-1", iconveh_question_mark,
|
||
scm_i_string_chars (str), c_strlen,
|
||
NULL, NULL, &c_utf_len);
|
||
else
|
||
{
|
||
const scm_t_wchar *wbuf = scm_i_string_wide_chars (str);
|
||
c_utf = u32_to_u8 ((const uint32_t *) wbuf, c_strlen, NULL, &c_utf_len);
|
||
}
|
||
if (SCM_UNLIKELY (c_utf == NULL))
|
||
scm_syserror (FUNC_NAME);
|
||
else
|
||
{
|
||
scm_dynwind_begin (0);
|
||
scm_dynwind_free (c_utf);
|
||
|
||
utf = make_bytevector (c_utf_len, SCM_ARRAY_ELEMENT_TYPE_VU8);
|
||
memcpy (SCM_BYTEVECTOR_CONTENTS (utf), c_utf, c_utf_len);
|
||
|
||
scm_dynwind_end ();
|
||
}
|
||
|
||
return (utf);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_string_to_utf16, "string->utf16",
|
||
1, 1, 0,
|
||
(SCM str, SCM endianness),
|
||
"Return a newly allocated bytevector that contains the UTF-16 "
|
||
"encoding of @var{str}.")
|
||
#define FUNC_NAME s_scm_string_to_utf16
|
||
{
|
||
STRING_TO_UTF (16);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_string_to_utf32, "string->utf32",
|
||
1, 1, 0,
|
||
(SCM str, SCM endianness),
|
||
"Return a newly allocated bytevector that contains the UTF-32 "
|
||
"encoding of @var{str}.")
|
||
#define FUNC_NAME s_scm_string_to_utf32
|
||
{
|
||
STRING_TO_UTF (32);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
/* Produce the body of a function that converts a UTF-encoded bytevector to a
|
||
string. */
|
||
#define UTF_TO_STRING(_utf_width) \
|
||
SCM str = SCM_BOOL_F; \
|
||
int err; \
|
||
char *c_str = NULL; \
|
||
char c_utf_name[MAX_UTF_ENCODING_NAME_LEN]; \
|
||
char *c_utf; \
|
||
size_t c_strlen = 0, c_utf_len = 0; \
|
||
\
|
||
SCM_VALIDATE_BYTEVECTOR (1, utf); \
|
||
if (endianness == SCM_UNDEFINED) \
|
||
endianness = scm_sym_big; \
|
||
else \
|
||
SCM_VALIDATE_SYMBOL (2, endianness); \
|
||
\
|
||
c_utf_len = SCM_BYTEVECTOR_LENGTH (utf); \
|
||
c_utf = (char *) SCM_BYTEVECTOR_CONTENTS (utf); \
|
||
utf_encoding_name (c_utf_name, (_utf_width), endianness); \
|
||
\
|
||
err = mem_iconveh (c_utf, c_utf_len, \
|
||
c_utf_name, "UTF-8", \
|
||
iconveh_question_mark, NULL, \
|
||
&c_str, &c_strlen); \
|
||
if (SCM_UNLIKELY (err)) \
|
||
scm_syserror_msg (FUNC_NAME, "failed to convert to string: ~A", \
|
||
scm_list_1 (utf), err); \
|
||
else \
|
||
{ \
|
||
str = scm_from_stringn (c_str, c_strlen, "UTF-8", \
|
||
SCM_FAILED_CONVERSION_ERROR); \
|
||
free (c_str); \
|
||
} \
|
||
return (str);
|
||
|
||
|
||
SCM_DEFINE (scm_utf8_to_string, "utf8->string",
|
||
1, 0, 0,
|
||
(SCM utf),
|
||
"Return a newly allocate string that contains from the UTF-8-"
|
||
"encoded contents of bytevector @var{utf}.")
|
||
#define FUNC_NAME s_scm_utf8_to_string
|
||
{
|
||
SCM str;
|
||
const char *c_utf;
|
||
size_t c_utf_len = 0;
|
||
|
||
SCM_VALIDATE_BYTEVECTOR (1, utf);
|
||
|
||
c_utf_len = SCM_BYTEVECTOR_LENGTH (utf);
|
||
c_utf = (char *) SCM_BYTEVECTOR_CONTENTS (utf);
|
||
str = scm_from_stringn (c_utf, c_utf_len, "UTF-8",
|
||
SCM_FAILED_CONVERSION_ERROR);
|
||
|
||
return (str);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_utf16_to_string, "utf16->string",
|
||
1, 1, 0,
|
||
(SCM utf, SCM endianness),
|
||
"Return a newly allocate string that contains from the UTF-16-"
|
||
"encoded contents of bytevector @var{utf}.")
|
||
#define FUNC_NAME s_scm_utf16_to_string
|
||
{
|
||
UTF_TO_STRING (16);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_utf32_to_string, "utf32->string",
|
||
1, 1, 0,
|
||
(SCM utf, SCM endianness),
|
||
"Return a newly allocate string that contains from the UTF-32-"
|
||
"encoded contents of bytevector @var{utf}.")
|
||
#define FUNC_NAME s_scm_utf32_to_string
|
||
{
|
||
UTF_TO_STRING (32);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
/* Bytevectors as generalized vectors & arrays. */
|
||
|
||
|
||
static SCM
|
||
bytevector_ref_c32 (SCM bv, SCM idx)
|
||
{ /* FIXME add some checks */
|
||
const float *contents = (const float*)SCM_BYTEVECTOR_CONTENTS (bv);
|
||
size_t i = scm_to_size_t (idx);
|
||
return scm_c_make_rectangular (contents[i/4], contents[i/4 + 1]);
|
||
}
|
||
|
||
static SCM
|
||
bytevector_ref_c64 (SCM bv, SCM idx)
|
||
{ /* FIXME add some checks */
|
||
const double *contents = (const double*)SCM_BYTEVECTOR_CONTENTS (bv);
|
||
size_t i = scm_to_size_t (idx);
|
||
return scm_c_make_rectangular (contents[i/8], contents[i/8 + 1]);
|
||
}
|
||
|
||
typedef SCM (*scm_t_bytevector_ref_fn)(SCM, SCM);
|
||
|
||
const scm_t_bytevector_ref_fn bytevector_ref_fns[SCM_ARRAY_ELEMENT_TYPE_LAST + 1] =
|
||
{
|
||
NULL, /* SCM */
|
||
NULL, /* CHAR */
|
||
NULL, /* BIT */
|
||
scm_bytevector_u8_ref, /* VU8 */
|
||
scm_bytevector_u8_ref, /* U8 */
|
||
scm_bytevector_s8_ref,
|
||
scm_bytevector_u16_native_ref,
|
||
scm_bytevector_s16_native_ref,
|
||
scm_bytevector_u32_native_ref,
|
||
scm_bytevector_s32_native_ref,
|
||
scm_bytevector_u64_native_ref,
|
||
scm_bytevector_s64_native_ref,
|
||
scm_bytevector_ieee_single_native_ref,
|
||
scm_bytevector_ieee_double_native_ref,
|
||
bytevector_ref_c32,
|
||
bytevector_ref_c64
|
||
};
|
||
|
||
static SCM
|
||
bv_handle_ref (scm_t_array_handle *h, size_t index)
|
||
{
|
||
SCM byte_index;
|
||
scm_t_bytevector_ref_fn ref_fn;
|
||
|
||
ref_fn = bytevector_ref_fns[h->element_type];
|
||
byte_index =
|
||
scm_from_size_t (index * scm_array_handle_uniform_element_size (h));
|
||
return ref_fn (h->array, byte_index);
|
||
}
|
||
|
||
/* FIXME add checks!!! */
|
||
static SCM
|
||
bytevector_set_c32 (SCM bv, SCM idx, SCM val)
|
||
{ float *contents = (float*)SCM_BYTEVECTOR_CONTENTS (bv);
|
||
size_t i = scm_to_size_t (idx);
|
||
contents[i/4] = scm_c_real_part (val);
|
||
contents[i/4 + 1] = scm_c_imag_part (val);
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
|
||
static SCM
|
||
bytevector_set_c64 (SCM bv, SCM idx, SCM val)
|
||
{ double *contents = (double*)SCM_BYTEVECTOR_CONTENTS (bv);
|
||
size_t i = scm_to_size_t (idx);
|
||
contents[i/8] = scm_c_real_part (val);
|
||
contents[i/8 + 1] = scm_c_imag_part (val);
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
|
||
typedef SCM (*scm_t_bytevector_set_fn)(SCM, SCM, SCM);
|
||
|
||
const scm_t_bytevector_set_fn bytevector_set_fns[SCM_ARRAY_ELEMENT_TYPE_LAST + 1] =
|
||
{
|
||
NULL, /* SCM */
|
||
NULL, /* CHAR */
|
||
NULL, /* BIT */
|
||
scm_bytevector_u8_set_x, /* VU8 */
|
||
scm_bytevector_u8_set_x, /* U8 */
|
||
scm_bytevector_s8_set_x,
|
||
scm_bytevector_u16_native_set_x,
|
||
scm_bytevector_s16_native_set_x,
|
||
scm_bytevector_u32_native_set_x,
|
||
scm_bytevector_s32_native_set_x,
|
||
scm_bytevector_u64_native_set_x,
|
||
scm_bytevector_s64_native_set_x,
|
||
scm_bytevector_ieee_single_native_set_x,
|
||
scm_bytevector_ieee_double_native_set_x,
|
||
bytevector_set_c32,
|
||
bytevector_set_c64
|
||
};
|
||
|
||
static void
|
||
bv_handle_set_x (scm_t_array_handle *h, size_t index, SCM val)
|
||
{
|
||
SCM byte_index;
|
||
scm_t_bytevector_set_fn set_fn;
|
||
|
||
set_fn = bytevector_set_fns[h->element_type];
|
||
byte_index =
|
||
scm_from_size_t (index * scm_array_handle_uniform_element_size (h));
|
||
set_fn (h->array, byte_index, val);
|
||
}
|
||
|
||
static void
|
||
bytevector_get_handle (SCM v, scm_t_array_handle *h)
|
||
{
|
||
h->array = v;
|
||
h->ndims = 1;
|
||
h->dims = &h->dim0;
|
||
h->dim0.lbnd = 0;
|
||
h->dim0.ubnd = SCM_BYTEVECTOR_TYPED_LENGTH (v) - 1;
|
||
h->dim0.inc = 1;
|
||
h->element_type = SCM_BYTEVECTOR_ELEMENT_TYPE (v);
|
||
h->elements = h->writable_elements = SCM_BYTEVECTOR_CONTENTS (v);
|
||
}
|
||
|
||
|
||
/* Initialization. */
|
||
|
||
void
|
||
scm_bootstrap_bytevectors (void)
|
||
{
|
||
/* This must be instantiated here because the generalized-vector API may
|
||
want to access bytevectors even though `(rnrs bytevector)' hasn't been
|
||
loaded. */
|
||
scm_null_bytevector = make_bytevector (0, SCM_ARRAY_ELEMENT_TYPE_VU8);
|
||
|
||
#ifdef WORDS_BIGENDIAN
|
||
scm_i_native_endianness = scm_from_locale_symbol ("big");
|
||
#else
|
||
scm_i_native_endianness = scm_from_locale_symbol ("little");
|
||
#endif
|
||
|
||
scm_c_register_extension ("libguile-" SCM_EFFECTIVE_VERSION,
|
||
"scm_init_bytevectors",
|
||
(scm_t_extension_init_func) scm_init_bytevectors,
|
||
NULL);
|
||
|
||
{
|
||
scm_t_array_implementation impl;
|
||
|
||
impl.tag = scm_tc7_bytevector;
|
||
impl.mask = 0x7f;
|
||
impl.vref = bv_handle_ref;
|
||
impl.vset = bv_handle_set_x;
|
||
impl.get_handle = bytevector_get_handle;
|
||
scm_i_register_array_implementation (&impl);
|
||
scm_i_register_vector_constructor
|
||
(scm_i_array_element_types[SCM_ARRAY_ELEMENT_TYPE_VU8],
|
||
scm_make_bytevector);
|
||
}
|
||
}
|
||
|
||
void
|
||
scm_init_bytevectors (void)
|
||
{
|
||
#include "libguile/bytevectors.x"
|
||
|
||
scm_endianness_big = scm_sym_big;
|
||
scm_endianness_little = scm_sym_little;
|
||
}
|