mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-06-04 03:00:20 +02:00
697 lines
23 KiB
C
697 lines
23 KiB
C
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#define GC_IMPL 1
|
|
|
|
#include "gc-api.h"
|
|
#include "gc-ephemeron.h"
|
|
#include "gc-tracepoint.h"
|
|
|
|
#include "gc-internal.h"
|
|
|
|
#include "bdw-attrs.h"
|
|
|
|
#if GC_PRECISE_ROOTS
|
|
#error bdw-gc is a conservative collector
|
|
#endif
|
|
|
|
#if !GC_CONSERVATIVE_ROOTS
|
|
#error bdw-gc is a conservative collector
|
|
#endif
|
|
|
|
#if !GC_CONSERVATIVE_TRACE
|
|
#error bdw-gc is a conservative collector
|
|
#endif
|
|
|
|
// When pthreads are used, let `libgc' know about it and redirect
|
|
// allocation calls such as `GC_MALLOC ()' to (contention-free, faster)
|
|
// thread-local allocation.
|
|
|
|
#define GC_THREADS 1
|
|
#define GC_REDIRECT_TO_LOCAL 1
|
|
|
|
// Don't #define pthread routines to their GC_pthread counterparts.
|
|
// Instead we will be careful inside the benchmarks to use API to
|
|
// register threads with libgc.
|
|
#define GC_NO_THREAD_REDIRECTS 1
|
|
|
|
#include <gc/gc.h>
|
|
#include <gc/gc_inline.h> /* GC_generic_malloc_many */
|
|
#include <gc/gc_mark.h> /* GC_generic_malloc */
|
|
|
|
#define GC_INLINE_GRANULE_WORDS 2
|
|
#define GC_INLINE_GRANULE_BYTES (sizeof(void *) * GC_INLINE_GRANULE_WORDS)
|
|
|
|
/* A freelist set contains GC_INLINE_FREELIST_COUNT pointers to singly
|
|
linked lists of objects of different sizes, the ith one containing
|
|
objects i + 1 granules in size. This setting of
|
|
GC_INLINE_FREELIST_COUNT will hold freelists for allocations of
|
|
up to 256 bytes. */
|
|
#define GC_INLINE_FREELIST_COUNT (256U / GC_INLINE_GRANULE_BYTES)
|
|
|
|
struct gc_heap {
|
|
struct gc_heap_roots *roots;
|
|
struct gc_mutator *mutators;
|
|
struct gc_event_listener event_listener;
|
|
struct gc_finalizer_state *finalizer_state;
|
|
gc_finalizer_callback have_finalizers;
|
|
void *event_listener_data;
|
|
void* (*allocation_failure)(struct gc_heap *, size_t);
|
|
};
|
|
|
|
struct gc_mutator {
|
|
void *freelists[GC_INLINE_FREELIST_COUNT];
|
|
struct gc_heap *heap;
|
|
struct gc_mutator_roots *roots;
|
|
struct gc_mutator *next; // with global bdw lock
|
|
struct gc_mutator **prev; // with global bdw lock
|
|
void *event_listener_data;
|
|
};
|
|
|
|
struct gc_heap *__the_bdw_gc_heap;
|
|
#define HEAP_EVENT(event, ...) do { \
|
|
__the_bdw_gc_heap->event_listener.event(__the_bdw_gc_heap->event_listener_data, \
|
|
##__VA_ARGS__); \
|
|
GC_TRACEPOINT(event, ##__VA_ARGS__); \
|
|
} while (0)
|
|
#define MUTATOR_EVENT(mut, event, ...) do { \
|
|
__the_bdw_gc_heap->event_listener.event(mut->event_listener_data, \
|
|
##__VA_ARGS__); \
|
|
GC_TRACEPOINT(event, ##__VA_ARGS__); \
|
|
} while (0)
|
|
static inline size_t gc_inline_bytes_to_freelist_index(size_t bytes) {
|
|
return (bytes - 1U) / GC_INLINE_GRANULE_BYTES;
|
|
}
|
|
static inline size_t gc_inline_freelist_object_size(size_t idx) {
|
|
return (idx + 1U) * GC_INLINE_GRANULE_BYTES;
|
|
}
|
|
|
|
struct gc_heap* gc_mutator_heap(struct gc_mutator *mutator) {
|
|
return __the_bdw_gc_heap;
|
|
}
|
|
uintptr_t gc_small_object_nursery_low_address(struct gc_heap *heap) {
|
|
GC_CRASH();
|
|
}
|
|
uintptr_t gc_small_object_nursery_high_address(struct gc_heap *heap) {
|
|
GC_CRASH();
|
|
}
|
|
|
|
// The values of these must match the internal POINTERLESS and NORMAL
|
|
// definitions in libgc, for which unfortunately there are no external
|
|
// definitions. Alack.
|
|
enum gc_inline_kind {
|
|
GC_INLINE_KIND_POINTERLESS,
|
|
GC_INLINE_KIND_NORMAL
|
|
};
|
|
|
|
static inline void *
|
|
allocate_small(void **freelist, size_t idx, enum gc_inline_kind kind) {
|
|
void *head = *freelist;
|
|
|
|
if (!head) {
|
|
size_t bytes = gc_inline_freelist_object_size(idx);
|
|
GC_generic_malloc_many(bytes, kind, freelist);
|
|
head = *freelist;
|
|
if (GC_UNLIKELY (!head))
|
|
return __the_bdw_gc_heap->allocation_failure(__the_bdw_gc_heap, bytes);
|
|
}
|
|
|
|
*freelist = *(void **)(head);
|
|
*(void**)head = NULL;
|
|
|
|
return head;
|
|
}
|
|
|
|
void* gc_allocate_slow(struct gc_mutator *mut, size_t size,
|
|
enum gc_allocation_kind kind) {
|
|
GC_ASSERT(size != 0);
|
|
if (size <= gc_allocator_large_threshold()) {
|
|
switch (kind) {
|
|
case GC_ALLOCATION_TAGGED:
|
|
case GC_ALLOCATION_UNTAGGED_CONSERVATIVE: {
|
|
size_t idx = gc_inline_bytes_to_freelist_index(size);
|
|
return allocate_small(&mut->freelists[idx], idx, GC_INLINE_KIND_NORMAL);
|
|
}
|
|
case GC_ALLOCATION_TAGGED_POINTERLESS:
|
|
case GC_ALLOCATION_UNTAGGED_POINTERLESS:
|
|
break;
|
|
default:
|
|
GC_CRASH();
|
|
}
|
|
}
|
|
switch (kind) {
|
|
case GC_ALLOCATION_TAGGED:
|
|
case GC_ALLOCATION_UNTAGGED_CONSERVATIVE: {
|
|
void *ret = GC_malloc(size);
|
|
if (GC_LIKELY (ret != NULL))
|
|
return ret;
|
|
return __the_bdw_gc_heap->allocation_failure(__the_bdw_gc_heap, size);
|
|
}
|
|
case GC_ALLOCATION_TAGGED_POINTERLESS:
|
|
case GC_ALLOCATION_UNTAGGED_POINTERLESS: {
|
|
void *ret = GC_malloc_atomic(size);
|
|
if (GC_LIKELY (ret != NULL)) {
|
|
memset(ret, 0, size);
|
|
return ret;
|
|
}
|
|
return __the_bdw_gc_heap->allocation_failure(__the_bdw_gc_heap, size);
|
|
}
|
|
default:
|
|
GC_CRASH();
|
|
}
|
|
}
|
|
|
|
void gc_pin_object(struct gc_mutator *mut, struct gc_ref ref) {
|
|
// Nothing to do.
|
|
}
|
|
|
|
void gc_collect(struct gc_mutator *mut,
|
|
enum gc_collection_kind requested_kind) {
|
|
switch (requested_kind) {
|
|
case GC_COLLECTION_MINOR:
|
|
GC_collect_a_little();
|
|
break;
|
|
case GC_COLLECTION_ANY:
|
|
case GC_COLLECTION_MAJOR:
|
|
GC_gcollect();
|
|
break;
|
|
case GC_COLLECTION_COMPACTING:
|
|
GC_gcollect_and_unmap();
|
|
break;
|
|
default:
|
|
GC_CRASH();
|
|
}
|
|
}
|
|
|
|
int gc_heap_contains(struct gc_heap *heap, struct gc_ref ref) {
|
|
GC_ASSERT(gc_ref_is_heap_object(ref));
|
|
return GC_base(gc_ref_heap_object(ref)) != 0;
|
|
}
|
|
|
|
int gc_object_is_old_generation_slow(struct gc_mutator *mut,
|
|
struct gc_ref obj) {
|
|
return 0;
|
|
}
|
|
|
|
void gc_write_barrier_slow(struct gc_mutator *mut, struct gc_ref obj,
|
|
size_t obj_size, struct gc_edge edge,
|
|
struct gc_ref new_val) {
|
|
}
|
|
|
|
int* gc_safepoint_flag_loc(struct gc_mutator *mut) { GC_CRASH(); }
|
|
void gc_safepoint_slow(struct gc_mutator *mut) { GC_CRASH(); }
|
|
|
|
void gc_safepoint_signal_inhibit(struct gc_mutator *mut) {
|
|
GC_alloc_lock();
|
|
}
|
|
void gc_safepoint_signal_reallow(struct gc_mutator *mut) {
|
|
GC_alloc_unlock();
|
|
}
|
|
|
|
struct bdw_mark_state {
|
|
struct GC_ms_entry *mark_stack_ptr;
|
|
struct GC_ms_entry *mark_stack_limit;
|
|
};
|
|
|
|
static void bdw_mark_edge(struct gc_edge edge, struct gc_heap *heap,
|
|
void *visit_data) {
|
|
struct bdw_mark_state *state = visit_data;
|
|
uintptr_t addr = gc_ref_value(gc_edge_ref(edge));
|
|
state->mark_stack_ptr = GC_MARK_AND_PUSH ((void *) addr,
|
|
state->mark_stack_ptr,
|
|
state->mark_stack_limit,
|
|
NULL);
|
|
}
|
|
|
|
static int heap_gc_kind;
|
|
static int mutator_gc_kind;
|
|
static int ephemeron_gc_kind;
|
|
static int finalizer_gc_kind;
|
|
|
|
// In BDW-GC, we can't hook into the mark phase to call
|
|
// gc_trace_ephemerons_for_object, so the advertised ephemeron strategy
|
|
// doesn't really work. The primitives that we have are mark functions,
|
|
// which run during GC and can't allocate; finalizers, which run after
|
|
// GC and can allocate but can't add to the connectivity graph; and
|
|
// disappearing links, which are cleared at the end of marking, in the
|
|
// stop-the-world phase. It does not appear to be possible to implement
|
|
// ephemerons using these primitives. Instead fall back to weak-key
|
|
// tables.
|
|
|
|
struct gc_ephemeron* gc_allocate_ephemeron(struct gc_mutator *mut) {
|
|
return GC_generic_malloc(gc_ephemeron_size(), ephemeron_gc_kind);
|
|
}
|
|
|
|
unsigned gc_heap_ephemeron_trace_epoch(struct gc_heap *heap) {
|
|
return GC_get_gc_no();
|
|
}
|
|
|
|
void gc_ephemeron_init(struct gc_mutator *mut, struct gc_ephemeron *ephemeron,
|
|
struct gc_ref key, struct gc_ref value) {
|
|
gc_ephemeron_init_internal(mut->heap, ephemeron, key, value);
|
|
if (GC_base((void*)gc_ref_value(key))) {
|
|
struct gc_ref *loc = gc_edge_loc(gc_ephemeron_key_edge(ephemeron));
|
|
GC_general_register_disappearing_link((void**)loc,
|
|
gc_ref_heap_object(key));
|
|
}
|
|
}
|
|
|
|
struct gc_ref gc_ephemeron_swap_value(struct gc_mutator *mut,
|
|
struct gc_ephemeron *e,
|
|
struct gc_ref ref) {
|
|
return gc_ephemeron_swap_value_internal(e, ref);
|
|
}
|
|
|
|
int gc_visit_ephemeron_key(struct gc_edge edge, struct gc_heap *heap) {
|
|
// Pretend the key is traced, to avoid adding this ephemeron to the
|
|
// global table.
|
|
return 1;
|
|
}
|
|
|
|
struct gc_finalizer* gc_allocate_finalizer(struct gc_mutator *mut) {
|
|
return GC_generic_malloc(gc_finalizer_size(), finalizer_gc_kind);
|
|
}
|
|
|
|
static void finalize_object(void *obj, void *data) {
|
|
struct gc_finalizer *f = data;
|
|
gc_finalizer_externally_fired(__the_bdw_gc_heap->finalizer_state, f);
|
|
}
|
|
|
|
void gc_finalizer_attach(struct gc_mutator *mut, struct gc_finalizer *finalizer,
|
|
unsigned priority, struct gc_ref object,
|
|
struct gc_ref closure) {
|
|
// Don't bother much about the actual finalizer; just delegate to BDW-GC.
|
|
GC_finalization_proc prev = NULL;
|
|
void *prev_data = NULL;
|
|
gc_finalizer_init_internal(finalizer, object, closure);
|
|
gc_finalizer_externally_activated(finalizer);
|
|
GC_register_finalizer_no_order(gc_ref_heap_object(object), finalize_object,
|
|
finalizer, &prev, &prev_data);
|
|
// FIXME: Allow multiple finalizers per object.
|
|
GC_ASSERT(prev == NULL);
|
|
GC_ASSERT(prev_data == NULL);
|
|
}
|
|
|
|
struct gc_finalizer* gc_pop_finalizable(struct gc_mutator *mut) {
|
|
GC_invoke_finalizers();
|
|
return gc_finalizer_state_pop(mut->heap->finalizer_state);
|
|
}
|
|
|
|
void gc_set_finalizer_callback(struct gc_heap *heap,
|
|
gc_finalizer_callback callback) {
|
|
heap->have_finalizers = callback;
|
|
}
|
|
|
|
static void have_finalizers(void) {
|
|
struct gc_heap *heap = __the_bdw_gc_heap;
|
|
if (heap->have_finalizers)
|
|
heap->have_finalizers(heap, 1);
|
|
}
|
|
|
|
static struct GC_ms_entry *
|
|
mark_ephemeron(GC_word *addr, struct GC_ms_entry *mark_stack_ptr,
|
|
struct GC_ms_entry *mark_stack_limit, GC_word env) {
|
|
|
|
struct bdw_mark_state state = {
|
|
mark_stack_ptr,
|
|
mark_stack_limit,
|
|
};
|
|
|
|
struct gc_ephemeron *ephemeron = (struct gc_ephemeron*) addr;
|
|
|
|
// If this ephemeron is on a freelist, its first word will be a possibly-null
|
|
// freelist link and everything else will be NULL.
|
|
if (!gc_ref_value(gc_edge_ref(gc_ephemeron_value_edge(ephemeron)))) {
|
|
bdw_mark_edge(gc_edge(addr), NULL, &state);
|
|
return state.mark_stack_ptr;
|
|
}
|
|
|
|
if (!gc_ref_value(gc_edge_ref(gc_ephemeron_key_edge(ephemeron)))) {
|
|
// If the key died in a previous collection, the disappearing link
|
|
// will have been cleared. Mark the ephemeron as dead.
|
|
gc_ephemeron_mark_dead(ephemeron);
|
|
}
|
|
|
|
gc_trace_ephemeron(ephemeron, bdw_mark_edge, NULL, &state);
|
|
|
|
return state.mark_stack_ptr;
|
|
}
|
|
|
|
static struct GC_ms_entry *
|
|
mark_finalizer(GC_word *addr, struct GC_ms_entry *mark_stack_ptr,
|
|
struct GC_ms_entry *mark_stack_limit, GC_word env) {
|
|
|
|
struct bdw_mark_state state = {
|
|
mark_stack_ptr,
|
|
mark_stack_limit,
|
|
};
|
|
|
|
struct gc_finalizer *finalizer = (struct gc_finalizer*) addr;
|
|
|
|
// If this ephemeron is on a freelist, its first word will be a possibly-null
|
|
// freelist link and everything else will be NULL.
|
|
if (!gc_ref_value(gc_finalizer_object(finalizer))) {
|
|
bdw_mark_edge(gc_edge(addr), NULL, &state);
|
|
return state.mark_stack_ptr;
|
|
}
|
|
|
|
gc_trace_finalizer(finalizer, bdw_mark_edge, NULL, &state);
|
|
|
|
return state.mark_stack_ptr;
|
|
}
|
|
|
|
static struct GC_ms_entry *
|
|
mark_heap(GC_word *addr, struct GC_ms_entry *mark_stack_ptr,
|
|
struct GC_ms_entry *mark_stack_limit, GC_word env) {
|
|
struct bdw_mark_state state = {
|
|
mark_stack_ptr,
|
|
mark_stack_limit,
|
|
};
|
|
|
|
struct gc_heap *heap = (struct gc_heap*) addr;
|
|
|
|
// If this heap is not __the_bdw_gc_heap, either it is on a freelist, or the
|
|
// heap object is still under construction. In either case, ignore it.
|
|
if (heap != __the_bdw_gc_heap)
|
|
return state.mark_stack_ptr;
|
|
|
|
if (heap->roots)
|
|
gc_trace_heap_roots(heap->roots, bdw_mark_edge, heap, &state);
|
|
|
|
gc_visit_finalizer_roots(heap->finalizer_state, bdw_mark_edge, heap, &state);
|
|
|
|
state.mark_stack_ptr = GC_MARK_AND_PUSH (heap->mutators,
|
|
state.mark_stack_ptr,
|
|
state.mark_stack_limit,
|
|
NULL);
|
|
|
|
return state.mark_stack_ptr;
|
|
}
|
|
|
|
static struct GC_ms_entry *
|
|
mark_mutator(GC_word *addr, struct GC_ms_entry *mark_stack_ptr,
|
|
struct GC_ms_entry *mark_stack_limit, GC_word env) {
|
|
struct bdw_mark_state state = {
|
|
mark_stack_ptr,
|
|
mark_stack_limit,
|
|
};
|
|
|
|
struct gc_mutator *mut = (struct gc_mutator*) addr;
|
|
|
|
// A mutator is valid and initialized if its "heap" member points to
|
|
// __the_bdw_gc_heap. Otherwise it could be on a freelist, in which case its
|
|
// first word will be a possibly-null freelist link, or it could be under
|
|
// construction, or it could be exited already. In any case, mark the free
|
|
// list link and finish.
|
|
if (mut->heap != __the_bdw_gc_heap) {
|
|
bdw_mark_edge(gc_edge(addr), NULL, &state);
|
|
return state.mark_stack_ptr;
|
|
}
|
|
|
|
memset(mut->freelists, 0, sizeof(void*) * GC_INLINE_FREELIST_COUNT);
|
|
|
|
if (mut->roots)
|
|
gc_trace_mutator_roots(mut->roots, bdw_mark_edge, mut->heap, &state);
|
|
|
|
state.mark_stack_ptr = GC_MARK_AND_PUSH (mut->next,
|
|
state.mark_stack_ptr,
|
|
state.mark_stack_limit,
|
|
NULL);
|
|
|
|
return state.mark_stack_ptr;
|
|
}
|
|
|
|
static inline struct gc_mutator *add_mutator(struct gc_heap *heap) {
|
|
struct gc_mutator *ret =
|
|
GC_generic_malloc(sizeof(struct gc_mutator), mutator_gc_kind);
|
|
ret->event_listener_data =
|
|
heap->event_listener.mutator_added(heap->event_listener_data);
|
|
|
|
GC_alloc_lock();
|
|
ret->next = heap->mutators;
|
|
ret->prev = &heap->mutators;
|
|
if (ret->next)
|
|
ret->next->prev = &ret->next;
|
|
heap->mutators = ret;
|
|
ret->heap = heap;
|
|
GC_alloc_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct gc_options {
|
|
struct gc_common_options common;
|
|
};
|
|
int gc_option_from_string(const char *str) {
|
|
return gc_common_option_from_string(str);
|
|
}
|
|
struct gc_options* gc_allocate_options(void) {
|
|
struct gc_options *ret = malloc(sizeof(struct gc_options));
|
|
gc_init_common_options(&ret->common);
|
|
return ret;
|
|
}
|
|
int gc_options_set_int(struct gc_options *options, int option, int value) {
|
|
return gc_common_options_set_int(&options->common, option, value);
|
|
}
|
|
int gc_options_set_size(struct gc_options *options, int option,
|
|
size_t value) {
|
|
return gc_common_options_set_size(&options->common, option, value);
|
|
}
|
|
int gc_options_set_double(struct gc_options *options, int option,
|
|
double value) {
|
|
return gc_common_options_set_double(&options->common, option, value);
|
|
}
|
|
int gc_options_parse_and_set(struct gc_options *options, int option,
|
|
const char *value) {
|
|
return gc_common_options_parse_and_set(&options->common, option, value);
|
|
}
|
|
|
|
struct gc_pending_ephemerons *
|
|
gc_heap_pending_ephemerons(struct gc_heap *heap) {
|
|
GC_CRASH();
|
|
return NULL;
|
|
}
|
|
|
|
static void on_collection_event(GC_EventType event) {
|
|
switch (event) {
|
|
case GC_EVENT_START: {
|
|
HEAP_EVENT(requesting_stop);
|
|
HEAP_EVENT(waiting_for_stop);
|
|
break;
|
|
}
|
|
case GC_EVENT_MARK_START:
|
|
HEAP_EVENT(mutators_stopped);
|
|
HEAP_EVENT(prepare_gc, GC_COLLECTION_MAJOR);
|
|
break;
|
|
case GC_EVENT_MARK_END:
|
|
HEAP_EVENT(roots_traced);
|
|
HEAP_EVENT(heap_traced);
|
|
break;
|
|
case GC_EVENT_RECLAIM_START:
|
|
break;
|
|
case GC_EVENT_RECLAIM_END:
|
|
// Sloppily attribute finalizers and eager reclamation to
|
|
// ephemerons.
|
|
HEAP_EVENT(ephemerons_traced);
|
|
// FIXME: This overestimates the live data size, as blocks that have at
|
|
// least one live object will be lazily swept, and free space discovered in
|
|
// those objects will be added to GC_bytes_found, which would need to be
|
|
// subtracted from this value.
|
|
HEAP_EVENT(live_data_size, GC_get_heap_size() - GC_get_free_bytes());
|
|
break;
|
|
case GC_EVENT_END:
|
|
HEAP_EVENT(restarting_mutators);
|
|
break;
|
|
case GC_EVENT_PRE_START_WORLD:
|
|
case GC_EVENT_POST_STOP_WORLD:
|
|
// Can't rely on these, as they are only fired when threads are
|
|
// enabled.
|
|
break;
|
|
case GC_EVENT_THREAD_SUSPENDED:
|
|
case GC_EVENT_THREAD_UNSUSPENDED:
|
|
// No nice way to map back to the mutator.
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void on_heap_resize(GC_word size) {
|
|
HEAP_EVENT(heap_resized, size);
|
|
}
|
|
|
|
uint64_t gc_allocation_counter(struct gc_heap *heap) {
|
|
return GC_get_total_bytes();
|
|
}
|
|
|
|
static void* allocation_failure(struct gc_heap *heap, size_t size) {
|
|
fprintf(stderr, "ran out of space, heap size %zu\n", GC_get_heap_size());
|
|
GC_CRASH();
|
|
return NULL;
|
|
}
|
|
|
|
static void* oom_fn(size_t nbytes) {
|
|
return NULL;
|
|
}
|
|
|
|
void gc_heap_set_allocation_failure_handler(struct gc_heap *heap,
|
|
void* (*handler)(struct gc_heap*,
|
|
size_t)) {
|
|
heap->allocation_failure = handler;
|
|
}
|
|
|
|
int gc_init(const struct gc_options *options, struct gc_stack_addr stack_base,
|
|
struct gc_heap **heap, struct gc_mutator **mutator,
|
|
struct gc_event_listener event_listener,
|
|
void *event_listener_data) {
|
|
// Root the heap, which will also cause all mutators to be marked.
|
|
GC_ASSERT_EQ(gc_allocator_small_granule_size(), GC_INLINE_GRANULE_BYTES);
|
|
GC_ASSERT_EQ(gc_allocator_large_threshold(),
|
|
GC_INLINE_FREELIST_COUNT * GC_INLINE_GRANULE_BYTES);
|
|
|
|
GC_ASSERT_EQ(__the_bdw_gc_heap, NULL);
|
|
|
|
if (!options) options = gc_allocate_options();
|
|
|
|
// Ignore stack base for main thread.
|
|
|
|
switch (options->common.heap_size_policy) {
|
|
case GC_HEAP_SIZE_FIXED:
|
|
GC_set_max_heap_size(options->common.heap_size);
|
|
break;
|
|
case GC_HEAP_SIZE_GROWABLE: {
|
|
if (options->common.maximum_heap_size)
|
|
GC_set_max_heap_size(options->common.maximum_heap_size);
|
|
// BDW uses a pretty weird heap-sizing heuristic:
|
|
//
|
|
// heap-size = live-data * (1 + (2 / GC_free_space_divisor))
|
|
// heap-size-multiplier = heap-size/live-data = 1 + 2/GC_free_space_divisor
|
|
// GC_free_space_divisor = 2/(heap-size-multiplier-1)
|
|
//
|
|
// (Assumption: your heap is mostly "composite", i.e. not
|
|
// "atomic". See bdw's alloc.c:min_bytes_allocd.)
|
|
double fsd = 2.0/(options->common.heap_size_multiplier - 1);
|
|
// But, the divisor is an integer. WTF. This caps the effective
|
|
// maximum heap multiplier at 3. Oh well.
|
|
GC_set_free_space_divisor(fsd + 0.51);
|
|
break;
|
|
}
|
|
case GC_HEAP_SIZE_ADAPTIVE:
|
|
default:
|
|
fprintf(stderr, "adaptive heap sizing unsupported by bdw-gc\n");
|
|
return 0;
|
|
}
|
|
|
|
GC_set_all_interior_pointers (0);
|
|
GC_set_finalize_on_demand (1);
|
|
GC_set_finalizer_notifier(have_finalizers);
|
|
|
|
// Not part of 7.3, sigh. Have to set an env var.
|
|
// GC_set_markers_count(options->common.parallelism);
|
|
char markers[21] = {0,}; // 21 bytes enough for 2**64 in decimal + NUL.
|
|
snprintf(markers, sizeof(markers), "%d", options->common.parallelism);
|
|
setenv("GC_MARKERS", markers, 1);
|
|
GC_init();
|
|
size_t current_heap_size = GC_get_heap_size();
|
|
if (options->common.heap_size > current_heap_size)
|
|
GC_expand_hp(options->common.heap_size - current_heap_size);
|
|
GC_allow_register_threads();
|
|
|
|
{
|
|
int add_size_to_descriptor = 0;
|
|
int clear_memory = 1;
|
|
|
|
heap_gc_kind = GC_new_kind(GC_new_free_list(),
|
|
GC_MAKE_PROC(GC_new_proc(mark_heap), 0),
|
|
add_size_to_descriptor, clear_memory);
|
|
mutator_gc_kind = GC_new_kind(GC_new_free_list(),
|
|
GC_MAKE_PROC(GC_new_proc(mark_mutator), 0),
|
|
add_size_to_descriptor, clear_memory);
|
|
ephemeron_gc_kind = GC_new_kind(GC_new_free_list(),
|
|
GC_MAKE_PROC(GC_new_proc(mark_ephemeron), 0),
|
|
add_size_to_descriptor, clear_memory);
|
|
finalizer_gc_kind = GC_new_kind(GC_new_free_list(),
|
|
GC_MAKE_PROC(GC_new_proc(mark_finalizer), 0),
|
|
add_size_to_descriptor, clear_memory);
|
|
}
|
|
|
|
*heap = GC_generic_malloc(sizeof(struct gc_heap), heap_gc_kind);
|
|
|
|
(*heap)->event_listener = event_listener;
|
|
(*heap)->event_listener_data = event_listener_data;
|
|
(*heap)->finalizer_state = gc_make_finalizer_state();
|
|
|
|
__the_bdw_gc_heap = *heap;
|
|
HEAP_EVENT(init, GC_get_heap_size());
|
|
GC_set_on_collection_event(on_collection_event);
|
|
GC_set_on_heap_resize(on_heap_resize);
|
|
GC_set_oom_fn (oom_fn);
|
|
(*heap)->allocation_failure = allocation_failure;
|
|
|
|
*mutator = add_mutator(*heap);
|
|
|
|
// Sanity check.
|
|
if (!GC_is_visible (&__the_bdw_gc_heap))
|
|
abort ();
|
|
|
|
return 1;
|
|
}
|
|
|
|
struct gc_mutator* gc_init_for_thread(struct gc_stack_addr stack_base,
|
|
struct gc_heap *heap) {
|
|
struct GC_stack_base base = { gc_stack_addr_as_pointer (stack_base) };
|
|
GC_register_my_thread(&base);
|
|
return add_mutator(heap);
|
|
}
|
|
void gc_finish_for_thread(struct gc_mutator *mut) {
|
|
GC_alloc_lock();
|
|
MUTATOR_EVENT(mut, mutator_removed);
|
|
*mut->prev = mut->next;
|
|
if (mut->next)
|
|
mut->next->prev = mut->prev;
|
|
memset(mut, 0, sizeof(*mut));
|
|
GC_alloc_unlock();
|
|
|
|
GC_unregister_my_thread();
|
|
}
|
|
|
|
struct call_with_mutator_data {
|
|
void* (*proc) (struct gc_mutator*, void*);
|
|
struct gc_mutator *mutator;
|
|
void *data;
|
|
};
|
|
|
|
static void* call_with_mutator (void *p) {
|
|
struct call_with_mutator_data *data = p;
|
|
return data->proc(data->mutator, data->data);
|
|
}
|
|
|
|
void gc_deactivate(struct gc_mutator *mut) {};
|
|
void gc_reactivate(struct gc_mutator *mut) {};
|
|
|
|
void* gc_deactivate_for_call(struct gc_mutator *mut,
|
|
void* (*f)(struct gc_mutator *, void*),
|
|
void *data) {
|
|
struct call_with_mutator_data d = { f, mut, data };
|
|
return GC_do_blocking(call_with_mutator, &d);
|
|
}
|
|
|
|
void* gc_reactivate_for_call(struct gc_mutator *mut,
|
|
void* (*f)(struct gc_mutator *, void*),
|
|
void *data) {
|
|
struct call_with_mutator_data d = { f, mut, data };
|
|
return GC_call_with_gc_active(call_with_mutator, &d);
|
|
}
|
|
|
|
void gc_mutator_set_roots(struct gc_mutator *mut,
|
|
struct gc_mutator_roots *roots) {
|
|
mut->roots = roots;
|
|
}
|
|
void gc_heap_set_roots(struct gc_heap *heap, struct gc_heap_roots *roots) {
|
|
heap->roots = roots;
|
|
}
|
|
void gc_heap_set_extern_space(struct gc_heap *heap,
|
|
struct gc_extern_space *space) {
|
|
}
|