1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-06-11 14:21:10 +02:00
guile/module/language/cps2/utils.scm
Andy Wingo 19024bdc27 Utils refactors
* module/language/cps2/utils.scm (compute-successors): kfun is
  optional.
  (compute-sorted-strongly-connected-components): New function, moved
  from split-rec.scm.  Doesn't assume that 0 is a free node identifier.

* module/language/cps2/split-rec.scm
  (compute-sorted-strongly-connected-components): Remove, use utils.scm
  version instead.

* module/language/cps2/closure-conversion.scm (intset-select): Remove
  unused function.
2015-07-19 12:21:31 +02:00

477 lines
17 KiB
Scheme

;;; Continuation-passing style (CPS) intermediate language (IL)
;; Copyright (C) 2013, 2014, 2015 Free Software Foundation, Inc.
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;;; Commentary:
;;;
;;; Helper facilities for working with CPS.
;;;
;;; Code:
(define-module (language cps2 utils)
#:use-module (ice-9 match)
#:use-module (srfi srfi-1)
#:use-module (srfi srfi-11)
#:use-module (language cps2)
#:use-module (language cps intset)
#:use-module (language cps intmap)
#:export (;; Fresh names.
label-counter var-counter
fresh-label fresh-var
with-fresh-name-state compute-max-label-and-var
let-fresh
;; Various utilities.
fold1 fold2
trivial-intset
intmap-map
intmap-keys
invert-bijection invert-partition
intset->intmap
worklist-fold
fixpoint
;; Flow analysis.
compute-constant-values
compute-function-body
compute-reachable-functions
compute-successors
invert-graph
compute-predecessors
compute-reverse-post-order
compute-strongly-connected-components
compute-sorted-strongly-connected-components
compute-idoms
compute-dom-edges
))
(define label-counter (make-parameter #f))
(define var-counter (make-parameter #f))
(define (fresh-label)
(let ((count (or (label-counter)
(error "fresh-label outside with-fresh-name-state"))))
(label-counter (1+ count))
count))
(define (fresh-var)
(let ((count (or (var-counter)
(error "fresh-var outside with-fresh-name-state"))))
(var-counter (1+ count))
count))
(define-syntax-rule (let-fresh (label ...) (var ...) body ...)
(let* ((label (fresh-label)) ...
(var (fresh-var)) ...)
body ...))
(define-syntax-rule (with-fresh-name-state fun body ...)
(call-with-values (lambda () (compute-max-label-and-var fun))
(lambda (max-label max-var)
(parameterize ((label-counter (1+ max-label))
(var-counter (1+ max-var)))
body ...))))
(define (compute-max-label-and-var conts)
(values (or (intmap-prev conts) -1)
(intmap-fold (lambda (k cont max-var)
(match cont
(($ $kargs names syms body)
(apply max max-var syms))
(($ $kfun src meta self)
(max max-var self))
(_ max-var)))
conts
-1)))
(define-inlinable (fold1 f l s0)
(let lp ((l l) (s0 s0))
(match l
(() s0)
((elt . l) (lp l (f elt s0))))))
(define-inlinable (fold2 f l s0 s1)
(let lp ((l l) (s0 s0) (s1 s1))
(match l
(() (values s0 s1))
((elt . l)
(call-with-values (lambda () (f elt s0 s1))
(lambda (s0 s1)
(lp l s0 s1)))))))
(define (trivial-intset set)
"Returns the sole member of @var{set}, if @var{set} has exactly one
member, or @code{#f} otherwise."
(let ((first (intset-next set)))
(and first
(not (intset-next set (1+ first)))
first)))
(define (intmap-map proc map)
(persistent-intmap
(intmap-fold (lambda (k v out) (intmap-replace! out k (proc k v)))
map
map)))
(define (intmap-keys map)
"Return an intset of the keys in @var{map}."
(persistent-intset
(intmap-fold (lambda (k v keys) (intset-add! keys k)) map empty-intset)))
(define (invert-bijection map)
"Assuming the values of @var{map} are integers and are unique, compute
a map in which each value maps to its key. If the values are not
unique, an error will be signalled."
(intmap-fold (lambda (k v out) (intmap-add out v k)) map empty-intmap))
(define (invert-partition map)
"Assuming the values of @var{map} are disjoint intsets, compute a map
in which each member of each set maps to its key. If the values are not
disjoint, an error will be signalled."
(intmap-fold (lambda (k v* out)
(intset-fold (lambda (v out) (intmap-add out v k)) v* out))
map empty-intmap))
(define (intset->intmap f set)
(persistent-intmap
(intset-fold (lambda (label preds)
(intmap-add! preds label (f label)))
set empty-intmap)))
(define worklist-fold
(case-lambda
((f in out)
(let lp ((in in) (out out))
(if (eq? in empty-intset)
out
(call-with-values (lambda () (f in out)) lp))))
((f in out0 out1)
(let lp ((in in) (out0 out0) (out1 out1))
(if (eq? in empty-intset)
(values out0 out1)
(call-with-values (lambda () (f in out0 out1)) lp))))))
(define fixpoint
(case-lambda
((f x)
(let lp ((x x))
(let ((x* (f x)))
(if (eq? x x*) x* (lp x*)))))
((f x0 x1)
(let lp ((x0 x0) (x1 x1))
(call-with-values (lambda () (f x0 x1))
(lambda (x0* x1*)
(if (and (eq? x0 x0*) (eq? x1 x1*))
(values x0* x1*)
(lp x0* x1*))))))))
(define (compute-defining-expressions conts)
(define (meet-defining-expressions old new)
;; If there are multiple definitions, punt and
;; record #f.
#f)
(persistent-intmap
(intmap-fold (lambda (label cont defs)
(match cont
(($ $kargs _ _ ($ $continue k src exp))
(match (intmap-ref conts k)
(($ $kargs (_) (var))
(intmap-add! defs var exp meet-defining-expressions))
(_ defs)))
(_ defs)))
conts
empty-intmap)))
(define (compute-constant-values conts)
(persistent-intmap
(intmap-fold (lambda (var exp out)
(match exp
(($ $const val)
(intmap-add! out var val))
(_ out)))
(compute-defining-expressions conts)
empty-intmap)))
(define (compute-function-body conts kfun)
(persistent-intset
(let visit-cont ((label kfun) (labels empty-intset))
(cond
((intset-ref labels label) labels)
(else
(let ((labels (intset-add! labels label)))
(match (intmap-ref conts label)
(($ $kreceive arity k) (visit-cont k labels))
(($ $kfun src meta self ktail kclause)
(let ((labels (visit-cont ktail labels)))
(if kclause
(visit-cont kclause labels)
labels)))
(($ $ktail) labels)
(($ $kclause arity kbody kalt)
(if kalt
(visit-cont kalt (visit-cont kbody labels))
(visit-cont kbody labels)))
(($ $kargs names syms ($ $continue k src exp))
(visit-cont k (match exp
(($ $branch k)
(visit-cont k labels))
(($ $prompt escape? tag k)
(visit-cont k labels))
(_ labels)))))))))))
(define (compute-reachable-functions conts kfun)
"Compute a mapping LABEL->LABEL..., where each key is a reachable
$kfun and each associated value is the body of the function, as an
intset."
(define (intset-cons i set) (intset-add set i))
(define (visit-fun kfun body to-visit)
(intset-fold
(lambda (label to-visit)
(define (return kfun*) (fold intset-cons to-visit kfun*))
(define (return1 kfun) (intset-add to-visit kfun))
(define (return0) to-visit)
(match (intmap-ref conts label)
(($ $kargs _ _ ($ $continue _ _ exp))
(match exp
(($ $fun label) (return1 label))
(($ $rec _ _ (($ $fun labels) ...)) (return labels))
(($ $closure label nfree) (return1 label))
(($ $callk label) (return1 label))
(_ (return0))))
(_ (return0))))
body
to-visit))
(let lp ((to-visit (intset kfun)) (visited empty-intmap))
(let ((to-visit (intset-subtract to-visit (intmap-keys visited))))
(if (eq? to-visit empty-intset)
visited
(call-with-values
(lambda ()
(intset-fold
(lambda (kfun to-visit visited)
(let ((body (compute-function-body conts kfun)))
(values (visit-fun kfun body to-visit)
(intmap-add visited kfun body))))
to-visit
empty-intset
visited))
lp)))))
(define* (compute-successors conts #:optional (kfun (intmap-next conts)))
(define (visit label succs)
(let visit ((label kfun) (succs empty-intmap))
(define (propagate0)
(intmap-add! succs label empty-intset))
(define (propagate1 succ)
(visit succ (intmap-add! succs label (intset succ))))
(define (propagate2 succ0 succ1)
(let ((succs (intmap-add! succs label (intset succ0 succ1))))
(visit succ1 (visit succ0 succs))))
(if (intmap-ref succs label (lambda (_) #f))
succs
(match (intmap-ref conts label)
(($ $kargs names vars ($ $continue k src exp))
(match exp
(($ $branch kt) (propagate2 k kt))
(($ $prompt escape? tag handler) (propagate2 k handler))
(_ (propagate1 k))))
(($ $kreceive arity k)
(propagate1 k))
(($ $kfun src meta self tail clause)
(if clause
(propagate1 clause)
(propagate0)))
(($ $kclause arity kbody kalt)
(if kalt
(propagate2 kbody kalt)
(propagate1 kbody)))
(($ $ktail) (propagate0))))))
(persistent-intmap (visit kfun empty-intmap)))
(define* (compute-predecessors conts kfun #:key
(labels (compute-function-body conts kfun)))
(define (meet cdr car)
(cons car cdr))
(define (add-preds label preds)
(define (add-pred k preds)
(intmap-add! preds k label meet))
(match (intmap-ref conts label)
(($ $kreceive arity k)
(add-pred k preds))
(($ $kfun src meta self ktail kclause)
(add-pred ktail (if kclause (add-pred kclause preds) preds)))
(($ $ktail)
preds)
(($ $kclause arity kbody kalt)
(add-pred kbody (if kalt (add-pred kalt preds) preds)))
(($ $kargs names syms ($ $continue k src exp))
(add-pred k
(match exp
(($ $branch k) (add-pred k preds))
(($ $prompt _ _ k) (add-pred k preds))
(_ preds))))))
(persistent-intmap
(intset-fold add-preds labels
(intset->intmap (lambda (label) '()) labels))))
(define (compute-reverse-post-order succs start)
"Compute a reverse post-order numbering for a depth-first walk over
nodes reachable from the start node."
(let visit ((label start) (order '()) (visited empty-intset))
(call-with-values
(lambda ()
(intset-fold (lambda (succ order visited)
(if (intset-ref visited succ)
(values order visited)
(visit succ order visited)))
(intmap-ref succs label)
order
(intset-add! visited label)))
(lambda (order visited)
;; After visiting successors, add label to the reverse post-order.
(values (cons label order) visited)))))
(define (invert-graph succs)
"Given a graph PRED->SUCC..., where PRED is a label and SUCC... is an
intset of successors, return a graph SUCC->PRED...."
(intmap-fold (lambda (pred succs preds)
(intset-fold
(lambda (succ preds)
(intmap-add preds succ pred intset-add))
succs
preds))
succs
(intmap-map (lambda (label _) empty-intset) succs)))
(define (compute-strongly-connected-components succs start)
"Given a LABEL->SUCCESSOR... graph, compute a SCC->LABEL... map
partitioning the labels into strongly connected components (SCCs)."
(let ((preds (invert-graph succs)))
(define (visit-scc scc sccs-by-label)
(let visit ((label scc) (sccs-by-label sccs-by-label))
(if (intmap-ref sccs-by-label label (lambda (_) #f))
sccs-by-label
(intset-fold visit
(intmap-ref preds label)
(intmap-add sccs-by-label label scc)))))
(intmap-fold
(lambda (label scc sccs)
(let ((labels (intset-add empty-intset label)))
(intmap-add sccs scc labels intset-union)))
(fold visit-scc empty-intmap (compute-reverse-post-order succs start))
empty-intmap)))
(define (compute-sorted-strongly-connected-components edges)
"Given a LABEL->SUCCESSOR... graph, return a list of strongly
connected components in sorted order."
(define nodes
(intmap-keys edges))
;; Add a "start" node that links to all nodes in the graph, and then
;; remove it from the result.
(define start
(if (eq? nodes empty-intset)
0
(1+ (intset-prev nodes))))
(define components
(intmap-remove
(compute-strongly-connected-components (intmap-add edges start nodes)
start)
start))
(define node-components
(intmap-fold (lambda (id nodes out)
(intset-fold (lambda (node out) (intmap-add out node id))
nodes out))
components
empty-intmap))
(define (node-component node)
(intmap-ref node-components node))
(define (component-successors id nodes)
(intset-remove
(intset-fold (lambda (node out)
(intset-fold
(lambda (successor out)
(intset-add out (node-component successor)))
(intmap-ref edges node)
out))
nodes
empty-intset)
id))
(define component-edges
(intmap-map component-successors components))
(define preds
(invert-graph component-edges))
(define roots
(intmap-fold (lambda (id succs out)
(if (eq? empty-intset succs)
(intset-add out id)
out))
component-edges
empty-intset))
;; As above, add a "start" node that links to the roots, and remove it
;; from the result.
(match (compute-reverse-post-order (intmap-add preds start roots) start)
(((? (lambda (id) (eqv? id start))) . ids)
(map (lambda (id) (intmap-ref components id)) ids))))
;; Precondition: For each function in CONTS, the continuation names are
;; topologically sorted.
(define (compute-idoms conts kfun)
;; This is the iterative O(n^2) fixpoint algorithm, originally from
;; Allen and Cocke ("Graph-theoretic constructs for program flow
;; analysis", 1972). See the discussion in Cooper, Harvey, and
;; Kennedy's "A Simple, Fast Dominance Algorithm", 2001.
(let ((preds-map (compute-predecessors conts kfun)))
(define (compute-idom idoms preds)
(define (idom-ref label)
(intmap-ref idoms label (lambda (_) #f)))
(match preds
(() -1)
((pred) pred) ; Shortcut.
((pred . preds)
(define (common-idom d0 d1)
;; We exploit the fact that a reverse post-order is a
;; topological sort, and so the idom of a node is always
;; numerically less than the node itself.
(let lp ((d0 d0) (d1 d1))
(cond
;; d0 or d1 can be false on the first iteration.
((not d0) d1)
((not d1) d0)
((= d0 d1) d0)
((< d0 d1) (lp d0 (idom-ref d1)))
(else (lp (idom-ref d0) d1)))))
(fold1 common-idom preds pred))))
(define (adjoin-idom label preds idoms)
(let ((idom (compute-idom idoms preds)))
;; Don't use intmap-add! here.
(intmap-add idoms label idom (lambda (old new) new))))
(fixpoint (lambda (idoms)
(intmap-fold adjoin-idom preds-map idoms))
empty-intmap)))
;; Compute a vector containing, for each node, a list of the nodes that
;; it immediately dominates. These are the "D" edges in the DJ tree.
(define (compute-dom-edges idoms)
(define (snoc cdr car) (cons car cdr))
(persistent-intmap
(intmap-fold (lambda (label idom doms)
(let ((doms (intmap-add! doms label '())))
(cond
((< idom 0) doms) ;; No edge to entry.
(else (intmap-add! doms idom label snoc)))))
idoms
empty-intmap)))