1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-30 20:00:19 +02:00
guile/module/language/tree-il/compile-glil.scm
Andy Wingo eddd16d782 some with-fluid* -> with-fluids
* module/ice-9/boot-9.scm (false-if-exception, load)
  (try-module-autoload):
* module/language/tree-il/compile-glil.scm (compile-glil): Turn some
  with-fluid* invocations into with-fluids.
2010-03-04 16:51:13 +01:00

1132 lines
45 KiB
Scheme
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

;;; TREE-IL -> GLIL compiler
;; Copyright (C) 2001,2008,2009,2010 Free Software Foundation, Inc.
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;;; Code:
(define-module (language tree-il compile-glil)
#:use-module (system base syntax)
#:use-module (system base pmatch)
#:use-module (system base message)
#:use-module (ice-9 receive)
#:use-module (language glil)
#:use-module (system vm instruction)
#:use-module (language tree-il)
#:use-module (language tree-il optimize)
#:use-module (language tree-il analyze)
#:use-module ((srfi srfi-1) #:select (filter-map))
#:export (compile-glil))
;; allocation:
;; sym -> {lambda -> address}
;; lambda -> (labels . free-locs)
;; lambda-case -> (gensym . nlocs)
;;
;; address ::= (local? boxed? . index)
;; labels ::= ((sym . lambda) ...)
;; free-locs ::= ((sym0 . address0) (sym1 . address1) ...)
;; free variable addresses are relative to parent proc.
(define *comp-module* (make-fluid))
(define %warning-passes
`((unused-variable . ,unused-variable-analysis)
(unused-toplevel . ,unused-toplevel-analysis)
(unbound-variable . ,unbound-variable-analysis)
(arity-mismatch . ,arity-analysis)))
(define (compile-glil x e opts)
(define warnings
(or (and=> (memq #:warnings opts) cadr)
'()))
;; Go through the warning passes.
(let ((analyses (filter-map (lambda (kind)
(assoc-ref %warning-passes kind))
warnings)))
(analyze-tree analyses x e))
(let* ((x (make-lambda (tree-il-src x) '()
(make-lambda-case #f '() #f #f #f '() '() x #f)))
(x (optimize! x e opts))
(allocation (analyze-lexicals x)))
(with-fluids ((*comp-module* e))
(values (flatten-lambda x #f allocation)
e
e))))
(define *primcall-ops* (make-hash-table))
(for-each
(lambda (x) (hash-set! *primcall-ops* (car x) (cdr x)))
'(((eq? . 2) . eq?)
((eqv? . 2) . eqv?)
((equal? . 2) . equal?)
((= . 2) . ee?)
((< . 2) . lt?)
((> . 2) . gt?)
((<= . 2) . le?)
((>= . 2) . ge?)
((+ . 2) . add)
((- . 2) . sub)
((1+ . 1) . add1)
((1- . 1) . sub1)
((* . 2) . mul)
((/ . 2) . div)
((quotient . 2) . quo)
((remainder . 2) . rem)
((modulo . 2) . mod)
((ash . 2) . ash)
((logand . 2) . logand)
((logior . 2) . logior)
((logxor . 2) . logxor)
((not . 1) . not)
((pair? . 1) . pair?)
((cons . 2) . cons)
((car . 1) . car)
((cdr . 1) . cdr)
((set-car! . 2) . set-car!)
((set-cdr! . 2) . set-cdr!)
((null? . 1) . null?)
((list? . 1) . list?)
(list . list)
(vector . vector)
((class-of . 1) . class-of)
((@slot-ref . 2) . slot-ref)
((@slot-set! . 3) . slot-set)
((vector-ref . 2) . vector-ref)
((vector-set! . 3) . vector-set)
((variable-ref . 1) . variable-ref)
;; nb, *not* variable-set! -- the args are switched
((variable-set . 2) . variable-set)
((variable-bound? . 1) . variable-bound?)
((struct? . 1) . struct?)
((struct-vtable . 1) . struct-vtable)
((struct-ref . 2) . struct-ref)
((struct-set! . 3) . struct-set)
(make-struct . make-struct)
;; hack for javascript
((return . 1) return)
((bytevector-u8-ref . 2) . bv-u8-ref)
((bytevector-u8-set! . 3) . bv-u8-set)
((bytevector-s8-ref . 2) . bv-s8-ref)
((bytevector-s8-set! . 3) . bv-s8-set)
((bytevector-u16-ref . 3) . bv-u16-ref)
((bytevector-u16-set! . 4) . bv-u16-set)
((bytevector-u16-native-ref . 2) . bv-u16-native-ref)
((bytevector-u16-native-set! . 3) . bv-u16-native-set)
((bytevector-s16-ref . 3) . bv-s16-ref)
((bytevector-s16-set! . 4) . bv-s16-set)
((bytevector-s16-native-ref . 2) . bv-s16-native-ref)
((bytevector-s16-native-set! . 3) . bv-s16-native-set)
((bytevector-u32-ref . 3) . bv-u32-ref)
((bytevector-u32-set! . 4) . bv-u32-set)
((bytevector-u32-native-ref . 2) . bv-u32-native-ref)
((bytevector-u32-native-set! . 3) . bv-u32-native-set)
((bytevector-s32-ref . 3) . bv-s32-ref)
((bytevector-s32-set! . 4) . bv-s32-set)
((bytevector-s32-native-ref . 2) . bv-s32-native-ref)
((bytevector-s32-native-set! . 3) . bv-s32-native-set)
((bytevector-u64-ref . 3) . bv-u64-ref)
((bytevector-u64-set! . 4) . bv-u64-set)
((bytevector-u64-native-ref . 2) . bv-u64-native-ref)
((bytevector-u64-native-set! . 3) . bv-u64-native-set)
((bytevector-s64-ref . 3) . bv-s64-ref)
((bytevector-s64-set! . 4) . bv-s64-set)
((bytevector-s64-native-ref . 2) . bv-s64-native-ref)
((bytevector-s64-native-set! . 3) . bv-s64-native-set)
((bytevector-ieee-single-ref . 3) . bv-f32-ref)
((bytevector-ieee-single-set! . 4) . bv-f32-set)
((bytevector-ieee-single-native-ref . 2) . bv-f32-native-ref)
((bytevector-ieee-single-native-set! . 3) . bv-f32-native-set)
((bytevector-ieee-double-ref . 3) . bv-f64-ref)
((bytevector-ieee-double-set! . 4) . bv-f64-set)
((bytevector-ieee-double-native-ref . 2) . bv-f64-native-ref)
((bytevector-ieee-double-native-set! . 3) . bv-f64-native-set)))
(define (make-label) (gensym ":L"))
(define (vars->bind-list ids vars allocation proc)
(map (lambda (id v)
(pmatch (hashq-ref (hashq-ref allocation v) proc)
((#t ,boxed? . ,n)
(list id boxed? n))
(,x (error "badness" id v x))))
ids
vars))
(define (emit-bindings src ids vars allocation proc emit-code)
(emit-code src (make-glil-bind
(vars->bind-list ids vars allocation proc))))
(define (with-output-to-code proc)
(let ((out '()))
(define (emit-code src x)
(set! out (cons x out))
(if src
(set! out (cons (make-glil-source src) out))))
(proc emit-code)
(reverse out)))
(define (flatten-lambda x self-label allocation)
(record-case x
((<lambda> src meta body)
(make-glil-program
meta
(with-output-to-code
(lambda (emit-code)
;; write source info for proc
(if src (emit-code #f (make-glil-source src)))
;; emit pre-prelude label for self tail calls in which the
;; number of arguments doesn't check out at compile time
(if self-label
(emit-code #f (make-glil-label self-label)))
;; compile the body, yo
(flatten body allocation x self-label (car (hashq-ref allocation x))
emit-code)))))))
(define (flatten x allocation self self-label fix-labels emit-code)
(define (emit-label label)
(emit-code #f (make-glil-label label)))
(define (emit-branch src inst label)
(emit-code src (make-glil-branch inst label)))
;; RA: "return address"; #f unless we're in a non-tail fix with labels
;; MVRA: "multiple-values return address"; #f unless we're in a let-values
(let comp ((x x) (context 'tail) (RA #f) (MVRA #f))
(define (comp-tail tree) (comp tree context RA MVRA))
(define (comp-push tree) (comp tree 'push #f #f))
(define (comp-drop tree) (comp tree 'drop #f #f))
(define (comp-vals tree MVRA) (comp tree 'vals #f MVRA))
(define (comp-fix tree RA) (comp tree context RA MVRA))
;; A couple of helpers. Note that if we are in tail context, we
;; won't have an RA.
(define (maybe-emit-return)
(if RA
(emit-branch #f 'br RA)
(if (eq? context 'tail)
(emit-code #f (make-glil-call 'return 1)))))
(record-case x
((<void>)
(case context
((push vals tail)
(emit-code #f (make-glil-void))))
(maybe-emit-return))
((<const> src exp)
(case context
((push vals tail)
(emit-code src (make-glil-const exp))))
(maybe-emit-return))
;; FIXME: should represent sequence as exps tail
((<sequence> exps)
(let lp ((exps exps))
(if (null? (cdr exps))
(comp-tail (car exps))
(begin
(comp-drop (car exps))
(lp (cdr exps))))))
((<application> src proc args)
;; FIXME: need a better pattern-matcher here
(cond
((and (primitive-ref? proc)
(eq? (primitive-ref-name proc) '@apply)
(>= (length args) 1))
(let ((proc (car args))
(args (cdr args)))
(cond
((and (primitive-ref? proc) (eq? (primitive-ref-name proc) 'values)
(not (eq? context 'push)) (not (eq? context 'vals)))
;; tail: (lambda () (apply values '(1 2)))
;; drop: (lambda () (apply values '(1 2)) 3)
;; push: (lambda () (list (apply values '(10 12)) 1))
(case context
((drop) (for-each comp-drop args) (maybe-emit-return))
((tail)
(for-each comp-push args)
(emit-code src (make-glil-call 'return/values* (length args))))))
(else
(case context
((tail)
(comp-push proc)
(for-each comp-push args)
(emit-code src (make-glil-call 'tail-apply (1+ (length args)))))
((push)
(emit-code src (make-glil-call 'new-frame 0))
(comp-push proc)
(for-each comp-push args)
(emit-code src (make-glil-call 'apply (1+ (length args))))
(maybe-emit-return))
((vals)
(comp-vals
(make-application src (make-primitive-ref #f 'apply)
(cons proc args))
MVRA)
(maybe-emit-return))
((drop)
;; Well, shit. The proc might return any number of
;; values (including 0), since it's in a drop context,
;; yet apply does not create a MV continuation. So we
;; mv-call out to our trampoline instead.
(comp-drop
(make-application src (make-primitive-ref #f 'apply)
(cons proc args)))
(maybe-emit-return)))))))
((and (primitive-ref? proc) (eq? (primitive-ref-name proc) 'values)
(not (eq? context 'push)))
;; tail: (lambda () (values '(1 2)))
;; drop: (lambda () (values '(1 2)) 3)
;; push: (lambda () (list (values '(10 12)) 1))
;; vals: (let-values (((a b ...) (values 1 2 ...))) ...)
(case context
((drop) (for-each comp-drop args) (maybe-emit-return))
((vals)
(for-each comp-push args)
(emit-code #f (make-glil-const (length args)))
(emit-branch src 'br MVRA))
((tail)
(for-each comp-push args)
(emit-code src (make-glil-call 'return/values (length args))))))
((and (primitive-ref? proc)
(eq? (primitive-ref-name proc) '@call-with-values)
(= (length args) 2))
;; CONSUMER
;; PRODUCER
;; (mv-call MV)
;; ([tail]-call 1)
;; goto POST
;; MV: [tail-]call/nargs
;; POST: (maybe-drop)
(case context
((vals)
;; Fall back.
(comp-vals
(make-application src (make-primitive-ref #f 'call-with-values)
args)
MVRA)
(maybe-emit-return))
(else
(let ((MV (make-label)) (POST (make-label))
(producer (car args)) (consumer (cadr args)))
(if (not (eq? context 'tail))
(emit-code src (make-glil-call 'new-frame 0)))
(comp-push consumer)
(emit-code src (make-glil-call 'new-frame 0))
(comp-push producer)
(emit-code src (make-glil-mv-call 0 MV))
(case context
((tail) (emit-code src (make-glil-call 'tail-call 1)))
(else (emit-code src (make-glil-call 'call 1))
(emit-branch #f 'br POST)))
(emit-label MV)
(case context
((tail) (emit-code src (make-glil-call 'tail-call/nargs 0)))
(else (emit-code src (make-glil-call 'call/nargs 0))
(emit-label POST)
(if (eq? context 'drop)
(emit-code #f (make-glil-call 'drop 1)))
(maybe-emit-return)))))))
((and (primitive-ref? proc)
(eq? (primitive-ref-name proc) '@call-with-current-continuation)
(= (length args) 1))
(case context
((tail)
(comp-push (car args))
(emit-code src (make-glil-call 'tail-call/cc 1)))
((vals)
(comp-vals
(make-application
src (make-primitive-ref #f 'call-with-current-continuation)
args)
MVRA)
(maybe-emit-return))
((push)
(comp-push (car args))
(emit-code src (make-glil-call 'call/cc 1))
(maybe-emit-return))
((drop)
;; Crap. Just like `apply' in drop context.
(comp-drop
(make-application
src (make-primitive-ref #f 'call-with-current-continuation)
args))
(maybe-emit-return))))
((and (primitive-ref? proc)
(or (hash-ref *primcall-ops*
(cons (primitive-ref-name proc) (length args)))
(hash-ref *primcall-ops* (primitive-ref-name proc))))
=> (lambda (op)
(for-each comp-push args)
(emit-code src (make-glil-call op (length args)))
(case (instruction-pushes op)
((0)
(case context
((tail push vals) (emit-code #f (make-glil-void))))
(maybe-emit-return))
((1)
(case context
((drop) (emit-code #f (make-glil-call 'drop 1))))
(maybe-emit-return))
(else
(error "bad primitive op: too many pushes"
op (instruction-pushes op))))))
;; self-call in tail position
((and (lexical-ref? proc)
self-label (eq? (lexical-ref-gensym proc) self-label)
(eq? context 'tail))
;; first, evaluate new values, pushing them on the stack
(for-each comp-push args)
(let lp ((lcase (lambda-body self)))
(cond
((and (lambda-case? lcase)
(not (lambda-case-kw lcase))
(not (lambda-case-opt lcase))
(not (lambda-case-rest lcase))
(= (length args) (length (lambda-case-req lcase))))
;; we have a case that matches the args; rename variables
;; and goto the case label
(for-each (lambda (sym)
(pmatch (hashq-ref (hashq-ref allocation sym) self)
((#t #f . ,index) ; unboxed
(emit-code #f (make-glil-lexical #t #f 'set index)))
((#t #t . ,index) ; boxed
;; new box
(emit-code #f (make-glil-lexical #t #t 'box index)))
(,x (error "what" x))))
(reverse (lambda-case-vars lcase)))
(emit-branch src 'br (car (hashq-ref allocation lcase))))
((lambda-case? lcase)
;; no match, try next case
(lp (lambda-case-alternate lcase)))
(else
;; no cases left; shuffle args down and jump before the prelude.
(for-each (lambda (i)
(emit-code #f (make-glil-lexical #t #f 'set i)))
(reverse (iota (length args))))
(emit-branch src 'br self-label)))))
;; lambda, the ultimate goto
((and (lexical-ref? proc)
(assq (lexical-ref-gensym proc) fix-labels))
;; like the self-tail-call case, though we can handle "drop"
;; contexts too. first, evaluate new values, pushing them on
;; the stack
(for-each comp-push args)
;; find the specific case, rename args, and goto the case label
(let lp ((lcase (lambda-body
(assq-ref fix-labels (lexical-ref-gensym proc)))))
(cond
((and (lambda-case? lcase)
(not (lambda-case-kw lcase))
(not (lambda-case-opt lcase))
(not (lambda-case-rest lcase))
(= (length args) (length (lambda-case-req lcase))))
;; we have a case that matches the args; rename variables
;; and goto the case label
(for-each (lambda (sym)
(pmatch (hashq-ref (hashq-ref allocation sym) self)
((#t #f . ,index) ; unboxed
(emit-code #f (make-glil-lexical #t #f 'set index)))
((#t #t . ,index) ; boxed
(emit-code #f (make-glil-lexical #t #t 'box index)))
(,x (error "what" x))))
(reverse (lambda-case-vars lcase)))
(emit-branch src 'br (car (hashq-ref allocation lcase))))
((lambda-case? lcase)
;; no match, try next case
(lp (lambda-case-alternate lcase)))
(else
;; no cases left. we can't really handle this currently.
;; ideally we would push on a new frame, then do a "local
;; call" -- which doesn't require consing up a program
;; object. but for now error, as this sort of case should
;; preclude label allocation.
(error "couldn't find matching case for label call" x)))))
(else
(if (not (eq? context 'tail))
(emit-code src (make-glil-call 'new-frame 0)))
(comp-push proc)
(for-each comp-push args)
(let ((len (length args)))
(case context
((tail) (emit-code src (make-glil-call 'tail-call len)))
((push) (emit-code src (make-glil-call 'call len))
(maybe-emit-return))
((vals) (emit-code src (make-glil-mv-call len MVRA))
(maybe-emit-return))
((drop) (let ((MV (make-label)) (POST (make-label)))
(emit-code src (make-glil-mv-call len MV))
(emit-code #f (make-glil-call 'drop 1))
(emit-branch #f 'br (or RA POST))
(emit-label MV)
(emit-code #f (make-glil-mv-bind 0 #f))
(if RA
(emit-branch #f 'br RA)
(emit-label POST)))))))))
((<conditional> src test consequent alternate)
;; TEST
;; (br-if-not L1)
;; consequent
;; (br L2)
;; L1: alternate
;; L2:
(let ((L1 (make-label)) (L2 (make-label)))
;; need a pattern matcher
(record-case test
((<application> proc args)
(record-case proc
((<primitive-ref> name)
(let ((len (length args)))
(cond
((and (eq? name 'eq?) (= len 2))
(comp-push (car args))
(comp-push (cadr args))
(emit-branch src 'br-if-not-eq L1))
((and (eq? name 'null?) (= len 1))
(comp-push (car args))
(emit-branch src 'br-if-not-null L1))
((and (eq? name 'not) (= len 1))
(let ((app (car args)))
(record-case app
((<application> proc args)
(let ((len (length args)))
(record-case proc
((<primitive-ref> name)
(cond
((and (eq? name 'eq?) (= len 2))
(comp-push (car args))
(comp-push (cadr args))
(emit-branch src 'br-if-eq L1))
((and (eq? name 'null?) (= len 1))
(comp-push (car args))
(emit-branch src 'br-if-null L1))
(else
(comp-push app)
(emit-branch src 'br-if L1))))
(else
(comp-push app)
(emit-branch src 'br-if L1)))))
(else
(comp-push app)
(emit-branch src 'br-if L1)))))
(else
(comp-push test)
(emit-branch src 'br-if-not L1)))))
(else
(comp-push test)
(emit-branch src 'br-if-not L1))))
(else
(comp-push test)
(emit-branch src 'br-if-not L1)))
(comp-tail consequent)
;; if there is an RA, comp-tail will cause a jump to it -- just
;; have to clean up here if there is no RA.
(if (and (not RA) (not (eq? context 'tail)))
(emit-branch #f 'br L2))
(emit-label L1)
(comp-tail alternate)
(if (and (not RA) (not (eq? context 'tail)))
(emit-label L2))))
((<primitive-ref> src name)
(cond
((eq? (module-variable (fluid-ref *comp-module*) name)
(module-variable the-root-module name))
(case context
((tail push vals)
(emit-code src (make-glil-toplevel 'ref name))))
(maybe-emit-return))
((module-variable the-root-module name)
(case context
((tail push vals)
(emit-code src (make-glil-module 'ref '(guile) name #f))))
(maybe-emit-return))
(else
(case context
((tail push vals)
(emit-code src (make-glil-module
'ref (module-name (fluid-ref *comp-module*)) name #f))))
(maybe-emit-return))))
((<lexical-ref> src gensym)
(case context
((push vals tail)
(pmatch (hashq-ref (hashq-ref allocation gensym) self)
((,local? ,boxed? . ,index)
(emit-code src (make-glil-lexical local? boxed? 'ref index)))
(,loc
(error "badness" x loc)))))
(maybe-emit-return))
((<lexical-set> src gensym exp)
(comp-push exp)
(pmatch (hashq-ref (hashq-ref allocation gensym) self)
((,local? ,boxed? . ,index)
(emit-code src (make-glil-lexical local? boxed? 'set index)))
(,loc
(error "badness" x loc)))
(case context
((tail push vals)
(emit-code #f (make-glil-void))))
(maybe-emit-return))
((<module-ref> src mod name public?)
(emit-code src (make-glil-module 'ref mod name public?))
(case context
((drop) (emit-code #f (make-glil-call 'drop 1))))
(maybe-emit-return))
((<module-set> src mod name public? exp)
(comp-push exp)
(emit-code src (make-glil-module 'set mod name public?))
(case context
((tail push vals)
(emit-code #f (make-glil-void))))
(maybe-emit-return))
((<toplevel-ref> src name)
(emit-code src (make-glil-toplevel 'ref name))
(case context
((drop) (emit-code #f (make-glil-call 'drop 1))))
(maybe-emit-return))
((<toplevel-set> src name exp)
(comp-push exp)
(emit-code src (make-glil-toplevel 'set name))
(case context
((tail push vals)
(emit-code #f (make-glil-void))))
(maybe-emit-return))
((<toplevel-define> src name exp)
(comp-push exp)
(emit-code src (make-glil-toplevel 'define name))
(case context
((tail push vals)
(emit-code #f (make-glil-void))))
(maybe-emit-return))
((<lambda>)
(let ((free-locs (cdr (hashq-ref allocation x))))
(case context
((push vals tail)
(emit-code #f (flatten-lambda x #f allocation))
(if (not (null? free-locs))
(begin
(for-each
(lambda (loc)
(pmatch loc
((,local? ,boxed? . ,n)
(emit-code #f (make-glil-lexical local? #f 'ref n)))
(else (error "what" x loc))))
free-locs)
(emit-code #f (make-glil-call 'make-closure
(length free-locs))))))))
(maybe-emit-return))
((<lambda-case> src req opt rest kw inits vars alternate body)
;; o/~ feature on top of feature o/~
;; req := (name ...)
;; opt := (name ...) | #f
;; rest := name | #f
;; kw: (allow-other-keys? (keyword name var) ...) | #f
;; vars: (sym ...)
;; init: tree-il in context of vars
;; vars map to named arguments in the following order:
;; required, optional (positional), rest, keyword.
(let* ((nreq (length req))
(nopt (if opt (length opt) 0))
(rest-idx (and rest (+ nreq nopt)))
(opt-names (or opt '()))
(allow-other-keys? (if kw (car kw) #f))
(kw-indices (map (lambda (x)
(pmatch x
((,key ,name ,var)
(cons key (list-index vars var)))
(else (error "bad kwarg" x))))
(if kw (cdr kw) '())))
(nargs (apply max (+ nreq nopt (if rest 1 0))
(map 1+ (map cdr kw-indices))))
(nlocs (cdr (hashq-ref allocation x)))
(alternate-label (and alternate (make-label))))
(or (= nargs
(length vars)
(+ nreq (length inits) (if rest 1 0)))
(error "something went wrong"
req opt rest kw inits vars nreq nopt kw-indices nargs))
;; the prelude, to check args & reset the stack pointer,
;; allowing room for locals
(emit-code
src
(cond
(kw
(make-glil-kw-prelude nreq nopt rest-idx kw-indices
allow-other-keys? nlocs alternate-label))
((or rest opt)
(make-glil-opt-prelude nreq nopt rest-idx nlocs alternate-label))
(#t
(make-glil-std-prelude nreq nlocs alternate-label))))
;; box args if necessary
(for-each
(lambda (v)
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #t . ,n)
(emit-code #f (make-glil-lexical #t #f 'ref n))
(emit-code #f (make-glil-lexical #t #t 'box n)))))
vars)
;; write bindings info
(if (not (null? vars))
(emit-bindings
#f
(let lp ((kw (if kw (cdr kw) '()))
(names (append (reverse opt-names) (reverse req)))
(vars (list-tail vars (+ nreq nopt
(if rest 1 0)))))
(pmatch kw
(()
;; fixme: check that vars is empty
(reverse (if rest (cons rest names) names)))
(((,key ,name ,var) . ,kw)
(if (memq var vars)
(lp kw (cons name names) (delq var vars))
(lp kw names vars)))
(,kw (error "bad keywords, yo" kw))))
vars allocation self emit-code))
;; init optional/kw args
(let lp ((inits inits) (n nreq) (vars (list-tail vars nreq)))
(cond
((null? inits)) ; done
((and rest-idx (= n rest-idx))
(lp inits (1+ n) (cdr vars)))
(#t
(pmatch (hashq-ref (hashq-ref allocation (car vars)) self)
((#t ,boxed? . ,n*) (guard (= n* n))
(let ((L (make-label)))
(emit-code #f (make-glil-lexical #t boxed? 'bound? n))
(emit-code #f (make-glil-branch 'br-if L))
(comp-push (car inits))
(emit-code #f (make-glil-lexical #t boxed? 'set n))
(emit-label L)
(lp (cdr inits) (1+ n) (cdr vars))))
(#t (error "what" inits))))))
;; post-prelude case label for label calls
(emit-label (car (hashq-ref allocation x)))
(comp-tail body)
(if (not (null? vars))
(emit-code #f (make-glil-unbind)))
(if alternate-label
(begin
(emit-label alternate-label)
(comp-tail alternate)))))
((<let> src names vars vals body)
(for-each comp-push vals)
(emit-bindings src names vars allocation self emit-code)
(for-each (lambda (v)
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #f . ,n)
(emit-code src (make-glil-lexical #t #f 'set n)))
((#t #t . ,n)
(emit-code src (make-glil-lexical #t #t 'box n)))
(,loc (error "badness" x loc))))
(reverse vars))
(comp-tail body)
(emit-code #f (make-glil-unbind)))
((<letrec> src names vars vals body)
(for-each (lambda (v)
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #t . ,n)
(emit-code src (make-glil-lexical #t #t 'empty-box n)))
(,loc (error "badness" x loc))))
vars)
(for-each comp-push vals)
(emit-bindings src names vars allocation self emit-code)
(for-each (lambda (v)
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #t . ,n)
(emit-code src (make-glil-lexical #t #t 'set n)))
(,loc (error "badness" x loc))))
(reverse vars))
(comp-tail body)
(emit-code #f (make-glil-unbind)))
((<fix> src names vars vals body)
;; The ideal here is to just render the lambda bodies inline, and
;; wire the code together with gotos. We can do that if
;; analyze-lexicals has determined that a given var has "label"
;; allocation -- which is the case if it is in `fix-labels'.
;;
;; But even for closures that we can't inline, we can do some
;; tricks to avoid heap-allocation for the binding itself. Since
;; we know the vals are lambdas, we can set them to their local
;; var slots first, then capture their bindings, mutating them in
;; place.
(let ((new-RA (if (or (eq? context 'tail) RA) #f (make-label))))
(for-each
(lambda (x v)
(cond
((hashq-ref allocation x)
;; allocating a closure
(emit-code #f (flatten-lambda x v allocation))
(let ((free-locs (cdr (hashq-ref allocation x))))
(if (not (null? free-locs))
;; Need to make-closure first, so we have a fresh closure on
;; the heap, but with a temporary free values.
(begin
(for-each (lambda (loc)
(emit-code #f (make-glil-const #f)))
free-locs)
(emit-code #f (make-glil-call 'make-closure
(length free-locs))))))
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #f . ,n)
(emit-code src (make-glil-lexical #t #f 'set n)))
(,loc (error "badness" x loc))))
(else
;; labels allocation: emit label & body, but jump over it
(let ((POST (make-label)))
(emit-branch #f 'br POST)
(let lp ((lcase (lambda-body x)))
(if lcase
(record-case lcase
((<lambda-case> src req vars body alternate)
(emit-label (car (hashq-ref allocation lcase)))
;; FIXME: opt & kw args in the bindings
(emit-bindings #f req vars allocation self emit-code)
(if src
(emit-code #f (make-glil-source src)))
(comp-fix body (or RA new-RA))
(emit-code #f (make-glil-unbind))
(lp alternate)))
(emit-label POST)))))))
vals
vars)
;; Emit bindings metadata for closures
(let ((binds (let lp ((out '()) (vars vars) (names names))
(cond ((null? vars) (reverse! out))
((assq (car vars) fix-labels)
(lp out (cdr vars) (cdr names)))
(else
(lp (acons (car vars) (car names) out)
(cdr vars) (cdr names)))))))
(emit-bindings src (map cdr binds) (map car binds)
allocation self emit-code))
;; Now go back and fix up the bindings for closures.
(for-each
(lambda (x v)
(let ((free-locs (if (hashq-ref allocation x)
(cdr (hashq-ref allocation x))
;; can hit this latter case for labels allocation
'())))
(if (not (null? free-locs))
(begin
(for-each
(lambda (loc)
(pmatch loc
((,local? ,boxed? . ,n)
(emit-code #f (make-glil-lexical local? #f 'ref n)))
(else (error "what" x loc))))
free-locs)
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #f . ,n)
(emit-code #f (make-glil-lexical #t #f 'fix n)))
(,loc (error "badness" x loc)))))))
vals
vars)
(comp-tail body)
(if new-RA
(emit-label new-RA))
(emit-code #f (make-glil-unbind))))
((<let-values> src exp body)
(record-case body
((<lambda-case> req opt kw rest vars body alternate)
(if (or opt kw alternate)
(error "unexpected lambda-case in let-values" x))
(let ((MV (make-label)))
(comp-vals exp MV)
(emit-code #f (make-glil-const 1))
(emit-label MV)
(emit-code src (make-glil-mv-bind
(vars->bind-list
(append req (if rest (list rest) '()))
vars allocation self)
(and rest #t)))
(for-each (lambda (v)
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #f . ,n)
(emit-code src (make-glil-lexical #t #f 'set n)))
((#t #t . ,n)
(emit-code src (make-glil-lexical #t #t 'box n)))
(,loc (error "badness" x loc))))
(reverse vars))
(comp-tail body)
(emit-code #f (make-glil-unbind))))))
;; much trickier than i thought this would be, at first, due to the need
;; to have body's return value(s) on the stack while the unwinder runs,
;; then proceed with returning or dropping or what-have-you, interacting
;; with RA and MVRA. What have you, I say.
((<dynwind> src body winder unwinder)
(comp-push winder)
(comp-push unwinder)
(comp-drop (make-application src winder '()))
(emit-code #f (make-glil-call 'wind 2))
(case context
((tail)
(let ((MV (make-label)))
(comp-vals body MV)
;; one value: unwind...
(emit-code #f (make-glil-call 'unwind 0))
(comp-drop (make-application src unwinder '()))
;; ...and return the val
(emit-code #f (make-glil-call 'return 1))
(emit-label MV)
;; multiple values: unwind...
(emit-code #f (make-glil-call 'unwind 0))
(comp-drop (make-application src unwinder '()))
;; and return the values.
(emit-code #f (make-glil-call 'return/nvalues 1))))
((push)
;; we only want one value. so ask for one value
(comp-push body)
;; and unwind, leaving the val on the stack
(emit-code #f (make-glil-call 'unwind 0))
(comp-drop (make-application src unwinder '())))
((vals)
(let ((MV (make-label)))
(comp-vals body MV)
;; one value: push 1 and fall through to MV case
(emit-code #f (make-glil-const 1))
(emit-label MV)
;; multiple values: unwind...
(emit-code #f (make-glil-call 'unwind 0))
(comp-drop (make-application src unwinder '()))
;; and goto the MVRA.
(emit-branch #f 'br MVRA)))
((drop)
;; compile body, discarding values. then unwind...
(comp-drop body)
(emit-code #f (make-glil-call 'unwind 0))
(comp-drop (make-application src unwinder '()))
;; and fall through, or goto RA if there is one.
(if RA
(emit-branch #f 'br RA)))))
((<dynlet> src fluids vals body)
(for-each comp-push fluids)
(for-each comp-push vals)
(emit-code #f (make-glil-call 'wind-fluids (length fluids)))
(case context
((tail)
(let ((MV (make-label)))
;; NB: in tail case, it is possible to preserve asymptotic tail
;; recursion, via merging unwind-fluids structures -- but we'd need
;; to compile in the body twice (once in tail context, assuming the
;; caller unwinds, and once with this trampoline thing, unwinding
;; ourselves).
(comp-vals body MV)
;; one value: unwind and return
(emit-code #f (make-glil-call 'unwind-fluids 0))
(emit-code #f (make-glil-call 'return 1))
(emit-label MV)
;; multiple values: unwind and return values
(emit-code #f (make-glil-call 'unwind-fluids 0))
(emit-code #f (make-glil-call 'return/nvalues 1))))
((push)
(comp-push body)
(emit-code #f (make-glil-call 'unwind-fluids 0)))
((vals)
(let ((MV (make-label)))
(comp-vals body MV)
;; one value: push 1 and fall through to MV case
(emit-code #f (make-glil-const 1))
(emit-label MV)
;; multiple values: unwind and goto MVRA
(emit-code #f (make-glil-call 'unwind-fluids 0))
(emit-branch #f 'br MVRA)))
((drop)
;; compile body, discarding values. then unwind...
(comp-drop body)
(emit-code #f (make-glil-call 'unwind-fluids 0))
;; and fall through, or goto RA if there is one.
(if RA
(emit-branch #f 'br RA)))))
((<dynref> src fluid)
(case context
((drop)
(comp-drop fluid))
((push vals tail)
(comp-push fluid)
(emit-code #f (make-glil-call 'fluid-ref 1))))
(maybe-emit-return))
((<dynset> src fluid exp)
(comp-push fluid)
(comp-push exp)
(emit-code #f (make-glil-call 'fluid-set 2))
(case context
((push vals tail)
(emit-code #f (make-glil-void))))
(maybe-emit-return))
;; What's the deal here? The deal is that we are compiling the start of a
;; delimited continuation. We try to avoid heap allocation in the normal
;; case; so the body is an expression, not a thunk, and we try to render
;; the handler inline. Also we did some analysis, in analyze.scm, so that
;; if the continuation isn't referenced, we don't reify it. This makes it
;; possible to implement catch and throw with delimited continuations,
;; without any overhead.
((<prompt> src tag body handler)
(let ((H (make-label))
(POST (make-label))
(escape-only? (hashq-ref allocation x)))
;; First, set up the prompt.
(comp-push tag)
(emit-code src (make-glil-prompt H escape-only?))
;; Then we compile the body, with its normal return path, unwinding
;; before proceeding.
(case context
((tail)
(let ((MV (make-label)))
(comp-vals body MV)
;; one value: unwind and return
(emit-code #f (make-glil-call 'unwind 0))
(emit-code #f (make-glil-call 'return 1))
;; multiple values: unwind and return
(emit-label MV)
(emit-code #f (make-glil-call 'unwind 0))
(emit-code #f (make-glil-call 'return/nvalues 1))))
((push)
;; we only want one value. so ask for one value, unwind, and jump to
;; post
(comp-push body)
(emit-code #f (make-glil-call 'unwind 0))
(emit-branch #f 'br POST))
((vals)
(let ((MV (make-label)))
(comp-vals body MV)
;; one value: push 1 and fall through to MV case
(emit-code #f (make-glil-const 1))
;; multiple values: unwind and goto MVRA
(emit-label MV)
(emit-code #f (make-glil-call 'unwind 0))
(emit-branch #f 'br MVRA)))
((drop)
;; compile body, discarding values, then unwind & fall through.
(comp-drop body)
(emit-code #f (make-glil-call 'unwind 0))
(emit-branch #f 'br (or RA POST))))
(emit-label H)
;; Now the handler. The stack is now made up of the continuation, and
;; then the args to the continuation (pushed separately), and then the
;; number of args, including the continuation.
(record-case handler
((<lambda-case> req opt kw rest vars body alternate)
(if (or opt kw alternate)
(error "unexpected lambda-case in prompt" x))
(emit-code src (make-glil-mv-bind
(vars->bind-list
(append req (if rest (list rest) '()))
vars allocation self)
(and rest #t)))
(for-each (lambda (v)
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #f . ,n)
(emit-code src (make-glil-lexical #t #f 'set n)))
((#t #t . ,n)
(emit-code src (make-glil-lexical #t #t 'box n)))
(,loc (error "badness" x loc))))
(reverse vars))
(comp-tail body)
(emit-code #f (make-glil-unbind))))
(if (or (eq? context 'push)
(and (eq? context 'drop) (not RA)))
(emit-label POST))))
((<abort> src tag args tail)
(comp-push tag)
(for-each comp-push args)
(comp-push tail)
(emit-code src (make-glil-call 'abort (length args)))
;; so, the abort can actually return. if it does, the values will be on
;; the stack, then the MV marker, just as in an MV context.
(case context
((tail)
;; Return values.
(emit-code #f (make-glil-call 'return/nvalues 1)))
((drop)
;; Drop all values and goto RA, or otherwise fall through.
(emit-code #f (make-glil-mv-bind 0 #f))
(if RA (emit-branch #f 'br RA)))
((push)
;; Truncate to one value.
(emit-code #f (make-glil-mv-bind 1 #f)))
((vals)
;; Go to MVRA.
(emit-branch #f 'br MVRA)))))))